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The gravitational Master field

! Dynamical gauge theories in the planar limit  (large N) are essentially 
classical. 

! This classical dynamics is encoded by a Master Field, in terms of which 
various observables can be efficiently computed.

! For a wide class of quantum gauge theories the gauge/gravity 
correspondence identifies the Master Field not with a gauge field 
configuration but rather a classical string theory in higher dimensions.

! For relativistic scale invariant quantum gauge theories, the master field is a 
string in a negatively curved spacetime (AdS).

! This is the AdS/CFT correspondence which has engendered a rich dialogue 
between high energy and condensed matter theories in the past few years.



The gauge/gravity correspondence

String theory which includes quantum gravity is exactly equivalent (or dual) 
to a non-gravitational quantum theory (gauge theory). 

! The quantum theory lives on 
the boundary of the spacetime 
where gravity reigns.

! All the gravitational action is 
captured completely on the 
boundary.

! Boundary dynamics 
holographically captures 
gravitational physics.



The gauge/gravity correspondence

Gauge  Theory

Planar limit 

Strong coupling planar limit

N,λ = g2YM N

N → ∞, λ fixed

N → ∞, λ � 1 fixed

�s, gs

Quantum String Theory

Classical String theory

Classical gravity theory

�s, gs → 0

�s � L, gs → 0



AdS/CFT: prototypical example

!  A specific example:

SU(N) N = 4Super Yang-Mills ←→ String theory on AdS5 × S5

RAdS

�s
= λ

1
4 , λ = g2YM N = 4π gs N , gs =

1

N

! The AdS spacetime naturally incorporates scale invariance; in fact the 
isometry group of AdS in (d+1)-dimensions is isomorphic to the conformal 
group in d-dimensions.

! Part of general picture: global symmetries of field theory are gauge 
symmetries of gravity/string theory.

! Gravity only cognizant of gauge invariant field theory states.



The geometry of AdS
! Anti de Sitter spacetime (AdS) is a spacetime of constant negative curvature

ds2 = −(1 + r2) dt2 +
dr2

1 + r2
+ r2 dΩ2

d−1

Poincare coordinates:

Global coordinates:

ds2 =
−dt2 + dx2 + dz2

z2

UV

IR RG flow



AdS geometry: global vs Poincare



The dictionary

! Classical fields in AdS are related to gauge invariant local operators of the 
field theory

Φ(r, x) → rd−∆ JO +
1

(2∆− d) r∆
�O(x) �

source expectation valuebulk field

! Dynamics of conserved currents  in field theory maps to dynamics of gauge 
fields in an asymptotically AdS spacetime.

GAB ←→ Tµν , ∇µT
µν = 0

AC ←→ Jµ , ∇µJ
µ = 0



Witten diagrams: computing correlations

2-pt functions 3-pt functions

4-pt functions

Φ(x, z) Φ3

Φ3

Φ3

Φ4

O(x) O(x)



Equilibrium dynamics

QFT vacuum

Thermal density matrix

Grand canonical density matrix

General state of field theory

| 0 �

ρ ∝ e−βH

ρ ∝ e−β (H−µJ)

AdS spacetime

Schwarzschild-AdS black hole

Black holes with charges

Saddle point of string action

M ; r+ (horizon)

M,Q; r+ (horizon), µ



Transport phenomena

! AdS/CFT is well suited to computing correlation functions, which can be used 
to extract transport data.

Numerical General 
Relativity



Transport Exhibit: shear viscosity

! Shear viscosity of strongly coupled plasmas: Policastro, Son, Starinets (2001)

η/s =
�

4π kB

! Lower bound on shear viscosity?

η/s ≥ α
�

4π kB

Kovtun, Son, Starinets (2004)
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Figure 2: The viscosity-entropy ratio for some common substances: helium, nitrogen and

water. The ratio is always substantially larger than its value in theories with gravity duals,

represented by the horizontal line marked “viscosity bound.”

experimentally whether the shear viscosity of these gases satisfies the conjectured bound.

This work was supported by DOE grant DE-FG02-00ER41132, the National Science

Foundation and the Alfred P. Sloan Foundation.

References

[1] S.W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199 (1975).

[2] J.D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333 (1973).

[3] G.T. Horowitz and A. Strominger, “Black strings and p-branes,” Nucl. Phys. B 360,

197 (1991).

[4] L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1987).

[5] G. ’t Hooft, “Dimensional reduction in quantum gravity,” gr-qc/9310026.

7

Sinha, Myers (2009)

status in string theory: α ∼ O(1)

quark-gluon plasma

Fermi gases at unitarity



The fluid/gravity correspondence

! The fluid/gravity correspondence establishes a correspondence between 
Einstein’s equations with a negative cc and those of relativistic conformal 
fluids. 

Bhattacharyya, Hubeny, Minwalla, MR (2007)

where the divergence, acceleration, shear, and vorticity, are defined as:6

θ = ∇µu
µ = P µν ∇µuν

aµ = uν ∇νu
µ ≡ Duµ

σµν = ∇(µuν) + u(µ aν) − 1

d − 1
θ P µν = P µα P νβ ∇(αuβ) −

1

d − 1
θ P µν

ωνµ = ∇[µuν] + u[µ aν] = P µα P νβ ∇[αuβ] .

(2.11)

For future reference we note that we will also have occasion to use a the following notation to
indicate symmetric traceless projections transverse to the velocity field. For any two tensor

T µν we define:

T 〈µν〉 = P µα P νβ T(αβ) −
1

d − 1
P µν P αβ Tαβ . (2.12)

Note that we can write the projectors a bit more compactly: P µα P νβ ∇(α uβ) = P ρ(µ∇ρuν)

and P µα P νβ ∇[α uβ] = P ρ[µ∇ρuν]. It is easy to verify all the previously asserted properties,

in addition to uµ aµ = 0 and Pµν aµ = aν :

σµν uµ = 0 , σµρ Pρν = σµ
ν , σ µ

µ = 0 ,

ωµν uµ = 0 , ωµρ Pρν = ωµ
ν , ω µ

µ = 0 .
(2.13)

We are now in possession of sufficient amount of data to write down the dissipative part

of the stress tensor to leading order in the derivative expansion. First of all let us notice

that the zeroth order equations of motion i.e., those arising from the ideal fluid description
relate the gradients of the energy density and pressure to those of the uµ. The quickest

way to derive the required relation is to consider projections of the conservation equation

∇µ (T µν)ideal = 0, along the velocity field and transverse to it, i.e.,

uν ∇µ (T µν)ideal = 0 =⇒ (ρ + P )∇µu
µ + uµ∇µρ = 0

Pνα ∇µ (T µν)ideal = 0 =⇒ P µ
α ∇µP + (ρ + P ) Pνα uµ ∇µuν = 0 . (2.14)

respectively. To characterize the stress-tensor at leading order in the gradient expansion

our task is reduced to writing down symmetric two tensors that can be built solely from

velocity gradients and we should furthermore account for the Landau frame condition. These

conditions in fact isolate just two terms which can appear in the expression for Πµν :

Πµν
(1) = −2 η σµν − ζ θ P µν , (2.15)

where we have introduced two new parameters the shear viscosity, η, and the bulk viscosity,

ζ .

Likewise for the charge current Υµ we will obtain contributions which are first order in the

derivatives of the thermodynamic variables ρ and qI and also the velocity field (where now

6Note that we use standard symmetrization and anti-symmetrization conventions. For any tensor Fab

we define the symmetric part F(ab) = 1
2 (Fab + Fba) and the anti-symmetric part F[ab] = 1

2 (Fab − Fba)
respectively. We also use D to indicate the velocity projected covariant derivative: D ≡ uµ ∇µ.
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this statement we are assuming that we have performed a Kaluza-Klein reduction of the

Type IIB supergravity fields over the compact S5 leading to an infinite tower of massive
fields coupled to the gravitational degrees of freedom.

The general structure of this effective five-dimensional lagrangian is not only complicated

but it also depends on the details of the internal space. Were one to replace the S5 by a

Sasaki-Einstein five manifold X5 one would end up with a different effective description

corresponding to a different field theory fixed point in four dimensions. However, there is a

universal sub-sector of Type IIB supergravity which we can focus on – this is just the sector
of solely gravitational dynamics in AdS5 i.e., we set all the Kaluza-Klein harmonics of the

graviton modes on S5 and other matter degrees of freedom consistently to zero. We will

restrict attention to this sub-sector which corresponds in the dual field theory to focussing

on just the dynamics of the energy-momentum tensor.

4.1 The universal sector: gravity in AdSd+1

As discussed above we will concentrate on pure gravitational dynamics in asymptotically

AdS spacetimes. This in particular allows us to work without loss of generality in arbitrary

dimensions as the form the gravitational action is independent of the number of spacetime
dimensions. Let us therefore consider starting with a string or M-theory background of

the form AdSd+1 ×X where X is some compact internal manifold ensuring that one has a

consistent string/M-theory vacuum.21 The universal sector of this theory which we focus on

is the dynamics of Einstein gravity with a negative cosmological constant, i.e.,

Sbulk =
1

16π G(d+1)
N

∫
dd+1x

√
−G (R − 2 Λ) . (4.1)

With a particular choice of units (RAdS = 1) Einstein’s equations are given by22

EMN = RMN − 1

2
GMNR − d(d − 1)

2
GMN = 0

=⇒ RMN + d GMN = 0, R = −d(d + 1).
(4.2)

Of course the equations (4.2) admit AdSd+1 solutions, which correspond to the vacuum

state of the dual field theory. Recall that global AdSd+1 has as its boundary the Einstein

static universe, R×Sd−1. We are free to consider other choices of boundary manifolds Bd; for

instance to discuss field theory on Minkowski space Rd−1,1 we would focus on the Poincaré
patch of AdSd+1. Given a metric g on the boundary Bd we have the bulk geometry to zeroth

21We will be interested in d > 2. As discussed in [66, 69] there is no interesting hydrodynamic limit for a
1+1 dimensional CFT. A conserved traceless stress tensor is simply made up of left and right moving waves
which propagate with no dissipation.

22We use upper case Latin indices {M, N, · · · } to denote bulk directions, while lower case Greek indices
{µ, ν, · · · } refer to field theory or boundary directions. Finally, we use lower case Latin indices {i, j, · · · } to
denote the spatial directions in the boundary.
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Einstein’s eqn with 
negative cc

Relativistic ideal 
fluid equations



The fluid/gravity correspondence

! The fluid/gravity correspondence establishes a correspondence between 
Einstein’s equations with a negative cc and those of relativistic conformal 
fluids. 

! Given any solution to the hydrodynamic equations, one can construct, in a 
gradient expansion, an approximate inhomogeneous, dynamical black hole 
solution in an asymptotically AdS spacetime. 

! The construction heuristically can be viewed as patching together planar AdS 
black holes of different temperatures with slow variation between patches.

! The fluid in question lives on the timelike boundary of AdS spacetime, and as 
is familiar, holographically encodes the entire dynamics of the bulk spacetime 
geometry.

Hubeny, Minwalla, MR (2012)



Black branes as lumps of fluid

! Black branes really behave as 
lumps of fluid in the low energy limit.

! In the fluid/gravity correspondence, 
the fluid lives at the end of the 
universe, on the asymptotic 
boundary of the spacetime where 
the black hole resides.

! Here the fluid is a hologram, 
honestly capturing all the low 
energy physics of the entire 
geometry.



Holographic superconductors

Hartnoll, Herzog, Horowitz (2008)
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Figure 1: The value of the condensate as a function of temperature, with the charge density

held fixed, for the two different boundary conditions: a) from bottom to top, the various

curves correspond to q = 1, 3, 6, and 12; b) from top to bottom, the curves correspond to

q = 3, 6, and 12. The value q = 1 gives a much larger condensate in this case, achieving
�

q�O2�/Tc ≈ 21 so we have not plotted it. Note that the large q limit is approached in

opposite directions in the two cases.

The critical temperature Tc appearing in figure 1 is set by the only other dimensionful

scale in the system, the charge density ρ. (In the grand canonical ensemble, we could

alternatively consider the scale to be set by the chemical potential µ.) Dimensional analysis

implies that we will have Tc ∝
√

ρ. However, the constant of proportionality will also

depend on the charge q of the operator O. This dependence is shown in figure 2.

In figure 2 we have also included the value of Tc in the probe (large q) limit. This was

computed in [3] where it was found that Tc ∝
√

qρ. The effects of backreaction produce two

changes with respect to the probe limit. Firstly, Tc is suppressed compared to the probe

estimate everywhere except at very small q. This suppression relative to the probe limit

can be understood in part from the correction to the Hawking temperature of a black hole

due to the electric charge: T ∼ 12r4
+ − ρ2. Away from the probe limit, the electric charge

back reacts on the metric, and this charge decreases slightly the temperature. Secondly,

Tc remains nonzero for all q, including q = 0.3 In other words, even neutral operators can

condense at low temperature. Lest one doubt our numerics, we give a proof of this fact in

the appendix for the case �O1� �= 0.
3If Tc were to go to zero at some finite q, we would have a zero temperature quantum phase transition

at that point. We expect such a quantum critical point for more positive masses.
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Figure 4: We plot the real part of the conductivity as a function frequency normalized

by the condensate, either q�O1� or
�

q�O2� as appropriate. This data was taken at low

temperature, T = 0.03 q�O1� and T = 0.03
�

q�O2� for a variety of charges q = 1, 3, 6 and

12. The curves with steeper slope correspond to larger q. There is a delta function at the

origin.

uniform acceleration. If we were to break this translation invariance by for example intro-

ducing impurities, the delta function at ω = 0 would acquire a width for T > Tc and the

conductivity would become finite. This effect of impurities was studied in an AdS/CFT

setting in [6].

In our previous paper [3], we did not see this infinite conductivity above T > Tc.

The reason we did not see it is that we worked in a probe limit where the gravitational

background was fixed and the abelian-Higgs sector8 decoupled. By fixing the background,

we implicitly broke translation invariance. Technically this occurs because the electric and

energy currents decouple, as we discussed at the start of this section. For T > Tc we

had a pure Schwarzschild-AdS background and thus recovered the frequency independent

conductivity of [26]. It was only for T < Tc that the Im(σ) developed a pole.

With this review of previous results, the structure of figure 3 should be clear. We see

from the dashed curves in figure 3 that Re(σ) has a minimum at ω = 0 for T = Tc and

indeed, although not plotted, also for T > Tc since the background becomes the electrically

charged black hole studied in [25]. If we were to plot Im(σ), we would see a pole in ω = 0,

and by the Kramers-Kronig relations would conclude that there is also a Dirac delta function

in Re(σ). In other words, we have infinite DC conductivity for temperatures above Tc.
8Our bulk matter is like a traditional abelian-Higgs model, but it does not have the usual ψ4 term in the

potential.
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! Superconducting phase transitions are easy to engineer in gravitational 
systems: condensation of a charged mode in gravity!

! examples of s-wave, p-wave and d-waves exist in literature



Gravity as a high Tc superconductor

Figure 14: The phase diagram of the holographic superconductors in the (T, µ, h1)
space. Note any µ �= 0 slice gives the 2d projection of Figure 1. At the origin we have
the skew-whiffed vacuum. The T = 0 plane is null singular except under the two half
cones.

to a superconducting phase described by electrically charged black holes with scalar

hair χ �= 0. The region of superconductivity corresponds to the region below the two

green half cones in Figure 14. At zero temperature the superconducting solutions are

the non-singular charged domain wall solutions interpolating between the skew-whiffed

AdS4 vacuum and the Pope-Warner AdS4 vacuum constructed in section 7. It is inter-

esting that in the far IR these solutions have emergent conformal symmetry in three

spacetime dimensions, described by the same CFT.

At |h1| = h
c

1 the critical temperature goes to zero, and for |h1| > h
c

1 the unbroken

phase black hole solutions extend all the way down to zero temperature. In the zero

temperature limit these solutions again have vanishing entropy and become nakedly

singular; it would be interesting to explore them in more detail. Interestingly, in all

of these solutions with h �= 0, parity and time reversal invariance are broken in the

boundary theory.

A striking aspect of our numerical investigations is that |h1| = h
c

1 also seems to

precisely correspond to a change of behaviour of the zero temperature limit of the

unbroken phase black holes. In particular, for |h1| < h
c

1 at zero temperature these

solutions become smooth interpolating solutions that approach AdS2 × R2 in the IR

and are thermodynamically disfavoured. It would be worthwhile further exploring both

the zero temperature superconducting black holes and the unbroken phase black holes

near their critical values of h1 to confirm that hc

1 is indeed governing both behaviours

40

Gauntlett, Sonner, Wiseman (2009)

! Quantum critical behaviour in classical 
gravitational systems!



Gravity as a high Tc superconductor

0.1 0.2 0.3 0.4
40

60

80

100

120

140

160

180

Ω�T

R
e�Α�

0.1 0.2 0.3 0.4

50

60

70

80

90

Ω�T

Im
�Α�

Figure 2: The real and imaginary parts of the thermoelectric conductivity for small frequencies.
The lines are a fit to the Drude form. This is for k0 = 1, A0 = .75, µ = 1.4, T/µ = .115.
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Figure 3: The magnitude and phase of the thermoelectric conductivity in the intermediate scaling
regime. The curve on the left is a fit to the power-law (3.2) which determines η ≈ 5/6. Like the
previous figure, this is for k0 = 1, A0 = .75, µ = 1.4, T/µ = .115.
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Figure 10: The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ. This plot is
taken from [11].

cuprates, Anderson suggested a power-law fall-off σ(ω) ∼ ω−γ on the basis of a Luttinger liquid
model, with γ = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a ω/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T � µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS2 × R2

regime.
However, a second explanation was put forward in [22] where it was argued that the σ ∼ ω−γ

behavior with γ ≈ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a σ(ω) ∼ ω−2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, σ(ω) follows a simple Drude form. However, for intermediate frequencies, |σ(ω)| has a power
law fall off (with constant offset) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
of why this is happening and it would clearly be of interest to find an analytic derivation of this
result.

To get more insight into this result, there are a few generalizations that should be investigated.
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Finally, within the holographic framework, a σ(ω) ∼ ω−2/3 power-law was shown to arise from
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The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, σ(ω) follows a simple Drude form. However, for intermediate frequencies, |σ(ω)| has a power
law fall off (with constant offset) and its phase is approximately constant. Remarkably, both the
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result.
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Horowitz, Santos, Tong (2012)
van der Marel et.al. (2003)

universal power law 
scaling |σ|− σ0 ∼ ω−2/3

ω−2/3



(non) Fermi liquids from holography

Faulkner, Iqbal, Liu, McGreevy, Vegh (2010)FIG. 5: Density plot of the spectral function A(ω, k) as a function of ω and k. We have chosen

units so that µ = 1 and in all plots m = 0. Left: q = 1 with Fermi momentum kF = 0.53

and νkF = 0.24 < 1
2 for which there is no sharp quasiparticle at the Fermi surface and the peak

dispersion is nonlinear (see equation (11)). Middle: q = 1.56 with Fermi momentum kF = 0.952

and νkF = 0.500 which corresponds to a marginal Fermi liquid. Right: q = 2 with Fermi momentum

kF = 1.315 and νkF = 0.73 > 1
2 , for which there are stable quasi-particles at the Fermi surface.

The two frequency-dependent terms in the downstairs of (7) have distinct physical origins.

The term linear in ω comes from an analytic expansion of UV quantities and is real, while

the self-energy Σ(ω) comes from the near horizon AdS2 region and is complex, scaling with

frequency like ω2νkF . The properties of the quasiparticle-like peak depend on the competition

between these two terms. The term linear in ω in the denominator of (7) can be omitted

if νkF < 1
2 . For νkF > 1

2 we should still keep the term proportional to ω2νkF , since it makes

the leading contribution to the imaginary part. When νkF < 1
2 , equation (7) has a scaling

form consistent with the scaling hypothesis for a critical Fermi surface discussed recently by

Senthil [32], while for νkF > 1
2 it has stable quasi-particles similar to a Fermi liquid.

More explicitly, when νkF > 1
2 , the Green’s function in equation (7) has a pole in the

lower half complex ω-plane located at

ωc(k) ≡ ω∗(k)− iΓ(k) (9)

with

ω∗(k) = vF (k − kF ) + · · · , Γ(k)

ω∗(k)
∼ (k − kF )

2νkF −1 → 0, (10)

and the residue of the pole is Z = h1vF . The pole represents a quasiparticle which has a

linear dispersion with vF as the (Fermi) velocity. It becomes stable approaching the Fermi

12

Cubrovic, Zaanen, Schalm (2009)

Liu, McGreevy, Vegh (2009)

! Understanding Quantum Criticality: dynamics of fermions

! Non-Fermi liquids: departures from conventional Landau-Fermi liquids 
obtained from dynamics of fermions interacting gravitationally.



Non-relativistic field theories

! Holographic duals for field theories with non-relativistic scaling symmetries

Son; Balasubramanian, McGreevy (2008)
! Schrodinger invariant, non-relativistic conformal theories

! Explicit examples and dual large N field theories realized in string theory:

Adams, Balasubramanian, McGreevy;  Herzog, MR, Ross; Maldacena, Martelli, Tachikawa (2008)

! Typically these are deformations of known relativistic field theories.

" Large N gauge theories with bosonic and fermionic degrees of freedom

" Not quite fermionic many body systems.

! Transport phenomena can be studied in these examples η/s =
�

4π kB



Non-relativistic field theories

! Holographic duals for field theories with non-relativistic scaling symmetries

Kachru, Liu, Mulligan (2008)
! Theories with scale but not conformal invariance: Lifshitz models

! Relevant for the low energy physics of quantum critical systems

Hartnoll, Polchinski, Silverstein, Tong (2011)

! These are also deformations of known relativistic field theories, but have be 
argued to be relevant for the many body physics of fermions in a gravitational 
field (electron stars)

Hartnoll, Tavanfar (2010)

ds2 =
−z2−2z dt2 + dx2 + dz2

z2



Summary

! A rich interplay between gravitational dynamics and quantum many body 
physics.

! Gravity and black holes provide a great set of models for realization of 
complex physics which can be understood using classical dynamics!

• Introduction to AdS/CMT  
" Hartnoll: 0903.3246, 1106.4324
" Sachdev: 1108.1197, 1203.4565

• Fluid/gravity correspondence
" Rangamani: 0905.4352
" Hubeny, Minwalla, Rangamani: 1107.5780 

• Non-equilibrium physics
" Son, Starinets: 0704.0240
" Hubeny, Rangamani: 1006.3675

• Holographic superconductors
" Herzog: 0904.1975
" Horowitz: 1002.1722

• Non-Fermi liquids; strange metals
" Faulkner et.al: 1101.0597
" Faulkner et.al: 1003.1728


