ULTRACOLD COLOR SUPERCONDUCTORS

Massimo Mannarelli

INFN-LNGS

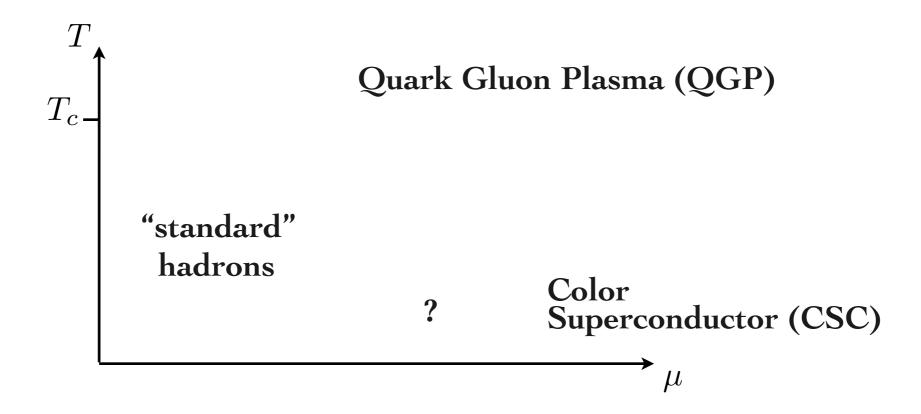
massimo@lngs.infn.it

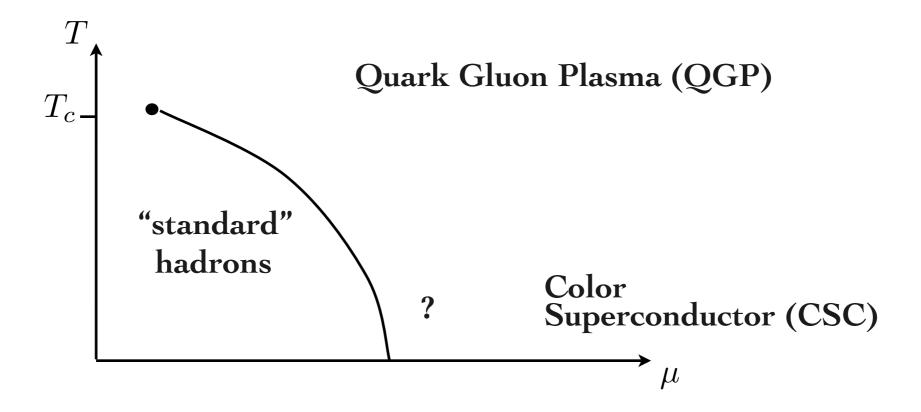
Outline

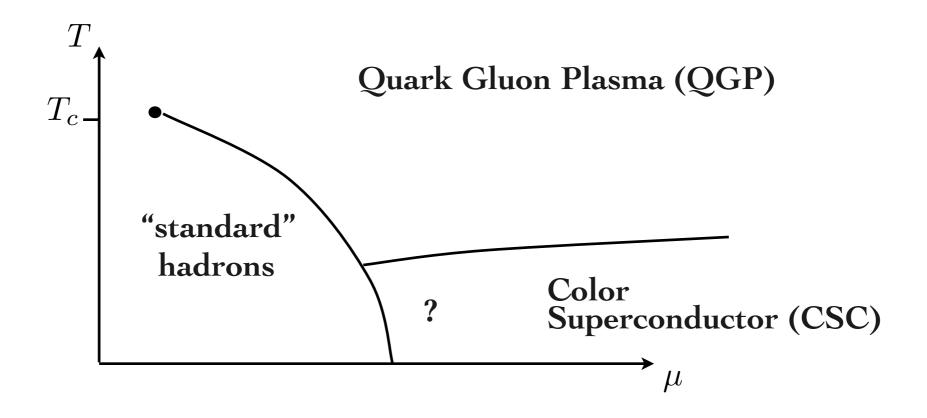
- Motivations
- Color Superconductors
- Color flavor locked phase (CFL)
- Crystalline color superconductors (CCSC)
- Low energy effective field theories

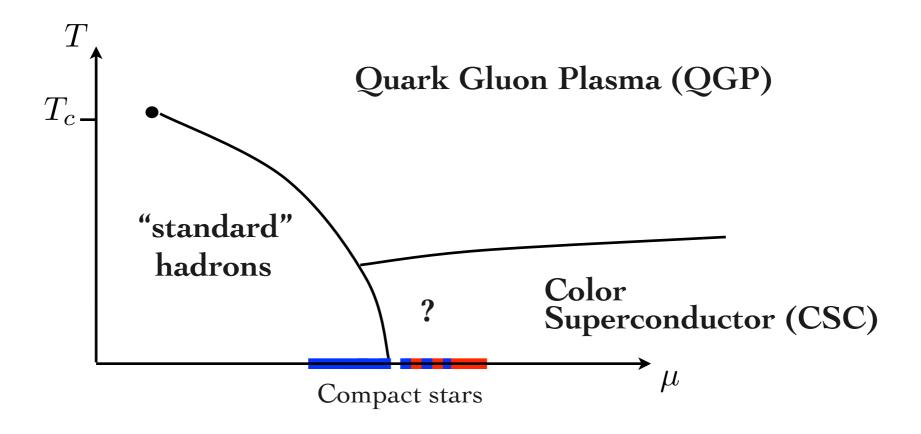
Reviews: hep-ph/0011333, hep-ph/0202037, 0709.4635, 1302.4624

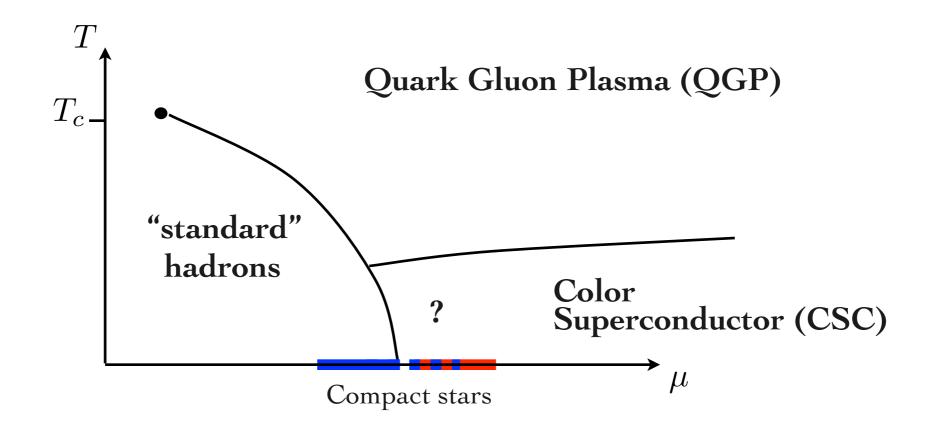
MOTIVATIONS



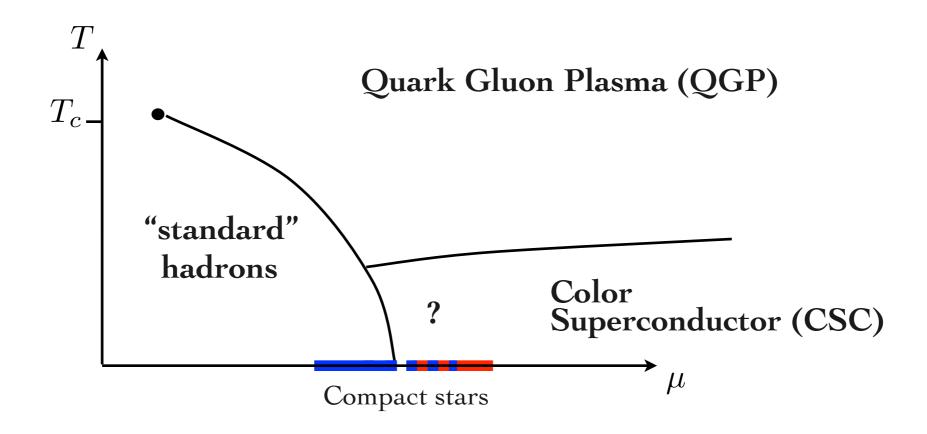






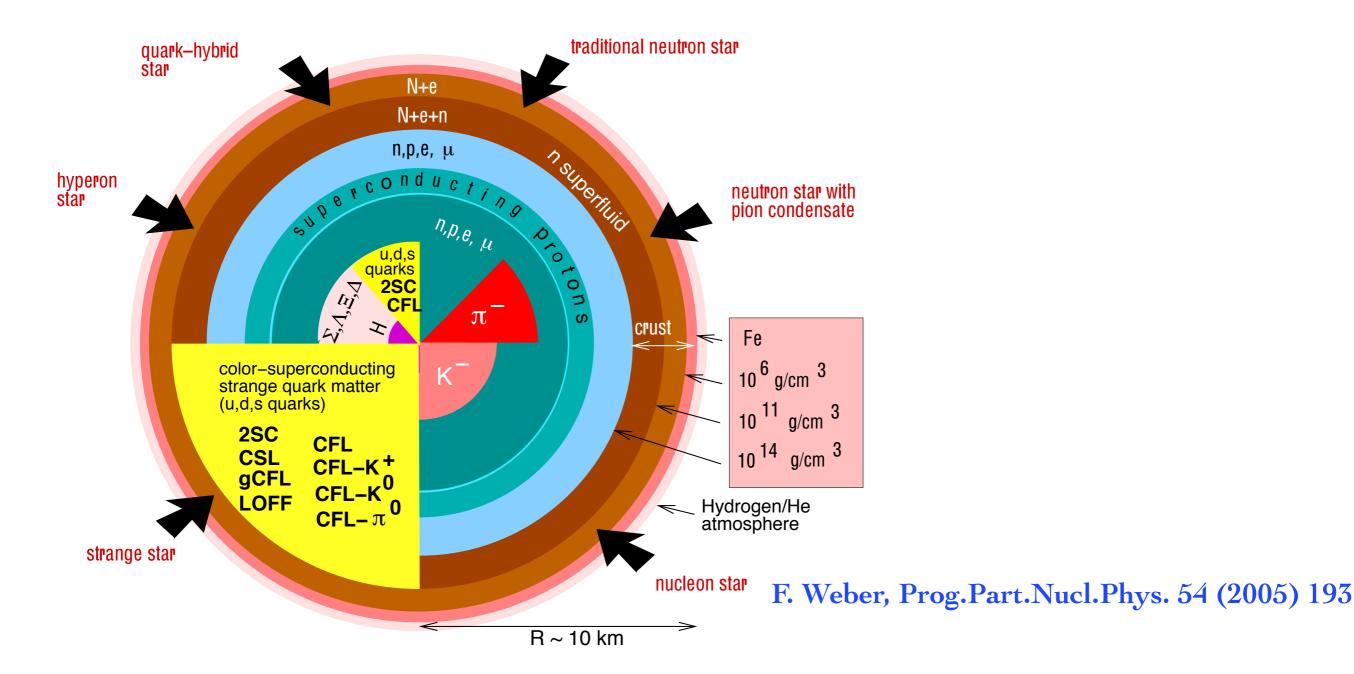


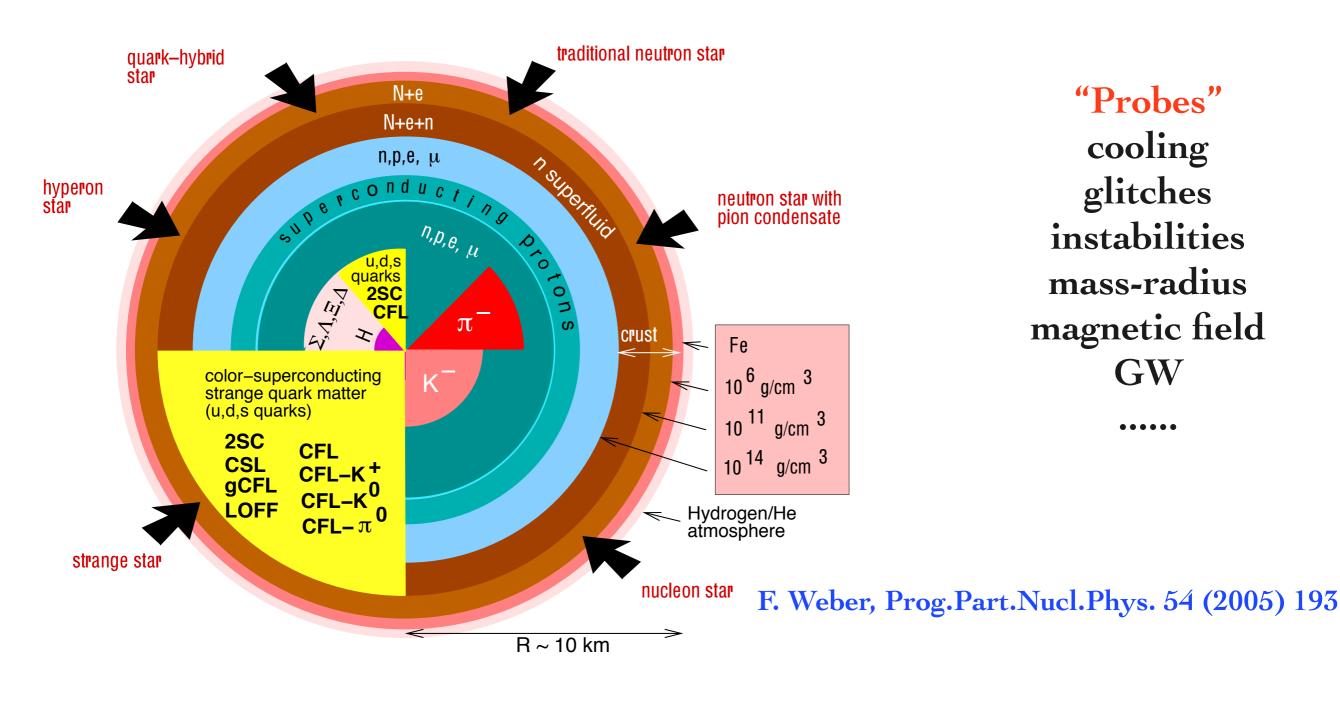
Warning: QCD is perturbative only at asymptotic energy scales

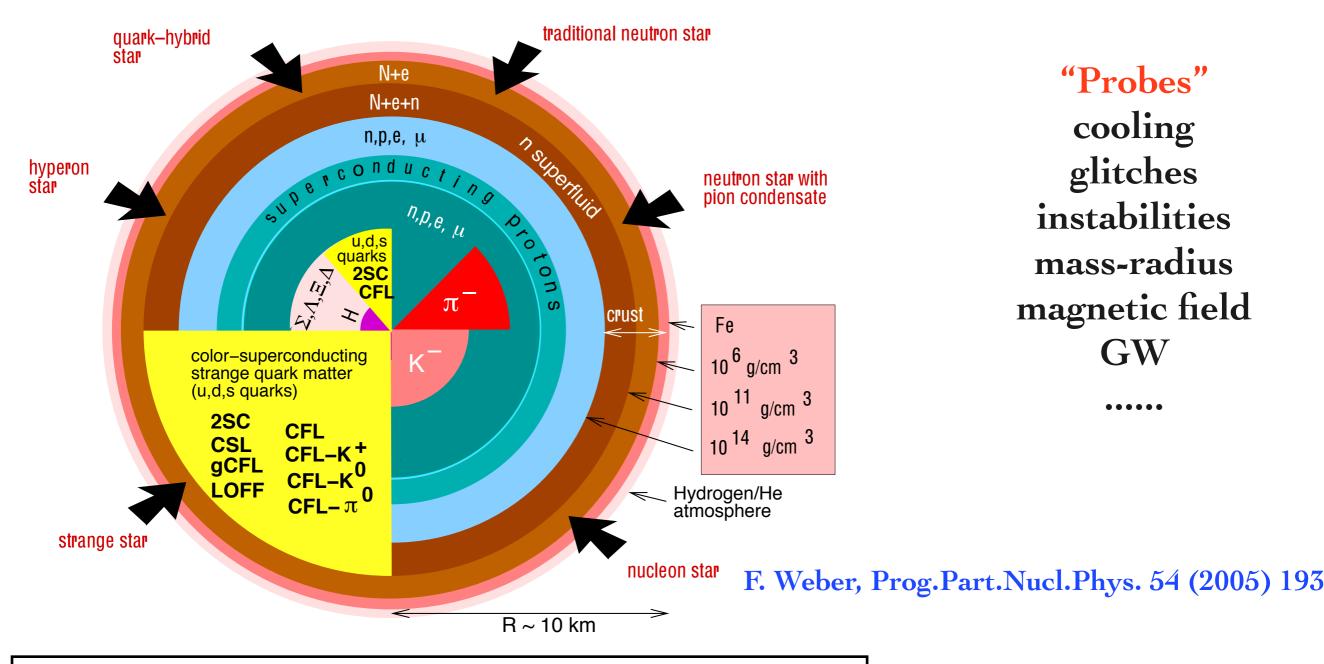


Warning: QCD is perturbative only at asymptotic energy scales

	HOT MATTER	ENERGY-SCAN	EMULATION
EXPERIMENTS	RHIC LHC	RHIC NA61/SHINE@CERN-SPS CBM@FAIR/GSI MPD@NICA/JINR	Ultracold fermionic atoms

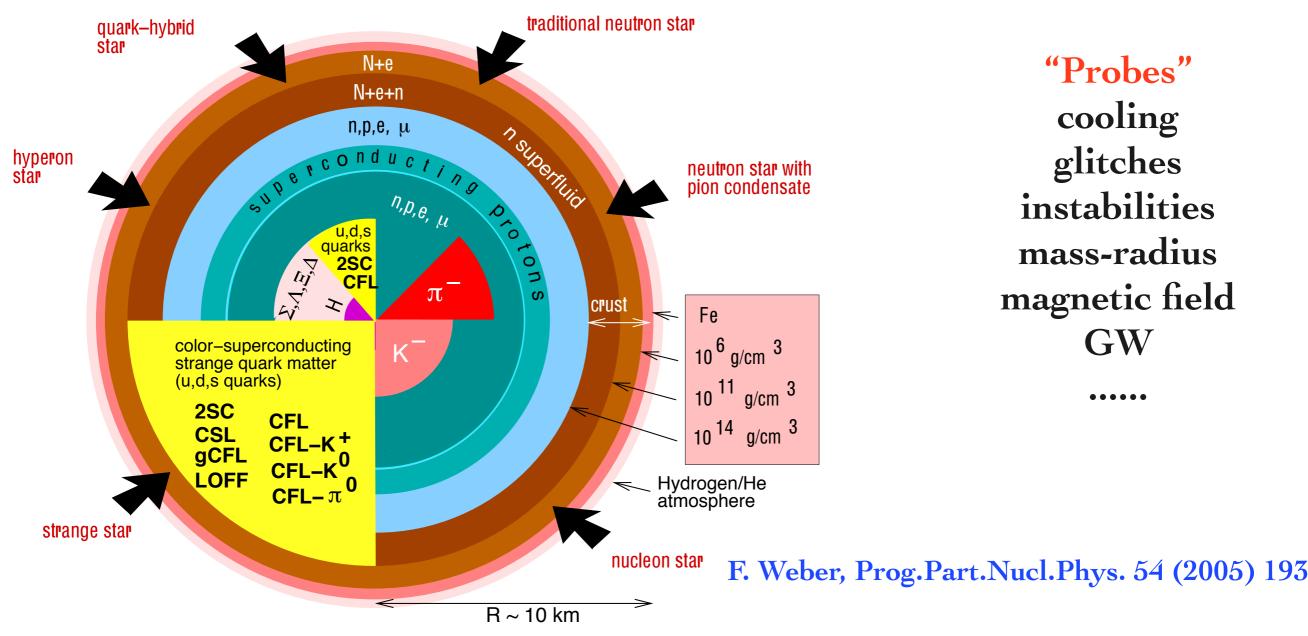






Surface temperature in sufficiently old compact stars $< 10^6 {\rm K}$

Mass $1.2 M_{\odot} < M < 2 M_{\odot}$



cooling glitches instabilities mass-radius magnetic field

Surface temperature in sufficiently old compact stars $< 10^6 \mathrm{K}$

Mass $1.2 M_{\odot} < M < 2 M_{\odot}$

PSR J1614-2230 mass $M \sim 2 M_{\odot}$ Demorest et al Nature 467, (2010) 1081 hard to explain with quark matter models Bombaci et al. Phys. Rev. C 85, (2012) 55807

COLOR SUPERCONDUCTORS

A bit of history

- Quark matter inside compact stars, Ivanenko and Kurdgelaidze (1965), Paccini (1966) ...
- Quark Cooper pairing was proposed by Ivanenko and Kurdgelaidze (1969)
- With asymptotic freedom (1973) more robust results by Collins and Perry (1975), Baym and Chin (1976)
- Classification of some color superconducting phases: Bailin and Love (1984)

A bit of history

- Quark matter inside compact stars, Ivanenko and Kurdgelaidze (1965), Paccini (1966) ...
- Quark Cooper pairing was proposed by Ivanenko and Kurdgelaidze (1969)
- With asymptotic freedom (1973) more robust results by Collins and Perry (1975), Baym and Chin (1976)
- Classification of some color superconducting phases: Bailin and Love (1984)

Interesting studies but predicted small energy gaps ~ 10 ÷100 keV small/negligible phenomenological impact for compact stars

A bit of history

- Quark matter inside compact stars, Ivanenko and Kurdgelaidze (1965), Paccini (1966) ...
- Quark Cooper pairing was proposed by Ivanenko and Kurdgelaidze (1969)
- With asymptotic freedom (1973) more robust results by Collins and Perry (1975), Baym and Chin (1976)
- Classification of some color superconducting phases: Bailin and Love (1984)

Interesting studies but predicted small energy gaps ~ 10 ÷100 keV small/negligible phenomenological impact for compact stars

- A large gap with instanton models by Alford et al. (1998) and by Rapp et al. (1998)
- The color flavor locked (CFL) phase was proposed by Alford et al. (1999)

PARTICLE

CARTOON

SIZE

PARTICLE quark

CARTOON

SIZE point-like

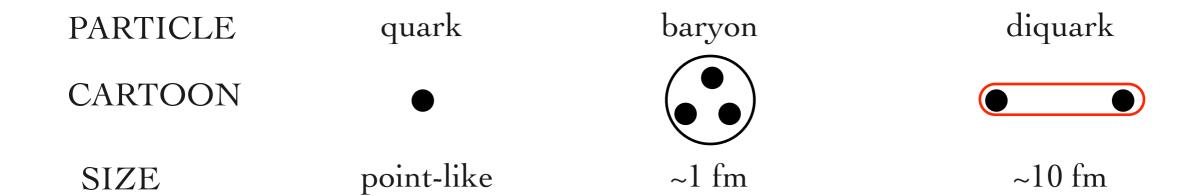
PARTICLE quark baryon
CARTOON

SIZE point-like ~1 fm

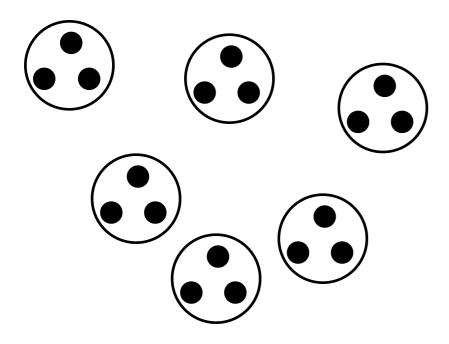
PARTICLE quark baryon diquark

CARTOON

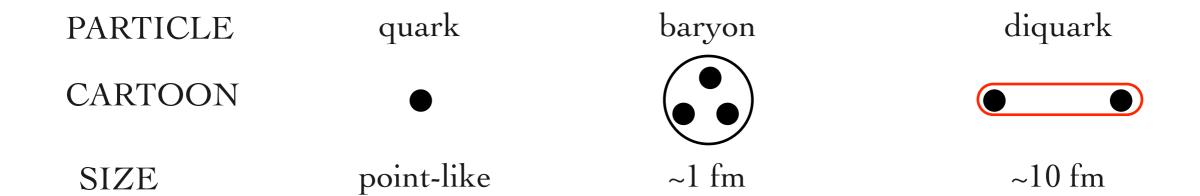
SIZE point-like ~1 fm ~10 fm



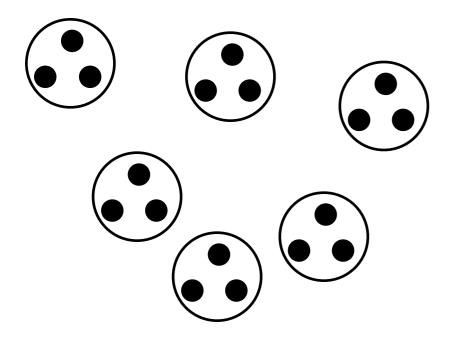
High density (CSO's outer core)



Liquid of neutrons

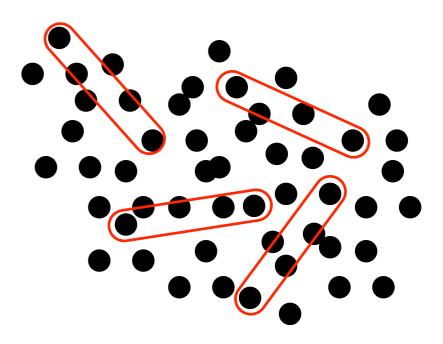


High density (CSO's outer core)



Liquid of neutrons

Very high density (CSO's inner core)



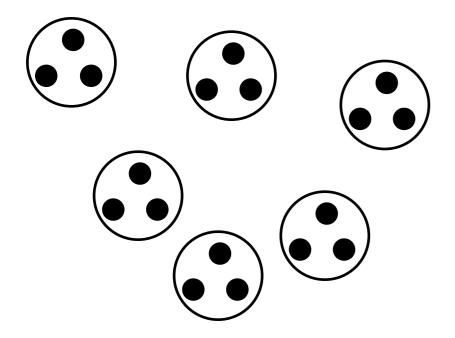
Liquid of quarks with correlated diquarks

PARTICLE quark baryon diquark

CARTOON

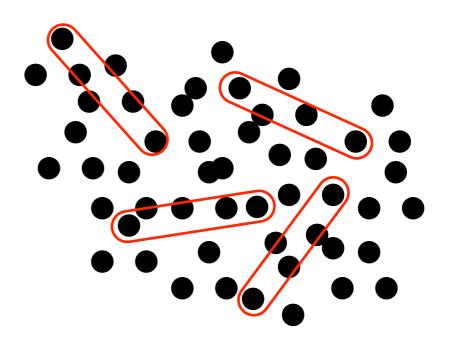
SIZE point-like ~1 fm ~10 fm

High density (CSO's outer core)



Liquid of neutrons

Very high density (CSO's inner core)



Liquid of quarks with correlated diquarks

Models for the lowest-lying baryon excited states with diquarks Anselmino et al. Rev Mod Phys 65, 1199 (1993)

Do we have the ingredients?

Recipe for superconductivity

- Degenerate system of fermions
- Attractive interaction (in some channel)
- $T < T_c$

Color superconductivity

- At large μ, degenerate system of quarks
- Attractive interaction between quarks in 3 color channel
- We expect $T_c \sim (10 100) \text{ MeV} >> T_{\text{star-core}} \sim 10 \div 100 \text{ keV}$ THE SYSTEM IS EFFECTIVELY ULTRACOLD

Do we have the ingredients?

Recipe for superconductivity

- Degenerate system of fermions
- Attractive interaction (in some channel)
- \bullet T < T_c

Color superconductivity

- At large μ, degenerate system of quarks
- Attractive interaction between quarks in $\overline{3}$ color channel
- We expect $T_c \sim (10 100) \text{ MeV} >> T_{\text{star-core}} \sim 10 \div 100 \text{ keV}$ THE SYSTEM IS EFFECTIVELY ULTRACOLD

Oss. Quarks have color, flavor as well as spin degrees of freedom: complicated dishes. A long menu of colored dishes.

Condensate

$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta_{\text{CFL}} \, \epsilon_{I\alpha\beta} \epsilon_{Iij}$$

Condensate

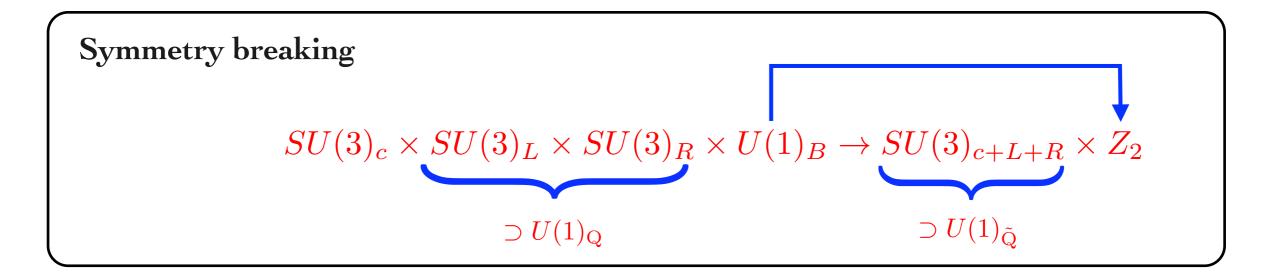
$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta_{\text{CFL}} \, \epsilon_{I\alpha\beta} \epsilon_{Iij}$$

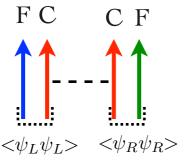
Symmetry breaking
$$SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \to SU(3)_{c+L+R} \times Z_2$$

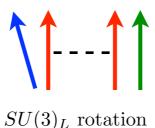
$$\supset U(1)_{\mathbb{Q}}$$

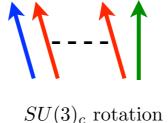
Condensate

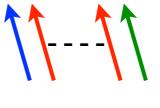
$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta_{\text{CFL}} \, \epsilon_{I\alpha\beta} \epsilon_{Iij}$$







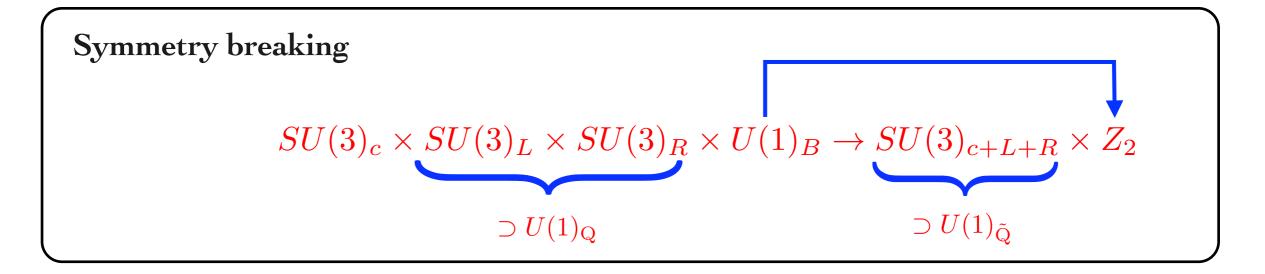


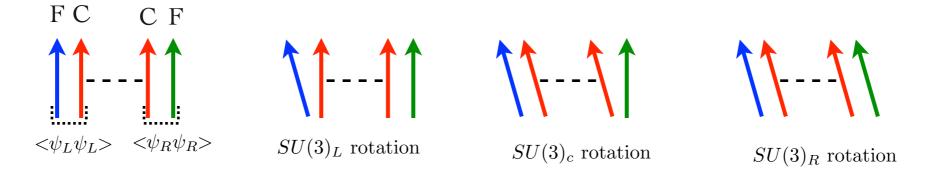


 $SU(3)_R$ rotation

Condensate

$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta_{\text{CFL}} \, \epsilon_{I\alpha\beta} \epsilon_{Iij}$$





- Higgs mechanism: all gluons acquire "magnetic mass"; quarks become "massive"
- χSB: 8 (pseudo) Nambu-Goldstone bosons (NGBs)
- U(1)_B breaking: 1 NGB
- "Rotated" electromagnetism, mixing angle $\cos\theta = \frac{g}{\sqrt{g^2 + 4e^2/3}}$ (analog of the Weinberg angle)

Since the color superconductors are realized in compact stars (ultracold systems) we can integrate out the fermionic degrees of freedom, focusing on the low energy NGBs

Since the color superconductors are realized in compact stars (ultracold systems) we can integrate out the fermionic degrees of freedom, focusing on the low energy NGBs

Octet

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^{2}}{4} \text{Tr} \left[\partial_{0} \Sigma \partial_{0} \Sigma^{\dagger} - v_{\pi}^{2} \partial_{i} \Sigma \partial_{i} \Sigma^{\dagger} \right]$$

$$f_{\pi}^{2} = \frac{21 - 8 \log 2}{18} \frac{\mu^{2}}{2\pi^{2}}$$

$$\Sigma = e^{i\phi^{a} \lambda_{a}/f_{\pi}} \quad \phi^{a} \quad \text{describes the octet} \quad (\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, \eta)$$

$$v_{\pi}^{2} = \frac{1}{3}$$

Casalbuoni and Gatto, Phys. Lett. B 464, (1999) 111

Since the color superconductors are realized in compact stars (ultracold systems) we can integrate out the fermionic degrees of freedom, focusing on the low energy NGBs

Octet

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^{2}}{4} \text{Tr} [\partial_{0} \Sigma \partial_{0} \Sigma^{\dagger} - v_{\pi}^{2} \partial_{i} \Sigma \partial_{i} \Sigma^{\dagger}]$$

$$f_{\pi}^{2} = \frac{21 - 8 \log 2}{18} \frac{\mu^{2}}{2\pi^{2}}$$

$$\Sigma = e^{i\phi^{a} \lambda_{a}/f_{\pi}} \quad \phi^{a} \text{ describes the octet} \quad (\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, \eta)$$

$$v_{\pi}^{2} = \frac{1}{3}$$

Casalbuoni and Gatto, Phys. Lett. B 464, (1999) 111

Masses

$$\Delta \mathcal{L}_{\text{eff}} = \text{Tr}(M^{\dagger} \Sigma + \Sigma^{\dagger} M)$$

Since the color superconductors are realized in compact stars (ultracold systems) we can integrate out the fermionic degrees of freedom, focusing on the low energy NGBs

Octet

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^{2}}{4} \text{Tr}[\partial_{0} \Sigma \partial_{0} \Sigma^{\dagger} - v_{\pi}^{2} \partial_{i} \Sigma \partial_{i} \Sigma^{\dagger}]$$

$$f_{\pi}^{2} = \frac{21 - 8 \log 2}{18} \frac{\mu^{2}}{2\pi^{2}}$$

$$\Sigma = e^{i\phi^{a} \lambda_{a}/f_{\pi}} \quad \phi^{a} \quad \text{describes the octet} \quad (\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, \eta)$$

$$v_{\pi}^{2} = \frac{1}{3}$$

Casalbuoni and Gatto, Phys. Lett. B 464, (1999) 111

Masses

$$\Delta \mathcal{L}_{\text{eff}} = \text{Tr}(M^{\dagger}\Sigma + \Sigma^{\dagger}M)$$
 not allowed by $U(1)_A$ symmetry

Since the color superconductors are realized in compact stars (ultracold systems) we can integrate out the fermionic degrees of freedom, focusing on the low energy NGBs

Octet

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^{2}}{4} \text{Tr} [\partial_{0} \Sigma \partial_{0} \Sigma^{\dagger} - v_{\pi}^{2} \partial_{i} \Sigma \partial_{i} \Sigma^{\dagger}]$$

$$f_{\pi}^{2} = \frac{21 - 8 \log 2}{18} \frac{\mu^{2}}{2\pi^{2}}$$

$$\Sigma = e^{i\phi^{a} \lambda_{a}/f_{\pi}} \quad \phi^{a} \quad \text{describes the octet} \quad (\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, \eta)$$

$$v_{\pi}^{2} = \frac{1}{3}$$

Casalbuoni and Gatto, Phys. Lett. B 464, (1999) 111

Masses

$$\Delta \mathcal{L}_{\text{eff}} \equiv \text{Tr}(M^{\dagger}\Sigma + \Sigma^{\dagger}M)$$
 not allowed by $U(1)_A$ symmetry
$$\Delta \mathcal{L}_{\text{eff}} = -c \operatorname{Det}M \operatorname{Tr}(M^{-1}\Sigma) - c' \operatorname{Det}\Sigma \left[\operatorname{Tr}(M\Sigma^{\dagger})^2 + (\operatorname{Tr}M\Sigma^{\dagger})^2\right] + \text{h.c.}$$

$$m_{\pi^{\pm}}^{2} = A (m_{u} + m_{d}) m_{s}$$
 $m_{K^{\pm}}^{2} = A (m_{u} + m_{s}) m_{d}$
 $m_{K^{0}, \bar{K}^{0}}^{2} = A (m_{d} + m_{s}) m_{u}$

kaons are lighter than mesons!
$$\pi^{+} \sim (\bar{d}\bar{s})(us)$$
$$A = \frac{3\Delta^{2}}{\pi^{2}f^{2}} \qquad K^{+} \sim (\bar{d}\bar{s})(ud)$$

Son and Sthephanov, Phys. Rev. D 61, (2000) 74012

"Phonons"

There is an additional massless NGB, ϕ , associated to U(1)_B \longrightarrow Z₂

Quantum numbers $\phi \sim \langle \Lambda \Lambda \rangle$ like the H-dibaryon of Jaffe, Phys. Rev. Lett. 38, 195 (1977)

Effective Lagrangian up to quartic terms

$$\mathcal{L}_{\text{eff}}(\varphi) = \frac{3}{4\pi^2} \left[(\mu - \partial_0 \varphi)^2 - (\partial_i \varphi)^2 \right]^2$$

Son, hep-ph/0204199

"Phonons"

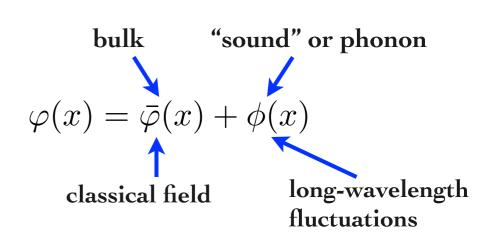
There is an additional massless NGB, φ , associated to U(1)_B \longrightarrow Z₂

Quantum numbers $\phi \sim \langle \Lambda \Lambda \rangle$ like the H-dibaryon of Jaffe, Phys. Rev. Lett. 38, 195 (1977)

Effective Lagrangian up to quartic terms

$$\mathcal{L}_{\text{eff}}(\varphi) = \frac{3}{4\pi^2} \left[(\mu - \partial_0 \varphi)^2 - (\partial_i \varphi)^2 \right]^2$$

Son, hep-ph/0204199



"Phonons"

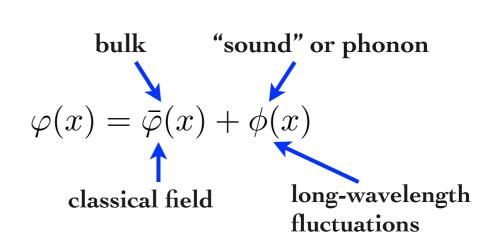
There is an additional massless NGB, φ , associated to U(1)_B \longrightarrow Z₂

Quantum numbers $\phi \sim \langle \Lambda \Lambda \rangle$ like the H-dibaryon of Jaffe, Phys. Rev. Lett. 38, 195 (1977)

Effective Lagrangian up to quartic terms

$$\mathcal{L}_{\text{eff}}(\varphi) = \frac{3}{4\pi^2} \left[(\mu - \partial_0 \varphi)^2 - (\partial_i \varphi)^2 \right]^2$$

Son, hep-ph/0204199



Phenomenology

Dissipative processes due to vortex-phonon interaction damp r-mode oscillations of CFL stars rotating at frequencies < 1 Hz

MM et al., Phys. Rev. Lett. 101, 241101 (2008)

CRYSTALLINE COLOR SUPERCONDUCTORS

sizable strange quark mass

+
weak equilibrium
+
electric neutrality

mismatch of Fermi
momenta

sizable strange quark mass

electric neutrality

weak equilibrium

 \longrightarrow

mismatch of Fermi momenta

No pairing case

$$p_u^F = \mu_u \quad p_d^F = \mu_d \quad p_s^F = \sqrt{\mu_s^2 - m_s^2}$$

sizable strange quark mass

electric neutrality

weak equilibrium

mismatch of Fermi momenta

No pairing case

Fermi momenta

$$p_u^F = \mu_u \quad p_d^F = \mu_d \quad p_s^F = \sqrt{\mu_s^2 - m_s^2}$$

$$p_s^F = \sqrt{\mu_s^2 - m_s^2}$$

weak decays

$$\begin{array}{c} u \to d + \bar{e} + \nu_e \\ u \to s + \bar{e} + \nu_e \\ u + d \leftrightarrow u + s \end{array}$$

$$\mu_u = \mu_d - \mu_e$$
$$\mu_d = \mu_s$$

$$\mu_d = \mu_s$$

electric neutrality

sizable strange quark mass

weak equilibrium

electric neutrality

mismatch of Fermi momenta

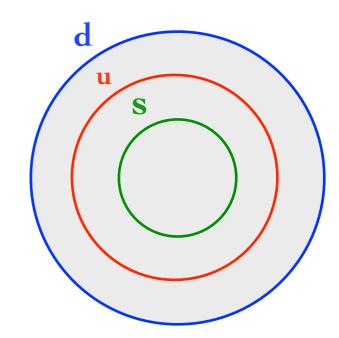
No pairing case

Fermi momenta

$$p_u^F = \mu_u \quad p_d^F = \mu_d \quad p_s^F = \sqrt{\mu_s^2 - m_s^2}$$

weak decays

electric neutrality



Fermi spheres of u,d, s quarks

sizable strange quark mass

weak equilibrium

electric neutrality

mismatch of Fermi momenta

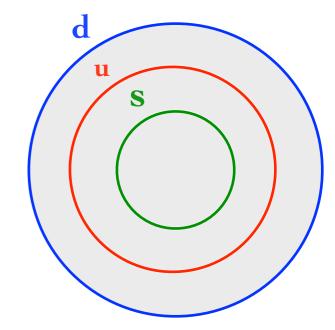
No pairing case

Fermi momenta

$$p_u^F = \mu_u \quad p_d^F = \mu_d \quad p_s^F = \sqrt{\mu_s^2 - m_s^2}$$

weak decays

electric neutrality



Fermi spheres of u,d, s quarks

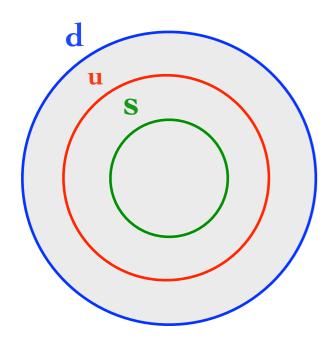
$$\mu = \frac{\mu_u + \mu_d + \mu_s}{3}$$
 $\mu_e \simeq \frac{m_s^2}{4\mu}$

$$\mu = \frac{\mu_u + \mu_d + \mu_s}{3}$$
 $\mu_e \simeq \frac{m_s^2}{4\mu}$ $p_d^F = \mu + \frac{1}{3}\mu_e$ $p_u^F = \mu - \frac{2}{3}\mu_e$ $p_s^F \simeq \mu - \frac{5}{3}\mu_e$

$$p_s^F \simeq \mu - \frac{5}{3}\mu_\epsilon$$

Alford and Rajagopal, JHEP 0206 (2002) 031

Mismatch vs Pairing



- Energy gained in pairing $\sim 2\Delta_{CFL}$
- Energy cost of pairing $\sim \delta \mu \sim \frac{m_s^2}{\mu}$

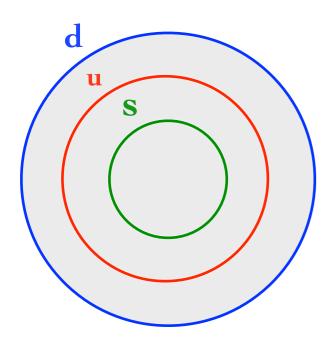
The CFL phase is favored for $\frac{m_s^2}{\mu} \lesssim 2\Delta_{CFL}$

Forcing the superconductor to a homogenous gapless phase $E(p) = -\delta\mu + \sqrt{(p-\mu)^2 + \Delta^2}$

leads to the "chromomagnetic instability" $M_{\rm gluon}^2 < 0$

Casalbuoni, MM et al. Phys.Lett. B605 (2005) 362

Mismatch vs Pairing



- Energy gained in pairing $\sim 2\Delta_{CFL}$
- Energy cost of pairing $\sim \delta \mu \sim \frac{m_s^2}{\mu}$

The CFL phase is favored for $\frac{m_s^2}{\mu} \lesssim 2\Delta_{CFL}$

Forcing the superconductor to a homogenous gapless phase $E(p) = -\delta\mu + \sqrt{(p-\mu)^2 + \Delta^2}$

leads to the "chromomagnetic instability" $M_{\rm gluon}^2 < 0$

Casalbuoni, MM et al. Phys.Lett. B605 (2005) 362

For $\frac{m_s^2}{u} \gtrsim 2\Delta_{CFL}$ some less symmetric CSC phase should be realized

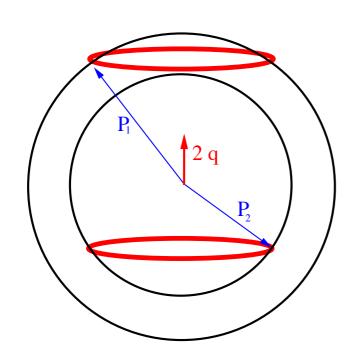
LOFF (or FFLO)-phase

For $\delta\mu_1 < \delta\mu < \delta\mu_2$ the superconducting phase named LOFF is favored with Cooper pairs of non-zero total momentum

LOFF: Larkin-Ovchinnikov and Fulde-Ferrel

For two flavors

$$\delta\mu_1 \simeq \frac{\Delta_0}{\sqrt{2}}$$
 $\delta\mu_2 \simeq 0.75 \,\Delta_0$



• In momentum space

$$<\psi(\mathbf{p_1})\psi(\mathbf{p_2})>\sim \Delta\,\delta(\mathbf{p_1}+\mathbf{p_2}-\mathbf{2q})$$

• In coordinate space

$$<\psi(\mathbf{x})\psi(\mathbf{x})>\sim \Delta e^{i\mathbf{2}\mathbf{q}\cdot\mathbf{x}}$$

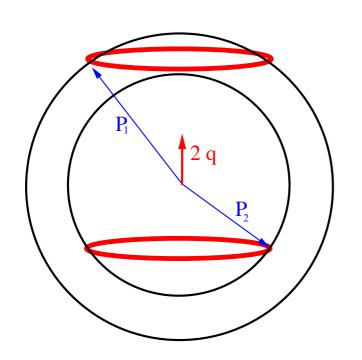
LOFF (or FFLO)-phase

For $\delta \mu_1 < \delta \mu < \delta \mu_2$ the superconducting phase named LOFF is favored with Cooper pairs of non-zero total momentum

LOFF: Larkin-Ovchinnikov and Fulde-Ferrel

For two flavors

$$\delta\mu_1 \simeq \frac{\Delta_0}{\sqrt{2}}$$
 $\delta\mu_2 \simeq 0.75 \,\Delta_0$



• In momentum space

$$<\psi(\mathbf{p_1})\psi(\mathbf{p_2})>\sim \Delta\,\delta(\mathbf{p_1}+\mathbf{p_2}-\mathbf{2q})$$

In coordinate space

$$<\psi(\mathbf{x})\psi(\mathbf{x})>\sim \Delta e^{i\mathbf{2}\mathbf{q}\cdot\mathbf{x}}$$

The LOFF phase: non-homogeneous superconductor, with a spatially modulated condensate in the spin 0 channel

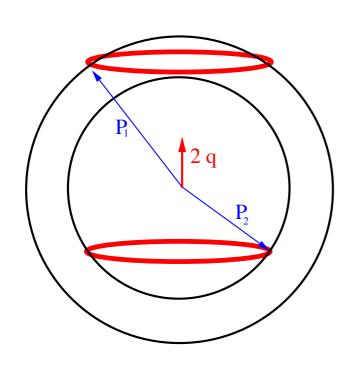
LOFF (or FFLO)-phase

For $\delta \mu_1 < \delta \mu < \delta \mu_2$ the superconducting phase named LOFF is favored with Cooper pairs of non-zero total momentum

LOFF: Larkin-Ovchinnikov and Fulde-Ferrel

For two flavors

$$\delta\mu_1 \simeq \frac{\Delta_0}{\sqrt{2}}$$
 $\delta\mu_2 \simeq 0.75 \,\Delta_0$



• In momentum space

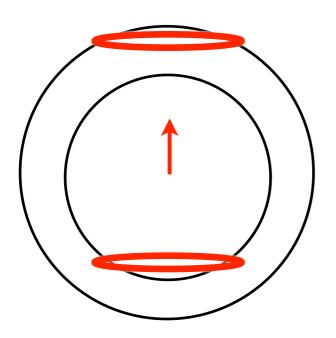
$$<\psi(\mathbf{p_1})\psi(\mathbf{p_2})>\sim \Delta\,\delta(\mathbf{p_1}+\mathbf{p_2}-\mathbf{2q})$$

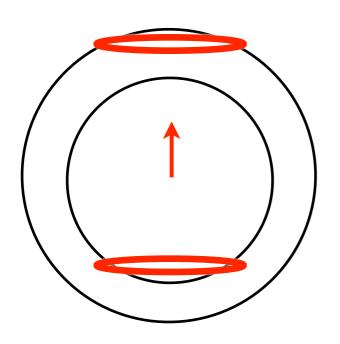
In coordinate space

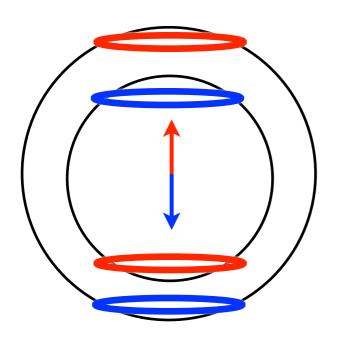
$$<\psi(\mathbf{x})\psi(\mathbf{x})>\sim \Delta e^{i\mathbf{2}\mathbf{q}\cdot\mathbf{x}}$$

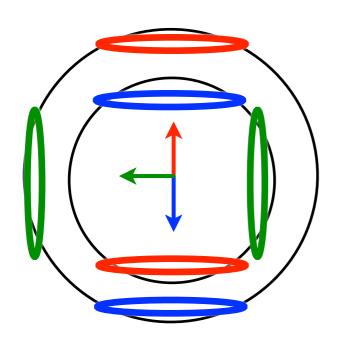
The LOFF phase: non-homogeneous superconductor, with a spatially modulated condensate in the spin 0 channel

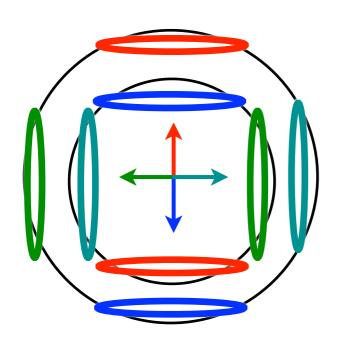
The dispersion law of quasiparticles is gapless in some specific directions. No chromomagnetic instability.

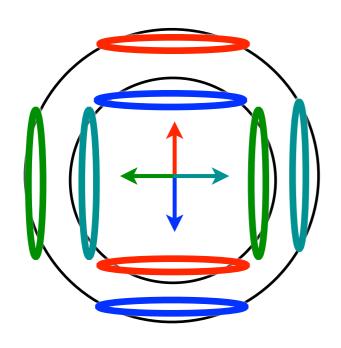




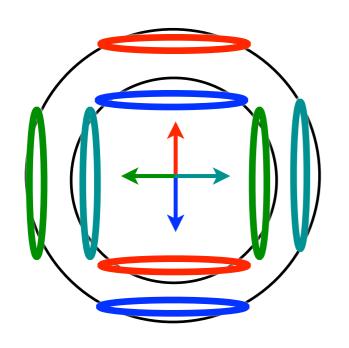








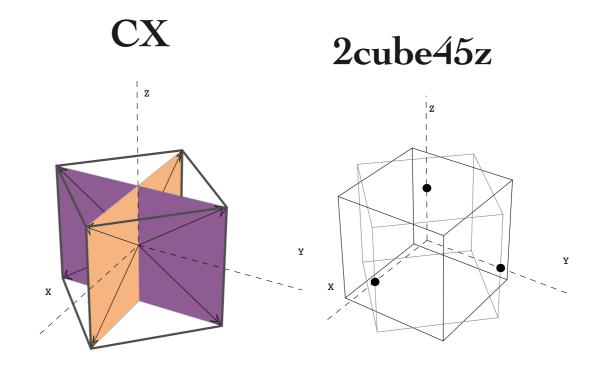
- Compliacted structures can be obtained combining more plane waves
- "no-overlap" condition between ribbons



- Compliacted structures can be obtained combining more plane waves
- "no-overlap" condition between ribbons

Three flavors

$$<\psi_{\alpha i}C\gamma_5\psi_{\beta j}>\sim\sum_{I=2,3}\Delta_I\sum_{\mathbf{q}_I^m\in\{\mathbf{q}_I^m\}}e^{2i\mathbf{q}_I^m\cdot\mathbf{r}}\epsilon_{I\alpha\beta}\epsilon_{Iij}$$
 simplifications
$$\mathbf{q}_I^m=q\,\mathbf{n}_I^m$$



Rajagopal and Sharma Phys.Rev. D74 (2006) 094019

Phonon fields, \mathbf{u}_I , describe the fluctuations of the condensate $\Delta_I(\mathbf{r}) \to \Delta_I(\mathbf{r} - \mathbf{u}_I)$

Low-energy Lagrangian (from GL and momentum expansions)

$$\mathcal{L}^{\Delta^2} = \frac{1}{2} \sum_{I} \kappa_I \sum_{\mathbf{n}_I^m} \left[\partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) \partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) - (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) \right]$$

Phonon fields, \mathbf{u}_I , describe the fluctuations of the condensate $\Delta_I(\mathbf{r}) \to \Delta_I(\mathbf{r} - \mathbf{u}_I)$

Low-energy Lagrangian (from GL and momentum expansions)

$$\mathcal{L}^{\Delta^2} = \frac{1}{2} \sum_{I} \kappa_I \sum_{\mathbf{n}_I^m} \left[\partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) \partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) - (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) \right]$$

1

interaction channel

Phonon fields, \mathbf{u}_I , describe the fluctuations of the condensate $\Delta_I(\mathbf{r}) \to \Delta_I(\mathbf{r} - \mathbf{u}_I)$

Low-energy Lagrangian (from GL and momentum expansions)

$$\mathcal{L}^{\Delta^2} = \frac{1}{2} \sum_{I} \kappa_I \sum_{\mathbf{n}_I^m} \left[\partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) \partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) - (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) \right]$$

interaction channel crystalline structure

Phonon fields, \mathbf{u}_I , describe the fluctuations of the condensate $\Delta_I(\mathbf{r}) \to \Delta_I(\mathbf{r} - \mathbf{u}_I)$

Low-energy Lagrangian (from GL and momentum expansions)

$$\mathcal{L}^{\Delta^2} = \frac{1}{2} \sum_{I} \kappa_I \sum_{\mathbf{n}_I^m} \left[\partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) \partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) - (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) \right]$$

interaction channel crystalline structure

kinetic term

Phonon fields, \mathbf{u}_I , describe the fluctuations of the condensate $\Delta_I(\mathbf{r}) \to \Delta_I(\mathbf{r} - \mathbf{u}_I)$

Low-energy Lagrangian (from GL and momentum expansions)

$$\mathcal{L}^{\Delta^2} = \frac{1}{2} \sum_{I} \kappa_I \sum_{\mathbf{n}_I^m} \left[\partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) \partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) - (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) \right]$$

interaction channel crystalline structure

kinetic term

potential term

Phonon fields, \mathbf{u}_I , describe the fluctuations of the condensate $\Delta_I(\mathbf{r}) \to \Delta_I(\mathbf{r} - \mathbf{u}_I)$

Low-energy Lagrangian (from GL and momentum expansions) $\mathcal{L}^{\Delta^2} = \frac{1}{2} \sum_{I} \kappa_I \sum_{\mathbf{n}_I^m} \left[\partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) \partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) - (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) (\mathbf{n}_I^m \cdot \mathbf{u}_I) \right]$ interaction channel—crystalline structure—kinetic term—potential term

alternative description $\varphi_I^m = 2\mathbf{n}_I^m \cdot \mathbf{u}_I$

Phonon fields, \mathbf{u}_I , describe the fluctuations of the condensate $\Delta_I(\mathbf{r}) \to \Delta_I(\mathbf{r} - \mathbf{u}_I)$

Low-energy Lagrangian (from GL and momentum expansions)

$$\mathcal{L}^{\Delta^2} = \frac{1}{2} \sum_{I} \kappa_I \sum_{\mathbf{n}_I^m} \left[\partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) \partial_0 (\mathbf{n}_I^m \cdot \mathbf{u}_I) - (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) (\mathbf{n}_I^m \cdot \partial) (\mathbf{n}_I^m \cdot \mathbf{u}_I) \right]$$

interaction channel crystalline structure

kinetic term

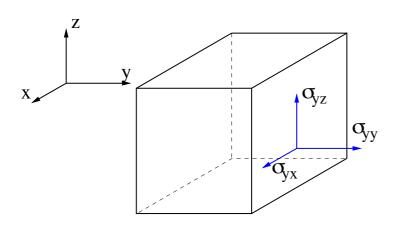
potential term

alternative description
$$\varphi_I^m = 2\mathbf{n}_I^m \cdot \mathbf{u}_I$$

$$\kappa_I \equiv \frac{2\mu^2 |\Delta_I|^2}{\pi^2 (1 - z_q^2)}$$

This quantity multiplies also the "potential term": and is thus the energy price needed to produce these fluctuations

Shear modulus

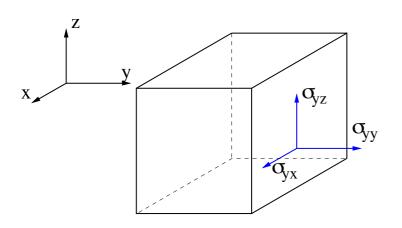


The shear modulus describes the response of a crystal to a shear stress

$$\nu^{ij} = \frac{\sigma^{ij}}{2s^{ij}} \qquad \text{for} \quad i \neq j$$

- σ^{ij} stress tensor acting on the crystal
- s^{ij} strain (deformation) matrix of the crystal

Shear modulus

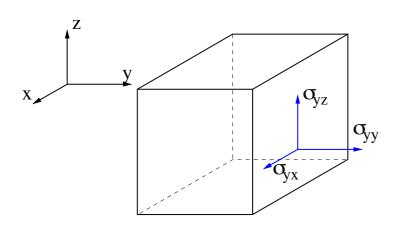


The shear modulus describes the response of a crystal to a shear stress

$$\nu^{ij} = \frac{\sigma^{ij}}{2s^{ij}} \qquad \text{for} \quad i \neq j$$

- σ^{ij} stress tensor acting on the crystal
- s^{ij} strain (deformation) matrix of the crystal
 - Crystalline structure given by the spatial modulation of the gap parameter
 - It is this pattern of modulation that is rigid (and oscillates)

Shear modulus



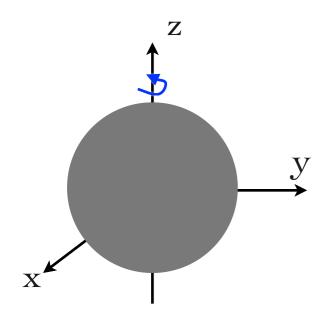
The shear modulus describes the response of a crystal to a shear stress

$$\nu^{ij} = \frac{\sigma^{ij}}{2s^{ij}} \qquad \text{for} \quad i \neq j$$

- stress tensor acting on the crystal
- strain (deformation) matrix of the crystal
 - Crystalline structure given by the spatial modulation of the gap parameter
 - It is this pattern of modulation that is rigid (and oscillates)

$$\nu = 2.47 \frac{\text{MeV}}{\text{fm}^3} \left(\frac{\Delta}{10 \text{MeV}}\right)^2 \left(\frac{\mu}{400 \text{MeV}}\right)^2$$

 $\nu = 2.47 \, \frac{\text{MeV}}{\text{fm}^3} \left(\frac{\Delta}{10 \text{MeV}}\right)^2 \left(\frac{\mu}{400 \text{MeV}}\right)^2 \qquad \begin{array}{l} \textbf{More rigid than diamond!!} \\ \textbf{20 to 1000 times more rigid than the crust of neutron stars} \end{array}$



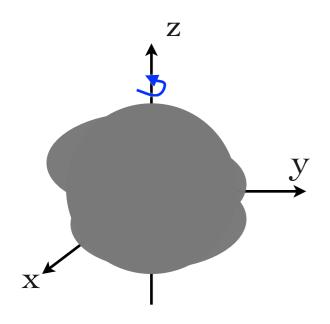
If the star has a non-axial symmetric deformation (mountain) it can emit gravitational waves

ellipticity

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

GW amplitude

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}} \qquad h = \frac{16\pi^2 G}{c^4} \frac{\epsilon I_{zz} \nu^2}{r}$$



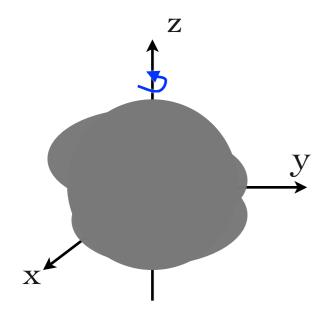
If the star has a non-axial symmetric deformation (mountain) it can emit gravitational waves

ellipticity

$$\epsilon = \frac{I_{xx} - I_{yy}}{\tau}$$

GW amplitude

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}} \qquad h = \frac{16\pi^2 G}{c^4} \frac{\epsilon I_{zz} \nu^2}{r}$$



If the star has a non-axial symmetric deformation (mountain) it can emit gravitational waves

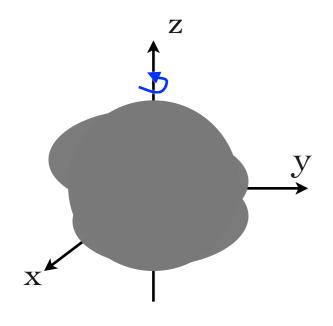
ellipticity

GW amplitude

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}} \qquad h = \frac{16\pi^2 G}{c^4} \frac{\epsilon I_{zz} \nu^2}{r}$$

- The deformation can arise in the crust or in the core
- Deformation depends on the breaking strain and the shear



If the star has a non-axial symmetric deformation (mountain) it can emit gravitational waves

ellipticity

GW amplitude

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}} \qquad h = \frac{16\pi^2 G}{c^4} \frac{\epsilon I_{zz} \nu^2}{r}$$

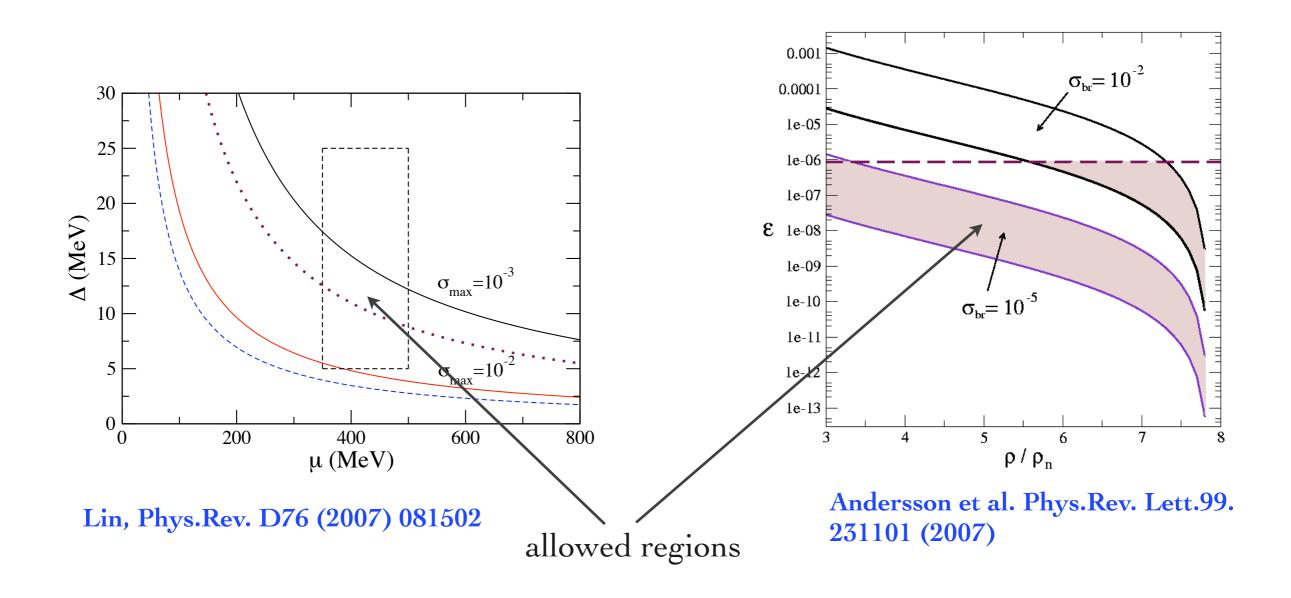
- The deformation can arise in the crust or in the core
- Deformation depends on the breaking strain and the shear

To have a "large" GW amplitude

- Large shear modulus
- Large breaking strain

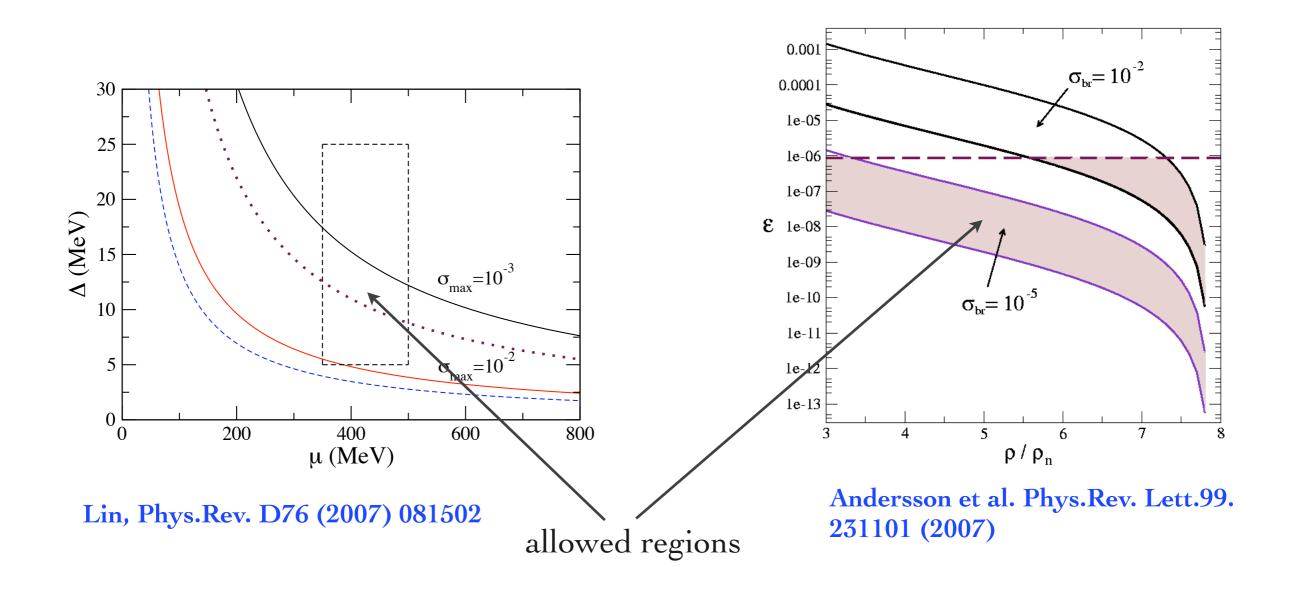
Gravitational waves

Using the non-observation of GW from the Crab by the LIGO experiment



Gravitational waves

Using the non-observation of GW from the Crab by the LIGO experiment



...we can restrict the parameter space!

Summary

• Motivated by compact stellar observations, the study of matter in extreme conditions allows to shed light on some properties of QCD

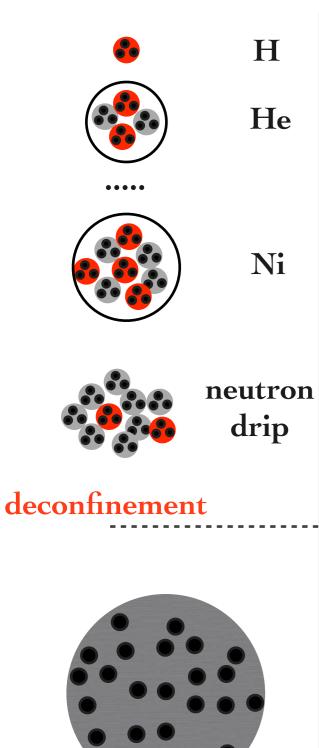
Color superconductivity is a phase of matter predicted by QCD

The temperature is so low that only NGBs are relevant

• The study of NGBs is linked to some observables of compact stars

Back-up slides

Increasing the baryonic density



Density

low

••••

high

very large
(stellar core ?)

extreme

Increasing the baryonic density

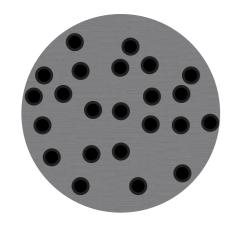
H

He

Ni

neutron drip

deconfinement



Density

$$\alpha_s \equiv \alpha_s(\mu)$$

low

••••

Confining

high

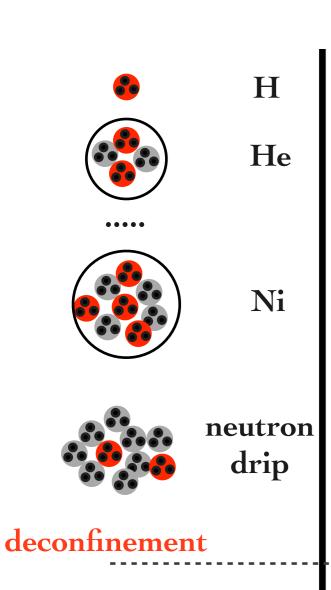
very large (stellar core ?)

Strong coupling

extreme

Weak coupling

Increasing the baryonic density



Density low

 $\alpha_s \equiv \alpha_s(\mu)$ Confining

Confining

Degrees of freedom

light nuclei

••••

heavy nuclei

neutrons and protons

very large (stellar core ?)

high

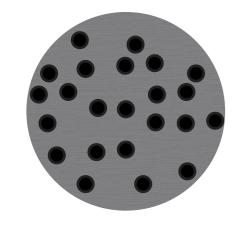
Strong coupling

quarks and gluons Cooper pairs of quarks? quarkyonic phase?....

extreme

Weak coupling

Cooper pairs of quarks NGBs



Chiral symmetry breaking

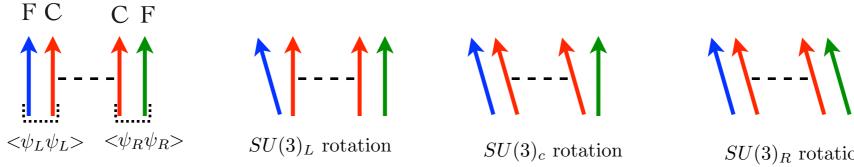
At low density the \gammaSB is due to the condensate that locks left-handed and right-handed fields

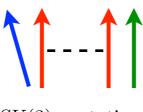
$$\langle \bar{\psi} \, \psi \rangle$$

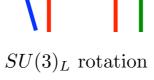
In the CFL phase we can write the condensate as

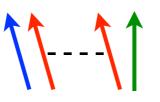
$$\langle \psi_{\alpha i}^L \psi_{\beta j}^L \rangle = -\langle \psi_{\alpha i}^R \psi_{\beta j}^R \rangle = \kappa_1 \delta_{\alpha i} \delta_{\beta j} - \kappa_2 \delta_{\alpha j} \delta_{\beta i}$$

Color is locked to both left-handed and right-handed rotations.

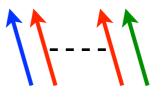








 $SU(3)_c$ rotation



 $SU(3)_R$ rotation

Two good dishes ...

$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \epsilon_{I\alpha\beta} \epsilon_{Iij} \Delta_{I}$$

Two good dishes ...

$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \epsilon_{I\alpha\beta} \epsilon_{Iij} \Delta_{\rm I}$$

$$\Delta_3 = \Delta_2 = \Delta_1 > 0$$

Color superconductor
Baryonic superfluid
"e.m." insulator

$$SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_{c+L+R} \times Z_2$$

$$\supset U(1)_{\mathbb{Q}} \qquad \qquad \supset U(1)_{\mathbb{Q}}$$

Two good dishes ...

$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \epsilon_{I\alpha\beta} \epsilon_{Iij} \Delta_{\rm I}$$

$$\Delta_3 = \Delta_2 = \Delta_1 > 0$$

Color superconductor
Baryonic superfluid
"e.m." insulator

$$SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_{c+L+R} \times Z_2$$

$$\supset U(1)_{\tilde{Q}} \qquad \qquad \supset U(1)_{\tilde{Q}}$$

2SC

$$\Delta_3 > 0, \, \Delta_2 = \Delta_1 = 0$$

Color superconductor "e.m." conductor

$$SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_B \times U(1)_S \to SU(2)_c \times SU(2)_L \times SU(2)_R \times U(1)_{\tilde{B}} \times U(1)_S$$

$$\supset U(1)_{\tilde{Q}}$$