

UNIVERSITA DEGLI STU DI TRENTO

Superstripes and the excitation spectrum of a spin-orbit-coupled BEC

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Trieste, 2013 May

Breaking of two symmetries

Bose condensation of defectons

A. F. Andreev and I. M. Lifshitz JETP 29, 1107 (1969)

(本間) (本語) (本語) (

Breaking of two symmetries

Bose condensation of defectons

A. F. Andreev and I. M. Lifshitz JETP 29, 1107 (1969)

Soft-core interactions

N. Henkel, et al., PRL 104, 195302 (2010)
F. Cinti, et al., PRL 105, 135301 (2010)

Image: A matrix and a matrix

Single-particle Hamiltonian

$$h_0 = \frac{1}{2} \left[(p_x - k_0 \sigma_z)^2 + p_\perp^2 \right] \qquad \Longleftrightarrow \qquad U^{-1} h_0^{\text{lab}} U$$
$$+ \frac{\Omega}{2} \sigma_x + \frac{\delta}{2} \sigma_z \qquad \qquad U = e^{i\Theta(x)\sigma_z/2}$$

Equal Rashba and Dresselhaus couplings

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Single-particle Hamiltonian

$$h_{0} = \frac{1}{2} \left[(p_{x} - k_{0}\sigma_{z})^{2} + p_{\perp}^{2} \right] \qquad \Longleftrightarrow \qquad U^{-1} h_{0}^{\text{lab}} U \\ + \frac{\Omega}{2}\sigma_{x} + \frac{\delta}{2}\sigma_{z} \qquad \qquad U = e^{i\Theta(x)\sigma_{z}/2} \qquad \pm k_{1} = \pm k_{0}\sqrt{1 - \frac{\Omega^{2}}{4k_{0}^{4}}}$$

Equal Rashba and Dresselhaus couplings

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Single-particle Hamiltonian

$$h_{0} = \frac{1}{2} \left[(p_{x} - k_{0}\sigma_{z})^{2} + p_{\perp}^{2} \right] \qquad \Longleftrightarrow \qquad U^{-1} h_{0}^{\text{lab}} U \\ + \frac{\Omega}{2}\sigma_{x} + \frac{\delta}{2}\sigma_{z} \qquad \qquad U = e^{i\Theta(x)\sigma_{z}/2} \qquad \pm k_{1} = \pm k_{0}\sqrt{1 - \frac{\Omega^{2}}{4k_{0}^{4}}}$$

Equal Rashba and Dresselhaus couplings

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Single-particle Hamiltonian

$$h_{0} = \frac{1}{2} \left[(p_{x} - k_{0}\sigma_{z})^{2} + p_{\perp}^{2} \right] \qquad \Longleftrightarrow \qquad U^{-1} h_{0}^{\text{lab}} U \\ + \frac{\Omega}{2}\sigma_{x} + \frac{\delta}{2}\sigma_{z} \qquad \qquad U = e^{i\Theta(x)\sigma_{z}/2} \qquad \pm k_{1} = \pm k_{0}\sqrt{1 - \frac{\Omega^{2}}{4k_{0}^{4}}}$$

Equal Rashba and Dresselhaus couplings

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Single-particle Hamiltonian

$$h_{0} = \frac{1}{2} \left[(p_{x} - k_{0}\sigma_{z})^{2} + p_{\perp}^{2} \right] \qquad \Longleftrightarrow \qquad U^{-1} h_{0}^{\text{lab}} U \\ + \frac{\Omega}{2}\sigma_{x} + \frac{\delta}{2}\sigma_{z} \qquad \qquad U = e^{i\Theta(x)\sigma_{z}/2} \qquad \pm k_{1} = \pm k_{0}\sqrt{1 - \frac{\Omega^{2}}{4k_{0}^{4}}}$$

Equal Rashba and Dresselhaus couplings

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Single-particle Hamiltonian

$$h_{0} = \frac{1}{2} \left[(p_{x} - k_{0}\sigma_{z})^{2} + p_{\perp}^{2} \right] \qquad \Longleftrightarrow \qquad U^{-1} h_{0}^{\text{lab}} U \\ + \frac{\Omega}{2}\sigma_{x} + \frac{\delta}{2}\sigma_{z} \qquad \qquad U = e^{i\Theta(x)\sigma_{z}/2} \qquad \pm k_{1} = \pm k_{0}\sqrt{1 - \frac{\Omega^{2}}{4k_{0}^{4}}}$$

Equal Rashba and Dresselhaus couplings

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Many-body ground state

Three quantum phases $\gamma = (g - g_{\uparrow\downarrow}) / (g + g_{\uparrow\downarrow}) > 0$, $n^{(c)} = k_0^2 / (2\gamma g)$

(I). $k_1 \neq 0$, $C_+ = C_-$, $\langle \sigma_z \rangle = 0$

(II).
$$k_1 \neq 0$$
, $C_- = 0$ or
 $C_+ = 0$, $\langle \sigma_z \rangle \neq 0$

(III).
$$k_1 = 0$$
, $\langle \sigma_z \rangle = 0$

$$\psi = \begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix} = \sqrt{\overline{n}} \begin{bmatrix} C_{+} \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} e^{ik_{1}x} + C_{-} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix} e^{-ik_{1}x} \end{bmatrix}$$
$$\cos 2\theta = \frac{k_{1}}{k_{0}}, \quad \langle \sigma_{z} \rangle = \frac{k_{1}}{k_{0}} \left(|C_{+}|^{2} - |C_{-}|^{2} \right)$$

LY, Pitaevskii, Stringari, PRL 108, 225301 (2012)

Superstripes and the excitation spectrum of a spin-orbit-coupled BEC

イロト イボト イラト イラト 二三

Many-body ground state

Three quantum phases $\gamma = (g - g_{\uparrow\downarrow}) / (g + g_{\uparrow\downarrow}) > 0$, $n^{(c)} = k_0^2 / (2\gamma g)$

(I).
$$k_1 \neq 0, \ C_+ = C_-,$$

 $\langle \sigma_z \rangle = 0$

(II).
$$k_1 \neq 0$$
, $C_- = 0$ or
 $C_+ = 0$, $\langle \sigma_z \rangle \neq 0$

(III).
$$k_1 = 0$$
, $\langle \sigma_z \rangle = 0$

$$\begin{split} \Omega_{\rm cr}^{\rm (I-II)} &= 2k_0^2\sqrt{2\gamma/(1+2\gamma)} \quad \text{ small for } {}^{87}\text{Rb} \\ \Omega_{\rm cr}^{\rm (II-III)} &= 2k_0^2 \end{split}$$

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari Superstripes and the excitation spectrum of a spin-orbit-coupled BEC

Many-body ground state

Three quantum phases $\gamma = \left(g - g_{\uparrow\downarrow}\right) / \left(g + g_{\uparrow\downarrow}\right) > 0$, $n^{(c)} = k_0^2 / (2\gamma g)$

$$\begin{split} \Omega_{\rm cr}^{\rm (I-II)} &= 2k_0^2\sqrt{2\gamma/(1+2\gamma)} \quad \text{ small for } {}^{87}\text{Rb} \\ \Omega_{\rm cr}^{\rm (II-III)} &= 2k_0^2 \end{split}$$

To increase the effect of the contrast, choose larger values of γ

Excitation spectrum in phase II

- Despite spinor nature, occurrence of Raman coupling gives rise to a single gapless branch
- Emergence of a roton minimum at finite q: a tendency of the system towards crystallization

イロト イポト イヨト イヨト

Martone, LY, Pitaevskii and Stringari, PRA 86, 063621(2012)

Excitation spectrum in phase II

- Despite spinor nature, occurrence of Raman coupling gives rise to a single gapless branch
- Emergence of a roton minimum at finite q: a tendency of the system towards crystallization

Martone, LY, Pitaevskii and Stringari, PRA 86, 063621(2012)

Excitation spectrum in phase II

- Despite spinor nature, occurrence of Raman coupling gives rise to a single gapless branch
- Emergence of a roton minimum at finite q: a tendency of the system towards crystallization

Martone, LY, Pitaevskii and Stringari, PRA 86, 063621(2012)

Excitation spectrum in phase I

Equilibrium state

 $G_1/k_0^2=0.3,\ G_2/k_0^2=0.08,\ \Omega/k_0^2=1$

• Translational invariance symmetry breaking

• U(1) symmetry breaking

$$\begin{pmatrix} \psi_{0\uparrow} \\ \psi_{0\downarrow} \end{pmatrix} = \sum_{\bar{K}} \begin{pmatrix} a_{-k_1 + \bar{K}} \\ -b_{-k_1 + \bar{K}} \end{pmatrix} e^{i(\bar{K} - k_1)x}, \quad \bar{K} \text{ is the reciprocal lattice vector}$$

Superstripes and the excitation spectrum of a spin-orbit-coupled BEC

3 N A 3 N

Excitation spectrum in phase I

Bogoliubov + **Bloch** theory

$$\begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix} = e^{-i\mu t} \left[\begin{pmatrix} \psi_{0\uparrow} \\ \psi_{0\downarrow} \end{pmatrix} + \begin{pmatrix} u_{\uparrow}(\mathbf{r}) \\ u_{\downarrow}(\mathbf{r}) \end{pmatrix} e^{-i\omega t} + \begin{pmatrix} v_{\uparrow}^{*}(\mathbf{r}) \\ v_{\downarrow}^{*}(\mathbf{r}) \end{pmatrix} e^{i\omega t} \right]$$
$$u_{\mathbf{q}\uparrow,\downarrow}(\mathbf{r}) = e^{-ik_{1}x} \sum_{\bar{K}} U_{\mathbf{q}\uparrow,\downarrow\bar{K}} e^{i\mathbf{q}\cdot\mathbf{r}+i\bar{K}x}$$
$$v_{\mathbf{q}\uparrow,\downarrow}(\mathbf{r}) = e^{ik_{1}x} \sum_{\bar{K}} V_{\mathbf{q}\uparrow,\downarrow\bar{K}} e^{i\mathbf{q}\cdot\mathbf{r}-i\bar{K}x}$$

- Emergence of two gapless bands
- Vanishing of the frequency at the edge of the Brillouin zone
- Divergent behavior of static structure factor in density channel

Excitation spectrum in phase I

S. Saccani et al., PRL 108, 175301 (2012)

- Emergence of two gapless bands
- Vanishing of the frequency at the edge of the Brillouin zone
- **Divergent** behavior of static structure factor in density channel

Density structure factor

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Density structure factor

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Density structure factor

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Spin structure factor

Spin structure factor

Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

Sum rule approach

Define q_x -component **density** operator F and $(q_x - q_B)$ -component **momentum density** operator G

Bogoliubov inequality: $m_{-1}(F)m_1(G) \ge |\langle [F,G] \rangle|^2 \quad \chi(q_x) \propto 1/(q_x - q_B)^2$ Uncertainty inequality: $m_0(F)m_0(G) \ge |\langle [F,G] \rangle|^2 \quad S(q_x) \propto 1/|q_x - q_B|$

 $m_{-1} \qquad \chi(q_x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへ⊙

Sound velocity

• $c_{\perp}^{(d,s)} > c_{x}^{(d,s)}$, inertia of flow caused by stripes

• $c_{\perp}^{(d)} \simeq \sqrt{(g + g_{\uparrow\downarrow})\bar{n}/2}$, well reproduced by usual Bogoliubov sound velocity

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusions

- Excitation spectrum in the stripe phase: double gapless band structure
- At small wave vector the lower and upper branches have, respectively, a spin and density nature
- Close to the first Brillouin zone the lower branch acquires an important density character, $S(q_x)$ diverges

LY, Martone, Pitaevskii, Stringari arXiv: 1303.6903

Thank you !