
Stability in geometric & functional inequalities

Alessio Figalli∗

Abstract. The aim of this note is to review recent stability results for some geometric
and functional inequalities, and to describe applications to the long-time asymptotic of
evolution equations.

2010 Mathematics Subject Classification. Primary 49Q20; Secondary 35A23

Keywords. Isoperimetric inequalities, Gagliardo-Nirenberg-Sobolev inequalities, Log-
HLS inequality, stability, long-time asymptotic, Keller-Segel equation.

1. Introduction

Geometric and functional inequalities play a crucial role in several problems aris-
ing in the calculus of variations, partial differential equations, geometry, etc. More
recently, there has been a growing interest in studying the stability for such in-
equalities. The basic question one wants to address is the following:

Suppose we are given a functional inequality for which minimizers are known.
Can we prove, in some quantitative way, that if a function “almost attains the
equality” then it is close (in some suitable sense) to one of the minimizers?

In recent years several results have been obtained in this direction, showing
stability for isoperimetric inequalities [22, 18, 11, 16, 12], the Brunn-Minkowski
inequality on convex sets [19], Sobolev [10, 20, 14] and Gagliardo-Nirenberg in-
equalities [7, 14], etc.

In this note we will describe two different ways to attack this kind of problems.
More precisely, in Section 2 we will focus on the anisotropic isoperimetric inequality,
proving a sharp stability result using optimal transport. Then in Section 3 we
will address the stability issue for Sobolev and Gagliardo-Nirenberg inequalities.
Finally, as an application, in Section 4 we will use results from Section 3 to obtain
a quantitative rate of convergence for the critical mass Keller-Segel equation.

2. Stability for isoperimetric inequalities

2.1. The Euclidean case. The classical Euclidean isoperimetric inequality states
that, for any bounded open smooth set E ⊂ Rn, the perimeter P (E) controls the
volume |E|: more precisely,

P (E) ≥ n|B1|1/n|E|(n−1)/n, (1)
∗Work partially supported by NSF grant 0969962.



2 Alessio Figalli

B1 being the unit ball in Rn. Moreover equality holds if and only if E is a ball.
The stability question we want to ask is the following: if E is “almost a min-

imizer” does this imply that E is close to a ball, if possible in some quantitative
way? In order to properly formulate the problem, we introduce some notation.

Whenever E is a smooth open set with 0 < |E| < +∞, we define its isoperi-
metric deficit as

δ(E) :=
P (E)

n|B1|1/n|E|(n−1)/n
− 1 .

We observe that (1) implies that δ(E) ≥ 0, and by the characterization of the
equality cases δ(E) = 0 if and only if E is a ball. Thus δ(E) measures the deviation
of E from being optimal in (1), and the stability problem consists in quantitatively
relating this deviation to a more direct notion of distance from the family of optimal
sets. To this end we introduce the asymmetry index of E,

A(E) := inf
{
|E∆(Br(x))|

|E|
: x ∈ Rn , rr|B1| = |E|

}
(here E∆F denotes the symmetric difference between the sets E and F , i.e.,
E∆F := (E \ F ) ∪ (F \ E)), and we look for positive constants C and α, de-
pending only on n, such that the following stability version of (1) holds:

A(E) ≤ C δ(E)1/α . (2)

This problem has been thoroughly studied (we refer to the survey [25, Section 3]
for an extended list of references and the history of the problem). In particular, the
first main contributions to the general problem in arbitrary dimension are due to
Hall, Hayman, and Weitsman [24, 23], where they prove (2) with a constant C =
C(n) and the exponent α = 4. It was however conjectured by Hall that (2) should
hold with the sharp exponent α = 2 (the sharpness of the exponent α = 2 can be
checked by looking at a sequence of ellipsoids converging to B1). This has been
recently shown by Fusco, Maggi and Pratelli in [22] making use of symmetrization
techniques (see also [18, 12] for alternative proofs of this result).

2.2. The anisotropic case. The anisotropic isoperimetric inequality arises in
connection with a natural generalization of the Euclidean notion of perimeter. In
dimension n ≥ 2, we consider an open bounded convex set K of Rn containing
the origin. Starting from K, we define a weight function on directions through the
Euclidean scalar product

‖ν‖∗ := sup {x · ν : x ∈ K} , ν ∈ Sn−1 , (3)

where Sn−1 is the unit sphere, and |x| is the Euclidean norm of x ∈ Rn. Given E
an open smooth set in Rn, its anisotropic perimeter is defined as

PK(E) :=
∫
∂E

‖νE(x)‖∗dHn−1(x) , (4)
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where Hn−1 denotes the (n−1)-dimensional Hausdorff measure in Rn. This notion
of perimeter obeys the scaling law PK(ρE) = ρn−1PK(E) for ρ > 0, and it is
invariant under translations. However, in contrast with the Euclidean perimeter,
PK is in general not invariant by the action of O(n), or even of SO(n), and in
fact it may even happen that PK(E) 6= PK(Rn \ E) if K is not symmetric with
respect to the origin. When K is the Euclidean unit ball B = {x ∈ Rn : |x| < 1}
of Rn then ‖ν‖∗ = 1 for every ν ∈ Sn−1, and therefore PK(E) coincides with the
Euclidean perimeter P (E).

Apart from its intrinsic geometric interest, the anisotropic perimeter PK arises
as a model for surface tension in the study of equilibrium configurations of solid
crystals with sufficiently small grains, and constitutes the basic model for surface
energies in phase transitions. In both settings one is naturally led to minimize
PK(E) under a volume constraint, which leads to the anisotropic isoperimetric
inequality:

PK(E) ≥ n|K|1/n|E|(n−1)/n , (5)

with equality if and only if E = x+ rK for some x ∈ Rn and r > 0 [21].
Also in this case, we are interested in the stability of such inequality. Hence we

introduce the anisotropic deficit of E,

δK(E) :=
PK(E)

n|K|1/n|E|(n−1)/n
− 1 ,

and the anisotropic asymmetry of E,

AK(E) := inf
{
|E∆(x0 + rK)|

|E|
: x0 ∈ Rn , rn|K| = |E|

}
,

and we look for positive constants C and α, depending on n and K only, such that

AK(E) ≤ C δK(E)1/α . (6)

As mentioned before, the proof in [22] of the sharp version of (2) relies in
quantitative symmetrization inequalities, that is clearly specific to the isotropic
case. Hence, when K is a generic convex set, the study of (6) requires completely
new ideas.

The first stability result for (5) on generic sets is due to Esposito, Fusco, and
Trombetti in [15]: starting from the uniqueness proof in [21], they show the validity
of (6) with some constant C = C(n,K) and for the exponent

α(2) =
9
2
, α(n) =

n(n+ 1)
2

for n ≥ 3 .

This non-trivial result still leaved the space for a substantial improvement concern-
ing the decay rate at zero of the asymmetry index in terms of the isoperimetric
deficit. Theorem 1.1 in [18] provides the sharp decay rate:

Theorem 2.1. Let E be a set of finite perimeter with |E| < +∞. Then

AK(E) ≤ 181n7

(2− 2(n−1)/n)3/2
√
δK(E) .
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The proof of the above theorem is based on a quantitative study of the optimal
transport map between E and K, through the bounds that can be derived from
Gromov’s proof of the isoperimetric inequality (see also [9] for a proof of Sobolev
inequalities via optimal transportation). These estimates provide control, in terms
of the isoperimetric deficit, and modulo scalings and translations, on the distance
between such a transportation map and the identity, which can then be used to
deduce a bound on the asymmetry index. In the next sections we sketch the proof
of this result.

2.2.1. Gromov’s proof of the anisotropic isoperimetric inequality. Here
we describe a variant of Gromov’s argument to prove the anisotropic isoperimetric
inequality (in his original argument, Gromov did not use the optimal transport
map but instead the Knothe map, see [18, Section 1.4] for more details).

Given a (smooth) bounded set E ⊂ Rn, Brenier’s Theorem [5] ensures the
existence of a convex function ϕ : Rn → R, whose gradient T = ∇ϕ pushes forward
the probability density |E|−11E(x)dx into the probability density |K|−11K(y)dy.
In particular T takes E into K, and

det∇T =
|K|
|E|

on E . (7)

Since T is the gradient of a convex function, ∇T is a symmetric positive definite
n × n matrix. In particular, at any point x we can find an orthonormal basis
{ek(x)}nk=1 of Rn and n non-negative numbers 0 ≤ λ1(x) ≤ . . . ≤ λn(x), such that

∇T (x) =
n∑
k=1

λk(x)ek(x)⊗ ek(x) .

Then, by the arithmetic-geometric inequality we find

n(det∇T )1/n = n

(
n∏
k=1

λk

)1/n

≤
n∑
k=1

λk = div T on E . (8)

Hence, by (7), (8), and the Divergence Theorem, we get

n|K|1/n|E|(n−1)/n =
∫
E

n(det∇T )1/n ≤
∫
E

div T =
∫
∂E

T · νE dHn−1 . (9)

Let us now define, for every x ∈ Rn,

‖x‖ := inf
{
ρ > 0 :

x

ρ
∈ K

}
.

Then the set K can be characterized as K = {x ∈ Rn : ‖x‖ < 1}, so by the fact
that T maps E into K we obtain the bound

‖T‖ ≤ 1 on ∂E . (10)
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Moreover, recalling (3), we easily obtain the identity ‖ν‖∗ = sup{x · ν : ‖x‖ ≤ 1},
from which we immediately deduce

x · y ≤ ‖x‖‖y‖∗ ∀x, y ∈ Rn . (11)

Combining (9), (11), and (10) we obtain

n|K|1/n|E|(n−1)/n ≤
∫
∂E

‖T‖‖νE‖∗ dHn−1 ≤ PK(E) ,

which proves the anisotropic isoperimetric inequality. (This argument is formal
since a priori the transport map is not smooth, but the proof can be made rigorous
by using for instance some fine results on BV functions and sets of finite perimeter,
see [18].)

2.2.2. The equality case. To give an example of the robustness of the above
proof, we show here how the characterization of equality cases follows almost im-
mediately from the above argument. (We sketch here the formal argument, but
again the proof can be made rigorous using the theory of BV functions, see [18,
Appendix].)

Assume E to be a smooth open connected set which is optimal in the isoperi-
metric inequality. Up to rescale E, with no loss of generality we can assume
|E| = |K|. Then from Gromov’s argument we deduce that n(det∇T )1/n = div T
inside E. Recalling that equality in the arithmetic-geometric inequality holds if
and only if all numbers are equal, we get λ1(x) = . . . = λn(x) on E. Then, since
det∇T = 1 on E and ∇T is symmetric, the above condition implies immediately
∇T = Id . Thus T (x) = x + c for some vector c ∈ Rn, that is E = K − c, as
desired.

2.2.3. The quantitative argument. In order to prove the stability result, one
has to make quantitative the previous uniqueness argument. More precisely, by
knowing that δK(E) is small, we can quantify the gap between the arithmetic and
the geometric mean of the eigenvalues [18, Lemma 2.5], and a simple argument
allows then to show that

C(n,K)
√
δK(E) ≥

∫
E

|∇T − Id | ,

see [18, Corollary 2.4].
From this we would like to deduce that T is close to the identity map, and in

order to achieve this we may think to use some Poincaré-type inequality. However,
since the Poincaré constant of a domain depends on the regularity of its boundary, if
we just applied the Poincaré inequality directly on E we would deduce a stability
result with a constant depending on E itself! Instead, the key ingredient to go
further is to show that, if δK(E) is sufficiently small, then there exists a “good”
set G ⊂ E such that |E \ G| ≤ C(n,K)δK(E), and on G the Poincaré inequality
holds with a universal constant depending only on n and K. Then the idea is to
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apply Gromov’s argument to G instead of E, show that G is close to K, and then
use that |E \G| . δK(E) to conclude that E is close to K.

Actually, as explained in the introduction of [18], the use of a Poincaré inequal-
ity does not seem to provide the sharp exponent, and in order to conclude one
should rather use a trace inequality [18, Sections 3.1-3.4], which combined with
the addition information (coming from Gromov’s proof) that

n|K| δK(E) ≥
∫
∂E

(1− ‖T‖)‖νE‖∗dHn−1 .

allows to prove

C(n,K)
√
δK(E) ≥

∫
∂E

|1− ‖x‖| ‖νE‖∗ dHn−1(x) , . (12)

It is then not difficult to show that this last integral controls |E \K| = |E∆K|/2
[18, Lemma 3.5], so Theorem 2.1 is proved.

Let us point out that, although the constant C(n,K) in (12) depends a priori
on K, by using a renormalization argument for convex sets one can find a bound
on C(n,K) depending on the dimension only. We refer to [18] for more details,
and to [17] for an application of this stability result.

3. Stability for Sobolev and Gagliardo-Nirenberg inequalities

Sobolev and Gagliardo-Nirenberg inequalities allow to control the Lr norm of a
function in terms of some Lp norm of its gradient, and perhaps a Lq norm of the
function itself.

While for Sobolev inequalities minimizers are well-known [1, 27] and some gen-
eral stability results are available [3, 10, 20], for Gagliardo-Nirenberg inequalities
there are very few cases for which minimizers are explicitly known [13, 9] and all
the techniques used up to now to prove stability for Sobolev inequalities seem to
fail in this context.

Here we describe the approach introduced in [7] to obtain (sharp) stability esti-
mates for some Gagliardo-Nirenberg inequalities starting from the ones for Sobolev
inequalities. We mention that, after the work in [7] was completed, Dolbeault and
Toscani [14] were able to obtain stability results for some Sobolev and Gagliardo-
Nirenberg inequalities using “entropy-entropy dissipation” techniques.

3.1. Equality cases for Gagliardo-Nirenberg inequalities. Although in gen-
eral optimal constants in Gagliardo-Nirenberg inequalities are not known, there are
some important special cases for which minimizers (and so also the optimal con-
stants) have been found.

Let W 1,2(Rn) denote the space of measurable functions on Rn that have a
square integrable distributional gradient. The Gagliardo-Nirenberg (GN) inequal-
ity states that, for n ≥ 2 and all 1 ≤ p ≤ q < r(n) (with r(2) := +∞, and
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r(n) := 2n/(n− 2) if n ≥ 3), there is a finite constant C = C(n, p, q) such that for
all u ∈W 1,2(Rn),

‖u‖q ≤ C‖u‖1−θp ‖∇u‖θ2 with
1
q

=
θ

r(n)
+

1− θ
p

, (13)

where ‖ · ‖s denotes the Ls norm of a function over Rn.
For n ≥ 3 (so that r(n) <∞) the above inequality is valid also for q = r(n), in

which case θ = 1 and we get the Sobolev inequality

‖u‖22n/(n−2) ≤ Sn‖∇u‖
2
2 , (14)

for which the sharp constant Sn is known.
There are a few other choices of the p and q for which sharp constants are

known. In particular, in [13] Del Pino and Dolbeault found the sharp constant for
a one-parameter family of GN inequalities for each n ≥ 2: For t > 1, let p = t+ 1,
and let q = 2t. Then

‖u‖2t ≤ An,t‖∇u‖θ2‖u‖1−θt+1 , θ =
n(t− 1)

t[2n− (1 + t)(n− 2)]
. (15)

It turns out that there is a close relation between the sharp Sobolev inequality
(14) and the family of GN inequalities (15). One aspect of this is that the functions
u that saturate these inequalities are simply powers of one another: The optimal
constant Sn in (14) is given by

Sn =
‖v‖22n/(n−2)

‖∇v‖22
where v(x) = (1 + |x|2)−(n−2)/2 (16)

(see [1, 27]), and moreover, with this value of Sn, there is equality in (14) if and
only if u is a multiple of v(µ(x− x0)) for some µ > 0 and some x0 ∈ Rn.

Likewise, the optimal constant An,t in (15) is given by

An,t =
‖v‖2t

‖v‖1−θt+1 ‖∇v‖θ2
where v(x) = (1 + |x|2)−1/(t−1)

(see [13]), and with this value of An,t there is equality in (14) if and only if u is
a multiple of v(µ(x − x0)) for some µ > 0 and some x0 ∈ Rn. However, this is a
very particular feature of this family.

Another aspect of this close relation between (14) and (15) is that both inequal-
ities can be proved using ideas coming from the theory of optimal mass transporta-
tion [9].

Our goal here is to prove some stability properties for the GN inequalities (15),
and show applications of this stability to certain partial differential equations.

3.2. Stability for a GN inequality. Although one could generalize many of
the arguments here to the whole family in (15), because of its application to the
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Keller-Segel equation (that we will describe in the Section 4) we shall focus only
on the special case n = 2 and t = 3.

This case may be written explicitly as

π

∫
R2
u6(x) dx ≤

(∫
R2
|∇u(x)|2 dx

)(∫
R2
u4(x) dx

)
. (17)

Now, given a non-negative function u in W 1,2(R2), we define δGN[u] by

δGN[u] :=
(∫

R2
|∇u|2 dy

)1/2(∫
R2
u4 dy

)1/2

−
(
π

∫
R2
u6 dy

)1/2

. (18)

Also, for λ > 0 and x0 ∈ R2, define

vλ,x0 := (1 + λ2|x− x0|2)−1/2 ,

and use v to denote the function v1,0. By [13, Theorem 1] we have that δGN[u] > 0
unless u is a multiple of vλ,x0 for some λ > 0 and some x0 ∈ R2. The question
addressed in [7] is:

When δGN[u] is small, is u close (in some sense) to a multiple of vλ,x0?

The following sharp stability result for (17) is proved in [7, Theorem 1.2]:

Theorem 3.1. Let u ∈ W 1,2(R2) be a non-negative function such that ‖u‖6 =
‖v‖6. Then there exists a universal constant K1 > 0 such that

inf
λ>0,x0∈R2

‖u6 − λ2v6
λ,x0
‖1 ≤ K1 δGN[u]1/2. (19)

We now explain the main ingredients in the proof.

3.2.1. Stability for the Sobolev inequality. We begin by recalling that a
stability result for the sharp Sobolev inequality (14) has been obtained some time
ago in [3] by Bianchi and Egnell: It states that there is a constant Cn, n ≥ 3, such
that for all f ∈W 1,2(Rn),

Cn

(
‖∇f‖22 − Sn‖f‖22n/(n−2)

)
≥ inf
c∈R, µ>0, x0∈Rn

‖∇f − c∇hµ,x0‖22 , (20)

where
hµ,x0(x) := (1 + µ2|x− x0|2)−(n−2)/2 .

The proof is based on a spectral analysis argument which strongly exploits the
Hilbertian structure of W 1,2: let us endow W 1,2(Rn) with the Hilbertian norm
‖f‖∗ := ‖∇f‖2. Then we can write any function f ∈ W 1,2(Rn) with ‖f‖∗ = 1 as
f = h+αg, where α > 0, ‖g‖∗ = 1, and h ∈ {chµ,x0}c,µ,x0 is the closest minimizers
(with respect to the ‖ · ‖∗ norm) to f . One then distinguish between two cases,
depending on the size of α.

If α is very small then one can expand (20) in powers of α, and showing some
spectral gap property one proves that the inequality is true at the dominant order.
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On the other hand, if α is not small then a concentration-compactness argument
shows that the deficit (i.e., the left hand side in (20)) has to be bounded away from
zero, so the inequality is trivial by choosing Cn sufficiently large.

Observe that since the proof sketched above uses a compactness argument,
there is no information on the value of Cn. On the other hand, the metric used
on the right hand side in (20) is as strong as one could hope for, and in this sense
this result is remarkably strong.

3.2.2. From Sobolev to Gagliardo-Nirenberg. It has recently been shown
in [2] that one may deduce the sharp forms of the GN inequalities in (15) from
the sharp Sobolev inequality (14). Of course, using Hölder inequality it is quite
easy to deduce (15) with a non-optimal constant from (14). The argument in [2],
which we learned from Bakry, is more subtle: In particular, as we show below,
one deduces the particular two-dimensional GN inequality (17) from the four-
dimensional Sobolev inequality.

The four-dimensional version of the sharp Sobolev inequality (14) has the ex-
plicit form

‖f‖24 ≤
1

4π

√
3
2
‖∇f‖22 , (21)

and equality holds if f = g, where

g(x, y) :=
1

1 + |y|2 + |x|2
x, y ∈ R2 . (22)

The key observation is that g can be written as

g(x, y) =
1

G(y) + |x|2
with G(y) := v−2(y) = 1 + |y|2.

Hence, if u ∈W 1,2(R2) is a non-negative function satisfying

‖u‖6 = ‖v‖6 =
π

2
,

√
2‖∇u‖2 = ‖u‖24 , (23)

and we define f : R4 → R as

f(x, y) :=
1

F (y) + |x|2
, F (y) := u−2(y) , x, y ∈ R2 ,

then by a direct computation one gets

δGN[u] =
(∫

R2
|∇u|2 dy

)1/2(∫
R2
u4 dy

)1/2

−
(
π

∫
R2
u6 dy

)1/2

=
√

3

(
1

4π

√
3
2
‖∇f‖22 − ‖f‖24

)
,

see [2, Chapter 7] or [7, Proposition 2.1].
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Remark 3.2. Observe that, given u ∈ W 1,2(R2) with u 6≡ 0, we can always
multiply it by a constant so that ‖u‖6 = ‖v‖6, and then scale it as µ1/3u(µy)
choosing µ to ensure that

√
2‖∇u‖2 = ‖u‖24. Since (17) is invariant under this

scaling, the above inequality proves in particular (17).

3.2.3. Sketch of the proof of Theorem 3.1. The stability estimate (20) com-
bined with the Sobolev inequality (21) asserts the existence of a universal constant
C0 such that

C0

√
3

(
1

4π

√
3
2
‖∇f‖22 − ‖f‖24

)
≥ inf
c∈R, µ>0, z0∈R4

‖f − gc,µ,z0‖24 .

Hence, by the result discussed in the previous Section 3.2.2, whenever u satisfies
conditions (23) we have

C0 δGN[u] ≥

inf
c∈R, µ>0, x0,y0∈R2

(∫
R2

∫
R2

∣∣∣∣ 1
u−2(y) + |x|2

− cµ

1 + µ2|x+ x0|2 + µ2|y + y0|2

∣∣∣∣4 dx dy
)1/2

.

(24)

Now, to prove the theorem we need to show that the right hand side in (24) controls
‖u6−v6

1,y0‖
1/2
1 . This is obtained in [7, Lemmas 2.3 and 2.4] using some elementary

(though non-trivial) arguments.

4. A quantitative convergence result for the critical mass
Keller-Segel equation

In this last section we describe the results from [7] on the long-time asymptotic for
the critical mass Keller-Segel (KS) equation in R2:

∂ρ

∂t
(t, x) = div

[
∇ρ(t, x)− ρ(t, x)∇c(t, x)

]
, (25)

where ρ(0, x) ≥ 0 belongs to L1(R2), and c satisfies −∆c = ρ, that is

c(t, x) = − 1
2π

∫
R2

log |x− y|ρ(t, y) dy .

It is immediate to check that, at least formally, the total mass
∫

R2 ρ(t, x) dx is
constant in time. Moreover, again by a formal argument, the time evolution for
the second moments gives

d

dt

∫
R2
|x|2ρ(t, x) dx = 4M − 1

2π
M2, where M :=

∫
R2
ρ(0, x) dx ,
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see for instance [4, Section 1.1]. Since the second moments cannot become negative,
the above computation suggests that for M > 8π the formal argument has to fail,
and in particular the solution cannot be smooth.

Indeed, it is by now well-known (see for instance [4] and the references therein)
that if the initial datum has a mass less than 8π, diffusion dominates and the
solution diffuses away to infinity; if the initial datum has a mass greater than
8π, the restoring drift dominates and the solution collapses in finite time; if the
initial datum has a mass equal to 8π (the critical mass case), then the solution
exists globally in time and there are infinitely many steady-states, which (up to a
translation) are given by

σκ(x) :=
8κ

(κ+ |x|2)2
, κ > 0 . (26)

Note that
∫

R2 σκ(x) dx = 8π for all κ.
The existence of infinitely many steady states raises the question of knowing to

which one of them a solution of KS would converge. A natural answer is provided
by the following energy functionals: for any κ > 0 we define

Hκ[ρ] :=
∫

R2

|√ρ(y)−√σκ(y)|2
√
σκ(y)

dy . (27)

It is evident that Hκ[ρ] is uniquely minimized at ρ = σκ, and as shown in [6, 4] this
functional is decreasing in time along a solution of KS. Moreover it is not difficult
to check that if Hκ[ρ] <∞ for some κ, then Hκ′ [ρ] = +∞ for any κ′ 6= κ. Hence,
if we consider an initial datum such that Hκ0 [ρ(0, ·)] := E0 <∞ for some κ0 > 0,
then Hκ0 [ρ(t, ·)] ≤ E0 for all t > 0 and we may expect that ρ(t, ·) should converge
to σκ0 as t→∞. This has been proved in [4] using a compactness argument. Our
goal here is to show how to obtain an explicit rate of convergence.

By formally differentiating Hκ0 [ρ(t, ·)] in time one gets

d

dt
Hκ0 [ρ(t, ·)] = −D[ρ(t, ·)] ,

where the “dissipation functional” D is defined as

D[σ] :=
1
π

(
‖∇u‖22‖u‖44 − π‖u‖66

)
, u := σ1/4. (28)

At a rigorous level, it is proved in [4] that if Hκ0 [ρ(0, ·)] < ∞, then there exists a
solution of KS (called “properly dissipative”) such that

Hκ0 [ρ(T, ·)] +
∫ T

0

D[ρ(t, ·)] dt ≤ Hκ0 [ρ(0, ·)] (29)

for all T > 0. Hence, as an immediate consequence of (29) we get that, for any
T ≥ 2,

inf
t∈[1,T ]

D[ρ(t, ·)] ≤ 1
T − 1

∫ T

1

D[ρ(t, ·)] dt ≤ 1
T − 1

Hκ0 [ρ(0, ·)] . (30)
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(The reason for considering t ≥ 1 is to ensure that some time passes so that the
solution enjoys some further regularity properties needed to apply our estimates.)

Observe now that for any density σ on R2 such that ‖∇σ1/4‖2 <∞,

D[σ] =
(
‖∇σ1/4‖2‖σ1/4‖24 +

√
π‖σ1/4‖36

)
δGN(σ1/4) . (31)

Hence, taking advantage of some uniform a priori bound on solutions to KS, we
deduce the existence of some t̄ ∈ [1, T ] such that

δGN[ρ1/4(t̄, ·)] ≤ C

T
Hκ0 [ρ(0, ·)]

for some universal constant C, so by the stability Theorem 3.1 we conclude that

‖ρ(t̄, ·)3/2 − σκ(· − x0)3/2‖1 ≤ C
(

1
T
Hκ0 [ρ]

)1/2

for some x0 ∈ R2 and κ > 0 (recall that the density v4
λ is a multiple of σ1/λ).

Now, using some uniform estimates on the pth moments of the solution and its
Lq norms for all p < 2 and q <∞, and exploiting that the KS evolution preserves
the baricenter (in particular, without loss of generality we can assume that ρ(t, ·)
has baricenter at the origin for all t), we obtain

‖ρ(t̄, ·)− σκ‖1 ≤ C
(

1
T
Hκ0 [ρ]

)(p−1)/4p

, (32)

for all p < 2 (here C depends also on p).
Hence the above inequality bounds the time it takes a solution of the critical

mass Keller-Segel equation to approach σκ for some κ. However, to get a quanti-
tative convergence result, we must do two more things:
(A) Show that ρ(t, ·) approaches σκ for κ = κ0.
(B) Show that eventually it remains close.

While (A) is relatively easy since Hκ0 [σκ] = +∞ if κ 6= κ0, (B) is much
more involved. To achieve it, we first recall that there is another functional which
is decreasing along the KS evolution: this is the Logarithmic Hardy-Littlewood-
Sobolev (Log-HLS) functional F , defined by

F [ρ] :=
∫

R2
ρ(x) log ρ(x) dx+ 2

(∫
R2
ρ(x) dx

)−1∫∫
R2×R2

ρ(x) log |x− y|ρ(y) dx dy.

(The fact that such a functional is decreasing along the KS equation is not really
surprising, since the KS equation can be interpreted as the gradient flow of F with
respect to the 2-Wasserstein distance.) This functional is invariant under scale
changes a 7→ a2ρ(ax). In particular, F [σκ] is independent of κ. Moreover the
functions {σκ}κ>0 uniquely minimize F , see [?, 8].

Keeping this in mind, for (B) we proceed as follows: first we show almost
Lipschitz regularity of F in L1 [7, Theorem 3.7], which combined with (32) and



Stability in geometric & functional inequalities, with applications 13

the fact that p can be chosen close to 2, allows us to deduce that for any ε > 0 and
T ≥ 2 there exists t̄ ∈ [1, T ] such that

F [ρ(t̄, ·)]−minF ≤ C T−(1−ε)/8.

Then, since t̄ ≤ T and F [ρ(t, ·)] is decreasing in time, we get

F [ρ(T, ·)]− C(8π) ≤ C T−(1−ε)/8 (33)

for all T ≥ 2. Finally, in order to conclude that ρ(T, ·) is close to some σκ we prove
a stability result for the Log-HLS functional [7, Theorem 1.9]. (This is obtained
exploiting Theorem 3.1 and some dissipation properties of the Log-HLS functional
along a fast diffusion equation, see the proof of [7, Theorem 1.9] for more details.)
Using this second stability result (combined with some additional time regularity
estimates on the solution, see [7, Lemma 3.8]), one finally deduces for all t ≥ 2 the
existence of some constant κ(t) > 0 such that

‖ρ(t, ·)− σκ(t)‖1 ≤ C t−(1−ε)/320.

Finally, a simple argument using the sensitive dependence of Hκ0 on tails allows
us to show that κ(t) converges at a logarithmic rate to κ0.

Thus, the final convergence result proved in [7, Theorem 3.5] becomes:

Theorem 4.1. Let ρ(t, x) be any properly dissipative solution of the Keller-Segel
equation of critical mass M = 8π such that Hκ0 [ρ(0, ·)] < ∞ for some κ0 > 0,
and F [ρ(0, ·)] < ∞. Assume that

∫
R2 xρ(x, 0) dx = 0. Then, for all ε > 0 there

are constants C1 and C2, depending only on ε, κ, Hκ,8π[ρ(0, ·)] and F [ρ(0, ·)], such
that, for all t > 0,

F [ρ(t, ·)]− C(8π) ≤ C1(1 + t)−(1−ε)/8

inf
κ>0
‖ρ(t, ·)− σκ,8π‖1 ≤ C2(1 + t)−(1−ε)/320.

Moreover, there is a positive number a > 0, depending only on Hκ0 [ρ(0, ·)] and
F [ρ(0, ·)], so that for each t > 0,

inf
κ>0
‖ρ(t, ·)− σκ‖1 = min

a<κ<1/a
‖ρ(t, ·)− σκ‖1.

Finally, for each t > 0 the above minimum is achieved at some value κ(t) satisfying

(κ(t)− κ0)2 ≤ C

log(e+ t)
.

In particular

‖ρ(t, ·)− σκ0‖1 ≤
C√

log(e+ t)
.
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It is interesting that the approach to equilibrium described by these quantitative
bounds takes place on two separate time scales: The solution approaches the one-
parameter family of (centered) stationary states with at least a polynomial rate.
Then, perhaps much more gradually, at only a logarithmic rate, the solution adjusts
its spatial scale to finally converge to the unique stationary solution within its basis
of attraction. It looks reasonable to expect such behavior: The initial data may,
for example, be exactly equal to σκ0 on the complement of a ball of very large
radius R, and yet may “look much more like” σκ on a ball of smaller radius for
some κ 6= κ0. One can then expect the solution to first approach σκ, and then
only slowly begin to feel its distant tails and make the necessary adjustments to
the spatial scale.
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