

Spin-orbit coupling and Heavy solitons in atomic Fermi Gases

Tarik Yefsah, MIT

From BEC to BCS

Atomic gas of spin ½ with tunable
 interactions
 (50% spin ↑ – 50% spin ↓)

interactions

Feshbach resonances

Spin-Injection Spectroscopy of a Spin-Orbit coupled Fermi Gas

- Electron moving in an electric field feels a momentum-dependent magnetic fields in the moving frame
- In materials : electric field can arises from structure

$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} - \mu \cdot [\mathbf{B} + \mathbf{B}_{SO}(\mathbf{k})]$$

$$\cdot \mathbf{B}_{SO}(\mathbf{k}) \propto = \begin{cases} \sigma_x k_y - \sigma_y k_x & \text{Rashba} \\ -\sigma_x k_y - \sigma_y k_x & \text{Dresselhaus} \end{cases}$$

Provides a good description of 2D SOC in solids

Tarik Yefsah, Trieste, May 2013

 $-\mu$

Raman Beams ↓ Flip spin + imparts momentum

momentum selective process

Adiabatic elimination of the excited state

2-level system +
$$E_0 \vec{\epsilon} \cos(\Delta \omega t + Qx)$$

$$-\vec{d}\cdot\vec{E} = \frac{\hbar\Omega_R}{2}\left(\sigma_x\cos Qx - \sigma_y\sin Qx\right)$$

$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} + \frac{\hbar \Omega_R}{2} (\sigma_x \cos Qx - \sigma_y \sin Qx) + \frac{\delta}{2} \sigma_z$$

$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} + \frac{\hbar^2 Q}{2m} \sigma_y k_x + \frac{\hbar \Omega_R}{2} \sigma_z + \frac{\delta}{2} \sigma_y + \frac{E_R}{4} \mathbb{I}$$

Y. J. Lin et al. Nature 471, 83-86 (2011)

$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} + \frac{\hbar\Omega_R}{2} (\sigma_x \cos Qx - \sigma_y \sin Qx) + \frac{\delta}{2} \sigma_z$$
$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} - \mu \cdot [\mathbf{B} + \mathbf{B}_{\rm SO}(\mathbf{k})]$$
$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} + \frac{\hbar^2 Q}{2m} \sigma_y k_x + \frac{\hbar\Omega_R}{2} \sigma_z + \frac{\delta}{2} \sigma_y + \frac{E_R}{4} \mathbb{I}$$

Y. J. Lin et al. Nature 471, 83-86 (2011)

$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} + \frac{\hbar\Omega_R}{2} (\sigma_x \cos Qx - \sigma_y \sin Qx) + \frac{\delta}{2} \sigma_z$$
$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} - \mu \cdot [\mathbf{B} + \mathbf{B}_{\mathrm{SO}}(\mathbf{k})]$$
$$\mathcal{H} = \frac{\hbar^2 \mathbf{k}^2}{2m} \mathbb{I} + \frac{\hbar^2 Q}{2m} \sigma_y k_x + \frac{\hbar\Omega_R}{2} \sigma_z + \frac{\delta}{2} \sigma_y + \frac{E_R}{4} \mathbb{I}$$
$$-\mu \cdot \mathbf{B}_{\mathrm{SO}}(\mathbf{k}) - \mu \cdot \mathbf{B}$$

Momentum dependent Zeeman field "equal Rashba and Dresselhaus contributions"

Y. J. Lin et al. Nature 471, 83-86 (2011)

Define quasi-momentum q

$$\begin{vmatrix} \downarrow \rangle \quad q = k + Q/2 \\ \begin{vmatrix} \uparrow \rangle \quad q = k - Q/2 \end{vmatrix}$$

real momentum space

Define quasi-momentum q

quasi-momentum space

Experimental Setup

- Fermionic ⁶Li atoms sympathetically cooled by ²³Na
- Relevant states are 2nd and 3rd lowest states at 11G
- Interactions are negligible ($20a_0$)

Coupling spin and momentum via Raman

Vary detuning Short pulse

State-selective imaging after TOF provides <u>spin</u> and <u>momentum</u> information

Probing the spin-orbit coupling in atomic gases

P. Wang *et al. PRL* **109**, 095301 (2012) Jing Zhang's group

Tarik Yefsah, Trieste, May 2013

Can the hamiltonian be directly characterized?

Spin-injection spectroscopy:

Measures spin, energy, momentum

- 1. Inject atoms from "reservoir"
- 2. Project into free space
- 3. Spin-selective imaging
- → Reconstruct E(k) along with "color" of band

Experimental Setup

 1st and 4th states used as reservoir states

L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. Bakr, M. W. Zwierlein Phys. Rev. Lett. **109**, 095302 (2012)

L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. Bakr, M. W. Zwierlein Phys. Rev. Lett. **109**, 095302 (2012)

Heavy Solitons in a Fermionic Superfluid

What is a soliton ?

- Localized wave-packet
- Maintained shape during propagation

Dark soliton in a BEC = phase jump + density depletion

Many experiments : Sengstock, Philips, Oberthaler Also bright solitons : Salomon, Hulet

Dark soliton in a Fermi Superfluid

Dark soliton in a Fermi Superfluid

Connection with edge states physics

In the BCS limit with vanishing gap

$$\left(-i\hbar v_F \sigma_z \frac{\partial}{\partial z} + \Delta(z)\sigma_x\right) \begin{pmatrix} u_n \\ v_n \end{pmatrix} = E_n \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

Dirac equation with a varying mass

Also describes the Su-Schrieffer-Heeger (SSH) Model (1979)

Soliton in polyacetylene topologically protected bound state

at the soliton

Connection with edge states physics

In the BCS limit with vanishing gap

$$\left(-i\hbar v_F \sigma_z \frac{\partial}{\partial z} + \Delta(z)\sigma_x\right) \begin{pmatrix} u_n \\ v_n \end{pmatrix} = E_n \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

Dirac equation with a varying mass

Also describes the Su-Schrieffer-Heeger (SSH) Model (1979)

Soliton in polyacetylene topologically protected bound state

at the soliton

What kind of measurement ?

The Dark-Bright soliton experiment

Large increase in the period for a filled soliton

Dynamics of a soliton in a trapped Superfluid

Mean-Field Bogoliubov – de Gennes prediction: Solitons should get heavier for stronger interactions

BEC

Scott, Dalfovo, Pitaevskii & Stringari Phys. Rev. Lett. **106**, 185301 (2011)

See also:

Liao and Brand , Phys. Rev. A **83**, 041604(R) (2011) Antezza *et al.* Phys. Rev. A 76, 043610 (2007)

Making a soliton by phase imprinting

After the pulse $\Delta \phi = -2U t / \hbar$

Solitons in BECs by phase imprinting: Hamburg, NIST

700 G

Snake instability for rounder clouds

arXiv: 1302.4736

Quantum or thermal effect?

• Temperature below 0.05 T_F

0.5 Position (R_{TF}) 0.0 -0.5 0.5 Position (R_{TF}) 0.0--0.5 Position (R_{TF}) \vdash 0 2 3 100 μm Time (s)

4% thermal fraction

Quantum or thermal effect?

Quantum or thermal effect?

Temperature below 0.05 T_F

0.5-Position (R_{TF}) 4% thermal fraction 0.0 -0.5 14% thermal fraction 0.5 Position (R_{TF}) Anti-damping : the soliton reduces its energy by accelerating 0.0--0.5 0.5-17% thermal fraction Position (R_{TF}) Stronger anti-damping 0.0-Less deterministic trajectory Shorter lifetime • -0.5 0 2 3 100 μm Time (s)

Long period and large M*/M is a Quantum Effect

Quantum fluctuations?

In weakly interacting Bose Gases

$$\hat{\Psi} = \sqrt{N}\Phi_0 + \hat{\psi}$$

Dziarmaga, Sacha, PRA 66, 043620 (2002) Law, PRA 68, 015602 (2003)

Quantum fluctuations?

Soliton filled with un–condensed pairs Contribution to the mass enhancement ?

Conclusion

Spin-Injection Spectroscopy of a spin-orbit coupled Fermi gas
 → access to energy, momentum and spin

Phys. Rev. Lett. 109, 095302 (2012)

- Heavy Solitons in a Fermionic Superfluid
 - \rightarrow Effective mass 50 times larger than the current predictions
 - \rightarrow Filling with bosonic and fermionic bound states (?)

T. Yefsah, A. Sommer, M. J.-H. Ku, L. Cheuk, W. Ji, W. Bakr, M. Zwierlein arXiv:1302.4736 (2013)

Upcoming works on solitons

- Collisions of solitons: elastic in BEC limit, inelastic collisions across crossover might shed light on Andreev bound states.
- Locally resolved RF spectroscopy to directly detect bound states.

Thanks

Lawrence Cheuk

Zoran Hadzibabic

Waseem Bakr

Martin Zwierlein

