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K. Wilson, Phys. Rev. D 
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Classical Statistical Mechanics

Classical simulations achievements:
• evidence of  quark-gluon plasma
• estimate of  the entire hadronic 

spectrum
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Some questions:
(i) fractionalization,
(ii) confinement-deconfinement quantum phase transition,
(iii) spin-liquid physics...
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Artificial light and quantum order in systems of screened dipoles

Xiao-Gang Wen*
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

!Received 25 November 2002; revised manuscript received 24 January 2003; published 16 September 2003"

The origin of light is an unsolved mystery in nature. Recently, it was suggested that light may originate from
a new kind of order, quantum order. To test this idea in experiments, we study systems of screened magnetic/
electric dipoles in two-dimensional !2D" and 3D lattices. We show that our models contain an artificial light–a
photonlike collective excitation. We discuss how to design realistic devices that realize our models. We show
that the ‘‘speed of light’’ and the ‘‘fine-structure constant’’ of the artificial light can be tuned in our models. The
properties of artificial atoms !bound states of pairs of artificial charges" are also discussed. The existence of
artificial light !as well as artificial electron" in condensed-matter systems suggests that elementary particles,
such as light and electron, may not be elementary. They may be collective excitations of quantum order in our
vacuum. In our model, light is realized as a fluctuation of string-nets and charges as the ends of open strings
!or nodes of string nets".

DOI: 10.1103/PhysRevB.68.115413 PACS number!s": 73.22.!f, 11.15.!q

I. INTRODUCTION

What is light? Where light comes from? Why light exists?
Every one probably agrees that these are fundamental ques-
tions. But one may wonder if they are scientific questions,
philosophical questions, or even religious question. Before
answering these questions and the questions about the ques-
tions, we would like to ask three more questions: What is
phonon? Where phonon comes from? Why phonon exists?46
We know that these are scientific questions and we know
their answers. Phonon is a vibration of a crystal. Phonon
comes from a spontaneous translation symmetry breaking.
Phonon exists because the translation-symmetry-breaking
phase actually exists in nature.
It is quite interesting to see that our understanding of a

gapless excitation phonon is rooted in our understanding of
phases of matter. According to Landau’s theory,1 phases of
matter are different because they have different broken sym-
metries. The symmetry description of phases is very power-
ful. It allows us to classify all possible crystals. It also pro-
vides the origin for gapless phonons and many other gapless
excitations.2,3
However, light, as a U!1" gauge boson, cannot be a

Nambu-Goldstone mode from a broken symmetry. There-
fore, unlike phonon, light cannot originate from a symmetry-
breaking state. This may be the reason why we treat light
differently than phonon. We regard light as an elementary
particle and phonon as a collective mode.
However, if we believe in the equality between phonon

and light and if we believe that light is also a collective mode
of a particular ‘‘order’’ in our vacuum, then the very exis-
tence of light implies an order not found earlier in our
vacuum. Thus, to understand the origin of light, we need to
deepen and expand our understanding of phases of matter.
We need to discover a new kind of order that can produce
and protect light.
After the discovery of fractional quantum Hall !FQH"

effect,4,5 it became clear that Landau’s symmetry-breaking
theory cannot describe different FQH states, since those
states all have the same symmetry. It was proposed that FQH

states contain a new kind of order, a topological order.6 Re-
cently, we find that even gapless quantum states in two,
three, or other dimensions can contain an order that is be-
yond Landau’s symmetry-breaking theory.7,8 We call this or-
der quantum order. A preliminary theory of quantum order is
developed. We find some quantum orders can be character-
ized by projective symmetry group !PSG" just like
symmetry-breaking orders can be characterized by symmetry
group. Using quantum orders and PSG, we classified over
100 different two-dimensional !2D" spin liquids that have the
same symmetry.7 Intuitively, we can view quantum/
topological order as a description of pattern of quantum en-
tanglements in a quantum state.8 The pattern of quantum
entanglements is much richer than pattern of classical con-
figurations.
We know that the fluctuations of pattern of classical con-

figurations !such as lattices" lead to low-energy collective
excitations !such as phonons". Similarly, the fluctuations of
pattern of quantum entanglement also lead to low-energy
collective excitations. However, we find that the collective
excitations from quantum order can be gapless gauge
bosons9–15 and/or gapless fermions. The fermions can even
appear from pure bosonic models on lattice.7,11,12,14,16–18
If we believe in quantum order, then the three questions

about light will be scientific questions. Their answers will be
!A" light is a fluctuation of quantum entanglement, !B" light
comes from the quantum order in our vacuum, and !C" light
exists because our vacuum contains a particular entangle-
ment !i.e., a quantum order" that supports U!1" gauge fluc-
tuations.
According to the picture of quantum order, elementary

particles !such as photon and electron" may not be elemen-
tary after all. They may be collective excitations of a bosonic
system. Without experiments at Planck scale, it is hard to
prove or disprove if photon and electron are elementary par-
ticles or not. However, one can make a point by showing that
photon and electron can emerge as collective excitations in
certain lattice bosonic models. So photon and electron do not
have to be elementary particles.
The emergent gauge fluctuations from local bosonic mod-
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And God said "Let  there be light",  and there was light - Genesis 1 - 3  

We show that the large distance behavior of gauge theories is stable, within certain limits, with respect to addition of 
gauge noninvariant interactions at small distances. 

1. One of  us (H.B.N.) has suggested [1 ] earlier that 
symmetries and physical laws should arise naturally 
from some essentially random dynamics rather than 
being postulated to be exact or adjusted by hand +1. 
The idea of  postulating dynamical  stability ,2 in the 
sense that coupling parameters shall not be contrived 
has though been spread for a long time. In earlier 
papers some of  the present authors (H.B.N. and M.N.) 
[5],  and Chadha, have obtained Lorentz invariance 
in non-Lorentz covariant Yang-Mil ls  theories and elec- 
t rodynamics in the infrared limit as compared to a 
fundamental scale, e.g. the Planck length. In these deri- 
vations we put in gauge invariance ,3 as an assump- 
t i on .  It would also be nice to show that gauge invari- 

+1 See also ref. [2] for a review by Iliopoulos and a support- 
ing philosophy by Woo [3]. 

t~ See e.g. Thome [4]. 
+3 For a review of gauge theories, see ref. [6]. 

ance has a high chance of  arising spontaneously even 
if  nature is not gauge invariant at the fundamental 
scale. 

Iliopoulos and Nanopoulos [7] have informed us 
that they are calculating the renormalization group/3- 
function for various gauge breaking terms and hope for 
approximate gauge invariance to appear towards the 
infrared. 

This at tempt is similar to what Br6zin and Zinn- 
Justin [8] did for an asymmetric ~.i/kl~iq)/(Pk~l theory. 
They noticed that this theory becomes automatically 
O(n) invariant in the infrared under suitable condi- 
tions. 

These are the same type of  arguments as the 
Lorentz invariance derivation by two of  us (H.B.N. 
and M.N.) [3] and Chadha. 

Instead we shall introduce an exact gauge &variance 
in a formal way and then deduce the real one from it in 
the infrared. We shall show that a gauge theory arises 
automatically at large distances from a theory that 
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Some questions:
(i) new materials,
(ii) how to create and manipulate quasi-particles.

Gauge symmetry as a resource

Topological quantum computation:
Deconfined phases of  gauge models 

may have excitations with non-abelian 
statistics and degenerate ground states.

A. Kitaev, Ann. Phys. (2003)
M.H. Freedman, A. Kitaev, M.J. Larsen, Z. Wang,

Bull. Amer. Math. Soc. (2003)
C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. (2008)
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Why quantum simulate 
Gauge theories?

Various flavors of  sign problems 
in strongly correlated systems

Problems not solvable 
on a classical machines
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Real time evolution:
Heavy ion experiments

(collisions)

Why quantum 
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Real time evolution:
Heavy ion experiments

(collisions)

QCD with finite density of  fermions:
Dense nuclear matter, color 

superconductivity
(phase diagram of  QCD)

S. Hands, Contemp. Phys. (2001)
M.G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, 

Rev. Mod. Phys. (2008)
K. Fukushima, T. Hatsuda, Rep. Prog. Phys. (2011)

Why quantum 
simulate Gauge 

theories?

13viernes 17 de mayo de 13



Real time evolution:
Heavy ion experiments

(collisions)

QCD with finite density of  fermions:
Dense nuclear matter, color 

superconductivity
(phase diagram of  QCD)

S. Hands, Contemp. Phys. (2001)
M.G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, 
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K. Fukushima, T. Hatsuda, Rep. Prog. Phys. (2011)

E. Dagotto, Science (2005)
M.R. Norman, D. Pines, C. Kallinl, 

Adv. Phys. (2005)
P. Wahl, Nat. Phys. (2012)

Frustrated spin models:
Spin liquid physics, RVB states
(High Tc superconductivity?)

Why quantum 
simulate Gauge 

theories?
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Why quantum simulate 
Gauge theories?
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Feynman: “It is difficult to simulate 
quantum physics on a classical computer”

R.P. Feynman, Int. J. Theor. Phys. 
(1982)

| i = c1| "" · · · "i+ c2| "" · · · #i+ · · ·+ c2N | ## · · · #i

Entanglement

Huge

Why quantum simulate 
Gauge theories?
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Why quantum simulate 
Gauge theories?

Feynman’s universal quantum simulator: 
controlled quantum device which 

efficiently reproduces the dynamics of  
any other many-particle quantum system.
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Why quantum simulate 
Gauge theories?

Feynman’s universal quantum simulator: 
controlled quantum device which 

efficiently reproduces the dynamics of  
any other many-particle quantum system.

How?… cold atoms, ions, photons, 
superconducting circuit, etc.

J.I. Cirac, P. Zoller
I. Bloch, J. Dalibard, S. Nascimbène

R. Blatt, C.F. Roos,
A. Aspuru-Guzik, P. Walther

A.A. Hock, H.E. Türeci, J. Koch
Nature Physics Insight - 

Quantum Simulation (2012)
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Why quantum simulate 
Gauge theories?

Investigate relevant phenomena, e.g., characterize the phase 
diagram and dynamics of  strongly coupled lattice gauge models.

Design a controlled microscopic quantum 
simulator for lattice gauge theories.

NEED

AIM
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Why quantum simulate 
Gauge theories?
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• Hamiltonian formulation of lattice gauge theories. [degrees of 
freedom, symmetry generators, dynamics]

Contents

String breaking

Lattice 
gauge 
theory

 
x

U
x,x+1

: fermion

: boson
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• Hamiltonian formulation of lattice gauge theories. [degrees of 
freedom, symmetry generators, dynamics]

• Wilson lattice gauge formulation vs. Quantum link models. 
[connections with condensed matter]

• Phenomenology. [confinement, string-breaking, quark-gluon plasma]

• Implementation of quantum link models. [Bose-fermi mixture, 
fermionic alkaline earth atoms, superconducting q-bits]

• Observability of  interesting phenomena

• Conclusions & Outlook

Contents

String breaking

Lattice 
gauge 
theory

 
x

U
x,x+1

: fermion

: boson
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Hamiltonian formulation 
of  lattice gauge theories

A gauge invariant model is defined by:
Set of  local dynamical operators acting on the 

vertices (matter fields) and on the links (gauge fields)
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Hamiltonian formulation 
of  lattice gauge theories

A gauge invariant model is defined by:
Set of  local dynamical operators acting on the 

vertices (matter fields) and on the links (gauge fields)

U1,2

U2,3

U3,4

U4,1

1 2

34

(operator acting on a Hilbert space)

 i†
x

 j
y

U ij

x,y

i =

( 1 : U(1)
"# : U(2)
brg : U(3)

J.B. Kogut, L. Susskind, PRD (1975)

ref. Creutz and Montvay/Muenster books
J.B. Kogut, Rev. Mod. Phys. (1979)
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Hamiltonian formulation 
of  lattice gauge theories

Gauge invariant quantum Hamiltonian:

h
H, ~G

i
= 0 8x Local conserved quantities

Gauge (local) symmetries
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Hamiltonian formulation 
of  lattice gauge theories
Set of  local generators of  gauge transformations

U ij

~x,+x̂

 i

~x

Uki

~x,+ŷ

U il

~x,�ŷ

Umi

~x,�x̂

21viernes 17 de mayo de 13



Hamiltonian formulation 
of  lattice gauge theories
Set of  local generators of  gauge transformations

U ij

~x,+x̂

 i

~x

Uki

~x,+ŷ

U il

~x,�ŷ

Umi

~x,�x̂

Generators of  the local symmetry:

ei
P

z
~

✓z
~

GzU ij

x,y

e�i

P
z
~

✓z
~

Gz =
X

k,l

⌦ik

x

Ukl

x,y

⌦jl⇤
y

ei
P

z
~

✓z
~

Gz i

x

e�i

P
z
~

✓z
~

Gz =
X

j

⌦ij

x

 j

x
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Hamiltonian formulation 
of  lattice gauge theories
Set of  local generators of  gauge transformations

U ij

~x,+x̂

 i

~x

Uki

~x,+ŷ

U il

~x,�ŷ

Umi

~x,�x̂

Define the Hilbert space:

~G
x

|physicali = 0
X

x

⇣
~G
x

⌘2
=

0

BBBBBBB@

"
0

#

"
1

#

. . .

1

CCCCCCCA

Block-diagonal Hilbert 
space
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Hamiltonian formulation 
of  lattice gauge theories
Set of  local generators of  gauge transformations

U ij

~x,+x̂

 i

~x

Uki

~x,+ŷ

U il

~x,�ŷ

Umi

~x,�x̂

h
⇢� ~r · ~E

i

phys
= 0 : Gauss’ law

matter

G
x

=  †
x

 
x

�
X

µ̂

E
x,x+µ̂

� E
x�µ̂,x

electric field

e
x.

- 
U

(1
) 

g
ro

u
p
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Wilson formulation: 
continuum valued operator,

infinite-dimensional local Hilbert space

U
x,y

! ei�x,y E
x,y

! �i
@

@�
x,y

ex.- U(1) group

Implementation in AMO setup very challenging

E. Kapit, E. Mueller, Phys. Rev. A (2011)
E. Zohar, B. Reznik, Phys. Rev. Lett. (2011)
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Quantum link formulation: 
gauge fields span a finite-

dimensional local Hilbert space

D. Horn, Phys. Lett. B (1981)
P. Orland, D. Röhrlich, Nucl. Phys. B (1990)

S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B (1997)
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Quantum link formulation: 
gauge fields span a finite-

dimensional local Hilbert space

D. Horn, Phys. Lett. B (1981)
P. Orland, D. Röhrlich, Nucl. Phys. B (1990)

S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B (1997)

Q.C.D. can be formulated as a 
non-abelian quantum link model

R. Brower, S. Chandrasekharan, U.-J. Wiese, Phys. Rev. D (1999) 
R. Brower, S. Chandrasekharan, S. Riederer, U.-J. Wiese, Nucl. Phys. B (2004) 
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)

Local degrees of  freedom.-

Quantum two level system living on the link

L. Balents, Nature (2010)
C. L. Henley, Ann. Rev. Cond. Matt. Phys. (2010)

C. Castelnovo, R. Moessner, and S.L. Sondhi, 
Ann. Rev. Cond. Matt. Phys. (2012) 

{�(3)
x,y

,�(+)
x,y

,�(�)
x,y

}
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)
Local generator of  gauge transformations.-

Local generator around every vertex

U(1) gauge transformation

Gvert = �(3)
1,2 + �(3)

2,3 + �(3)
3,4 + �(3)

4,1

exp


i
✓vert
2

Gvert

�
�(+)
1,2 exp


�i

✓vert
2

Gvert

�
= ei✓vert�(+)

1,2
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)
Local generator of  gauge transformations.-

“Physical” Hilbert space (Gauss’ law)

6-vertex model:
zero magnetization subspace

Gvert|physi = 0
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)

Gauge invariant Hamiltonian.-

[H,Gvert] = 0, 8 vertex

magnetic term

H = �
X

plaq

⇥
�+
1,2�

�
2,3�

+
3,4�

�
4,1 + ��

1,2�
+
2,3�

�
3,4�

+
4,1

⇤
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Quantum Link models

Spin-½: Spin-1:

E=+1
E=1/2
E=-1/2

E=0, no flux
E=-1

Local degrees of  freedom.-

Quantum link carrying an electric flux

U
x,y

⌘ S+
x,y

E
x,y

⌘ S(3)
x,y

T. Calarco, M. Dalmonte, S. Montangero, T. Pichler, 
E. Rico, P. Zoller (in preparation-2013)
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Gauge invariant Hamiltonian.-

Electric term Magnetic term

H =
g2

2

X

hx,yi

[E
x,y

]2 � 1

4g2

X

plaq

h
U †
1,2U2,3U

†
3,4U4,1 + U1,2U

†
2,3U3,4U

†
4,1

i

Quantum Link models

S(3)
x,y

S+
x,y

S�
x,y
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Quantum Link models
Rishon (Schwinger) representation

x

y
x

y
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Quantum Link models
Rishon (Schwinger) representation

x

y
x

y

U
x,y

⌘ S+
x,y

= c†
y

c
x

E
x,y

⌘ S(3)
x,y

=
1

2

⇥
c†
y

c
y

� c†
x

c
x

⇤

{c
x

, c†
y

} = �
x,y

[c
x

, c†
y

] = �
x,y

Schwinger fermions (rishons)

Schwinger bosons

Link operator

Electric field 
[U(1) generator]
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Quantum Link models
Rishon (Schwinger) representation

N
x,y

= c†
y

c
y

+ c†
x

c
x

h
~S
x,y

i2
⌘ N

x,y

2


N

x,y

2
+ 1

�Spin representation:

Spin-½:

E=1/2 E=-1/2
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Quantum Link models
Rishon (Schwinger) representation

N
x,y

= c†
y

c
y

+ c†
x

c
x

h
~S
x,y

i2
⌘ N

x,y

2


N

x,y

2
+ 1

�Spin representation:

Spin-1:

E=+1 E=0 E=-1
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Non-abelian quantum link models
Rishon (Schwinger) representation 

with internal degrees of  freedom

U(1) group U(2) group U(3) group

i =

( 1 : U(1)
"# : U(2)
brg : U(3)

x

y
x

y
x

y
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Non-abelian quantum link models
Rishon (Schwinger) representation 

with internal degrees of  freedom

U(1) group U(2) group U(3) group

i =

( 1 : U(1)
"# : U(2)
brg : U(3)

x

y
x

y
x

y

x

U ij

x,y

y

ci
x

cj†
y

y
x
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U ij

x,y

⌘ ci
x

cj†
y

E
x,y

⌘ 1

2

⇥
ci†
y

ci
y

� ci†
x

ci
x

⇤

N
x,y

= ci†
y

ci
y

+ ci†
x

ci
x

Representation [occupation]

Non-abelian quantum link models
Rishon (Schwinger) representation 

with internal degrees of  freedom

Local degrees of  freedom.-

Link operator

Electric field [U(1) generator]
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Non-abelian quantum link models
Rishon (Schwinger) representation 

with internal degrees of  freedom

Local degrees of  freedom.-

La

x,y

= ci†
x

�a

ij

ci
x

Ra

x,y

= ci†
y

�a

ij

ci
y

Non-abelian electric fields [SU(N) generators]

Left generators Right generators

exp

⇥
i✓a

y

Ra

x,y

⇤
U
x,y

exp

⇥
�i✓a

y

Ra

x,y

⇤
= U

x,y

exp

⇥
i✓a

y

�a

⇤
exp

⇥
i✓a

x

La

x,y

⇤
U
x,y

exp

⇥
�i✓a

x

La

x,y

⇤
= exp [�i✓a

x

�a

]U
x,y
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Non-abelian quantum link models
Rishon (Schwinger) representation 

with internal degrees of  freedom

Local generators.-

Ga

x

=
X

k

⇣
La

x,x+k̂

+Ra

x�k̂,x

⌘

G
x

= �
X

k

⇣
E

x,x+k̂

� E
x�k̂,x

⌘
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Non-abelian quantum link models
Rishon (Schwinger) representation 

with internal degrees of  freedom

Hamiltonian.-

H =
g02

2

X

hx,yi

(E
x,y

)2 +
g2

2

X

hx,yi

⇣
~L
x,y

⌘2
+

⇣
~R
x,y

⌘2
�

� 1

4g2

X

plaq

h
U†
1,2U2,3U

†
3,4U4,1 + U1,2U

†
2,3U3,4U

†
4,1

i
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Non-abelian quantum link models
with matter

y
x

 i†
x

 j
yU ij

x,y

y
x

 i†
x

 j
yci

x

cj†y
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Non-abelian quantum link models
with matter

y
x

 i†
x

 j
yU ij

x,y

y
x

 i†
x

 j
yci

x

cj†y

Matter - gauge interaction
= hopping of  fermions mediated by a quantum link

= correlated hopping of  fermions and rishons

H = �t
X

hx,yi,i,j

�
 i†
x

U ij

x,y

 j

y

+ h.c.
�
+ · · ·

= �t
X

hx,yi

2

4
 
X

i

 i†
x

ci
x

!0

@
X

j

cj†
y

 j

y

1

A+ h.c.

3

5+ · · ·
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Non-abelian quantum link models
with matter

Local generators.-

Ga

x

=  i†
x

�a
ij

 j

x

+
X

k

⇣
La

x,x+k̂

+Ra

x�k̂,x

⌘

G
x

=  i†
x

 i

x

�
X

k

⇣
E

x,x+k̂

� E
x�k̂,x

⌘
U(1) generator

SU(N) generator

~G
x

|physi = 0“Physical” Hilbert space 8x
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Non-abelian quantum link models
with matter

8x

Hamiltonian.-

[H,G
x

] = [H,Ga

x

] = 0
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Non-abelian quantum link models
Strong coupling Hamiltonian with staggered fermions

H =
g02

2

X

hx,yi

(E
x,y

)2 +
g2

2

X

hx,yi

⇣
~L
x,y

⌘2
+

⇣
~R
x,y

⌘2
�
� t

X

hx,yi,i,j

�
 i†
x

U ij

x,y

 j

y

+ h.c.
�
+m

X

x,i

(�1)x  i†
x

 i

x

Electric field
Non-abelian 
electric field

Matter-gauge 
interaction

Staggered mass
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Non-abelian quantum link models
Strong coupling Hamiltonian with staggered fermions

0 1 2 ...
mass gap filling  = ½ 

mass gap
filled

fermi sea

empty

Staggered fermions: energy

H =
g02

2

X

hx,yi

(E
x,y

)2 +
g2

2

X

hx,yi

⇣
~L
x,y

⌘2
+

⇣
~R
x,y

⌘2
�
� t

X

hx,yi,i,j

�
 i†
x

U ij

x,y

 j

y

+ h.c.
�
+m

X

x,i

(�1)x  i†
x

 i

x

Electric field
Non-abelian 
electric field

Matter-gauge 
interaction

Staggered mass
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Phenomenology
Confinement and string breaking: 
QED in 1+1D (Schwinger model)

|0i |1i
|� 1i |0i |+ 1i

Spin-1 representation

Gauss’ law G
x

=  †
x

 
x

+
(�1)x � 1

2
� (E

x,x+1 � E
x�1,x)

G
x

|physi = 0 , ⇢� ~r · ~E = 0
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Phenomenology
Confinement and string breaking: 
QED in 1+1D (Schwinger model)

Vacuum state

H =
g2

2

X

hx,yi

⇣
S(3)
x,y

⌘2
+m

X

x

(�1)x  †
x

 
x

2x 2x+ 12x� 1

Creating a quark - antiquark pair:  †
2xS

+
2x,2x+1 2x+1
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Phenomenology
Confinement and string breaking: 
QED in 1+1D (Schwinger model)
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Phenomenology
Confinement and string breaking: 
QED in 1+1D (Schwinger model)

Confinement Estring � E0 = g2

2 (L� 1)
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Phenomenology
Confinement and string breaking: 
QED in 1+1D (Schwinger model)
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meson meson

Phenomenology
Confinement and string breaking: 
QED in 1+1D (Schwinger model)

String breaking 
and hadronization

E
meson

� E
0

= g2 + 2m
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meson meson

Phenomenology
Confinement and string breaking: 
QED in 1+1D (Schwinger model)

Lc = 3 + 4m
g2
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Quantum Chromodynamics: 
Confinement under normal conditions

Quarks and gluons carry a color charge  i

x

i =

47viernes 17 de mayo de 13



Quantum Chromodynamics: 
Confinement under normal conditions

Quarks and gluons carry a color charge  i

x

i =

Quarks are confined into color-neutral (color singlet) 
bound states (hadrons)

qqq baryons: proton, neutron, ... qq mesons: pions (lightest), kaon, rho, ...-
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Quantum Chromodynamics: 
Confinement under normal conditions

Quarks and gluons carry a color charge  i

x

i =

Quarks interact by exchanging gluons  i†
x

U ij

x,y

 j

y

Quarks are confined into color-neutral (color singlet) 
bound states (hadrons)

qqq baryons: proton, neutron, ... qq mesons: pions (lightest), kaon, rho, ...-
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QCD under extreme conditions

Expect interesting/unsual behaviour

Compress or 
heat baryons

Hadrons 
overlap

Confinement 
is “lost”

Te
m

p
e

ra
tu

re
 (

T
)

pressure or chemical potential (     )µB

Thermal excitation 
of  pions

Increased 
baryon density
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QCD under extreme conditions

Expect interesting/unsual behaviour

Compress or 
heat baryons

Hadrons 
overlap

Confinement 
is “lost”

Te
m

p
e

ra
tu

re
 (

T
)

pressure or chemical potential (     )µB

Thermal excitation 
of  pions

Increased 
baryon density

Accessible AMO simulatio
ns:

-
at n

on-zero baryon density

-
non-equilib

rium dynamics
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Implementation of  (non-)abelian 
quantum link models

Strong coupling Hamiltonian with staggered fermions

H =
g02

2

X

hx,yi

(E
x,y

)2 +
g2

2

X

hx,yi

⇣
~L
x,y

⌘2
+

⇣
~R
x,y

⌘2
�
� t

X

hx,yi,i,j

�
 i†
x

U ij

x,y

 j

y

+ h.c.
�
+m

X

x,i

(�1)x  i†
x

 i

x

Electric field
(on-site interaction)

Non-abelian electric field
(on-site interaction)

Matter-gauge interaction
(…?...)

Staggered mass
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Implementation of  (non-)abelian 
quantum link models

Strong coupling Hamiltonian with staggered fermions
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The building block is already gauge invariant (summation over 
internal degrees of  freedom)

Action of  the hopping fermion-rishon swaps the local singlet to 
nearest-neighbor ones

(Color singlet) hopping 
fermion-rishon

Implementation of  (non-)abelian 
quantum link models
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Implementation of  (non-)abelian 
quantum link models

(Color-singlet interaction/constraint) number of  rishon per 
link
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Implementation of  (non-)abelian 
quantum link models

Alkaline-earth(-like) atoms

• fermionic alkaline-earths have nuclear spin I > 0

2

87Sr(I = 9/2)

173Y b(I = 5/2)
i) fermionic alkaline earths have nuclear spin I>0

ii) scattering independent of  the nuclear spin

Strontium / Ytterbium

Implementation: fermionic alkaline earth atoms
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Implementation of  (non-)abelian 
quantum link models
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encode the color degrees of  freedom
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Implementation of  (non-)abelian 
quantum link models
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Implementation of  (non-)abelian 
quantum link models
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Preparation of  many 
body states
(Mott phase)

Greiner et al. (2002)
Joerdens et al. (2008)
Schneider et al. (2008)

Observability of  phenomena

55viernes 17 de mayo de 13



Observability of  phenomena

Evolution
(Super-exchange)

can create a highly entangled multiparticle state20,21, known as a ‘cluster 
state’36, which can be used as a resource state for quantum information 
processing. The superposition principle of quantum mechanics allows 
this to be achieved in a highly parallel way, using a state-dependent optical 
lattice, in which different atomic spin states experience different periodic 
potentials20,21. Starting from a lattice where each site is filled with a single 
atom, the atoms are first brought into a superposition of two internal 
spin states. The spin-dependent lattice is then moved in such a way that 
an atom in two different spin states splits up and moves to the left and 
right simultaneously so that it collides with its two neighbours. In a single 
operation, a whole string of atoms can thereby be entangled. However, if 
the initial string of atoms contained defects, an atom moving to the side 
may have no partner to collide with, so the length of the entangled cluster 
would be limited to the average length between two defects. The sorted 
arrays of atoms produced by an ‘atomic sorting machine’ could prove to 
be an ideal starting point for such collisional quantum gates, as the initial 
arrays are defect free. In addition, defects could be efficiently removed by 
further active cooling of the quantum gases in the lattice. Indeed, such 
cooling is necessary to enhance the regularity of the filling achieved with 
the current large-scale ensembles. Several concepts related to ‘dark state’ 
cooling methods from quantum optics and laser cooling could help in 
this case. The atoms could be actively cooled into the desired many-body 
quantum state, which is tailored to be non-interacting (that is, dark) with 
the applied cooling laser field37,38.

When constructing such entangled states, the particles’ many degrees 
of freedom can couple to the environment, leading to decoherence, 
which will destroy the complex quantum superpositions of the atoms. 
To avoid such decoherence processes, which affect the system more the 
larger it becomes, it is desirable to construct many-particle states, which 
are highly insensitive to external perturbations. Unfortunately, when 
using the outlined controlled-collisions scheme to create an atomic 
cluster state, the atomic qubits must be encoded in states that undergo 
maximal de coherence with respect to magnetic field fluctuations. Two 
recent experiments have shown how decoherence could be avoided, by 
imp lementing controlled exchange interactions between atoms23,39; this 
could lead to new ways of creating robust entangled states (discussed in 
the next section). Another way to avoid the problem of decoherence is to 
apply faster quantum gates, so more gate operations could be carried out 
within a fixed decoherence time. For the atoms of ultracold gases in optical 
lattices, Feshbach resonances40,41 can be used to increase the collisional 
interactions and thereby speed up gate operations. However, the ‘unitarity 
limit’ in scattering theory does not allow the collisional interaction energy 
to be increased beyond the on-site vibrational oscillation frequency, so the 
lower timescale for a gate operation is typically a few tens of microseconds. 
Much larger interaction energies, and hence faster gate times, could be 
achieved by using the electric dipole–dipole interactions between polar 
molecules42, for example, or Rydberg atoms43,44; in the latter case, gate 
times well below the microsecond range are possible. For Rydberg atoms, a 
phase gate between two atoms could be implemented by a dipole-blockade 
mechanism, which inhibits the simultaneous excitation of two atoms and 
thereby induces a phase shift in the two-particle state only when both 
atoms are initially placed in the same quantum state. The first signs of such 
a Rydberg dipole-blockade mechanism have been observed in mesoscopic 
cold and ultracold atom clouds45–48, but it remains to be seen how well they 
can be used to implement quantum gates between two individual atoms. 
Rydberg atoms offer an important advantage for the entanglement of neu-
tral atoms: they can interact over longer distances, and addressing single 
atoms in the lattice to turn the interactions between these two atoms on 
and off avoids the need for the atoms to move. In addition, the lattice does 
not have to be perfectly filled for two atoms to be entangled if their initial 
position is known before applying the Rydberg interaction.

Novel quantum gates via exchange interactions
Entangling neutral atoms requires state-dependent interactions. A nat-
ural way to achieve this is to tune the collisional interactions between 
atoms to different strengths for different spin states, or to allow explicitly 
only specific spin states into contact for controlled collisions. Another 

possibility is to exploit the symmetry of the underlying two-particle 
wavefunctions to create the desired gate operations, even in the case 
of completely spin-independent interactions between atoms. This 
principle lies at the heart of two experiments to control the spin–spin 
interactions between two particles using exchange symmetry23,39,49, and 
builds on original ideas and experiments involving double quantum-
dot systems25,26. 

Research teams at the National Institute of Standards and Technol-
ogy (NIST) at Gaithersburg, Maryland, and the University of Mainz, 
Germany, have demonstrated such interactions for two atoms in a 
double-well potential. How do these exchange interactions arise, and 
how can they be used to develop primitives (or building blocks) for 
quantum information processing? As one of the fundamental principles 
of quantum mechanics, the total quantum state of two particles (used in 
two experiments) has to be either symmetrical in the case of bosons or 
antisymmetrical for fermions, with respect to exchange of the two par-
ticles. When trapped on a single lattice site, a two-particle bosonic wave-
function can be factored into a spatial component, which describes the 
positions of the two particles, and a spin component, which describes 
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Figure 5 | Superexchange coupling between atoms on neighbouring lattice 
sites. a, Virtual hopping processes (left to right, and right to left) mediate 
an effective spin–spin interaction with strength Jex between the atoms, 
which can be controlled in both magnitude and sign by using a potential 
bias ∆ between the wells. U is the on-site interaction energy between the 
atoms on a single lattice site, and J is the single-particle tunnel coupling. 
b, The effective spin–spin interaction emerges when increasing the 
interaction U between the particles relative to their kinetic energy J (top 
to bottom). It can be observed in the time evolution of the magnetization 
dynamics in the double well. Blue circles indicate spin imbalance, and 
brown circles indicate population imbalance. The curves denote a fit to a 
theoretical model taking into account the full dynamics observed within the 
Hubbard model. (Reproduced, with permission, from ref. 39.) 
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Anderlini et al. (2007)
Trotzky et al. (2008)
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Observability of  phenomena

Detection
(Single-site fluorescence)

of a phase hologram. This is in contrast to conventional optical lattice
experiments in which lattice potentials are created by superimposing
separate laser beams to create optical standing waves. The advantage
of the new method is that the geometry of the lattice is directly given by
the pattern on the mask. The imaged light pattern, and hence the
potential landscape, can be arbitrary within the limits set by the avail-
able imaging aperture and by polarization effects that can arise due to
the large aperture imaging beyond the paraxial limit. Here, we create
blue detuned square lattice potentials with a periodicity a 5 640 nm
and an overall Gaussian envelope. A major additional advantage is the
fact that the lattice geometry is not dependent on the wavelength20,
apart from diffraction limits and chromatic aberrations in the lens for
large wavelength changes. This allows us to use spectrally wide ‘white’
light with a short coherence length to reduce unwanted disorder from
stray light interference. With a light source centred around 758 nm, we
generate a conservative lattice potential with a lattice depth of up to 35
Erec, where Erec 5 h2/8ma2 is the recoil energy of the effective lattice
wavelength, with m the mass of 87Rb.

The projection method also enables us to dynamically change the
wavelength of the lattice light without changing the lattice geometry.
This is important, as we strongly increase the lattice depth for site-
resolved imaging in order to suppress diffusion of the atoms between
sites due to recoil heating by the imaging light13. For this, we switch
the light in the 2D lattice and the vertical standing wave to near-
resonant narrow band light, increasing the lattice depth to 5,500
Erec (to 380 mK). The main use of the microscope set-up is the col-
lection of fluorescence light and high-resolution imaging of the
atoms. With the atoms pinned to the deep lattice, we illuminate
the sample with red detuned near-resonant light in an optical
molasses configuration, which simultaneously provides sub-
Doppler cooling24,25. Figure 2 shows a typical image obtained by
loading the lattice with a very dilute cloud, showing the response
of individual atoms. The spot function of a single atom can be
directly obtained from such images. We measure a typical single
atom emission FWHM size as 570 nm and 630 nm along the x and
y direction, respectively, which is close to the theoretical minimum
value of ,520 nm (Fig. 3). This minimum is given by the diffraction
limit from the objective combined with the finite size of the camera

pixels and the expected extent of the atom’s on-site probability dis-
tribution within the lattice site during the imaging process. As the
same high-resolution optics are used to generate both the lattice and
the image of the atoms on the CCD camera, the imaging system is
very stable with respect to the lattice, which is important for single-
site addressing26. The observed drifts in the 2D plane are very low, less
than 10% of the lattice spacing in one hour with shot to shot fluctua-
tions of less than 15% r.m.s.

Pair densities within multiply occupied lattice sites are very high
due to the strong confinement in the lattice. When resonantly illu-
minated, such pairs undergo light assisted collisions and leave the
trap within a time of the order of 100 ms, long before they emit
sufficient photons to be detected27. Therefore the remaining number
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Figure 1 | Diagram of the quantum gas microscope. The two-dimensional
atom sample (a) is located a few micrometres below the lower surface of a
hemispherical lens inside the vacuum chamber. This lens serves to increase
the numerical aperture (NA) of the objective lens outside the vacuum (b) by
the index of refraction, from NA 5 0.55 to NA 5 0.8. The atoms are
illuminated from the side by the molasses beams (c) and the scattered
fluorescence light is collected by the objective lens and projected onto a CCD
camera (d). A 2D optical lattice is generated by projecting a periodic mask
(e) onto the atoms through the same objective lens via a beam splitter
(f). The mask is a periodic phase hologram, and a beam stop (g) blocks the
residual zeroth order, leaving only the first orders to form a sinusoidal
potential.
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Figure 2 | Imaging single atoms. a, Field of view with sparse site occupation.
b, Response of a single atom, derived from sparse images: shown are
horizontal (filled circles) and vertical (open circles) profiles through the
centre of the image generated by a single atom. The black line shows the
expected Airy function for a perfect imaging system with a numerical
aperture of 0.8. The blue dashed line denotes the profile expected from a
single atom, taking into account only the finite width of the CCD pixels and
the finite extension of the probability distribution of the atom’s location.
The data are from the responses of 20 atoms in different locations within the
field of view which have been precisely superimposed by subpixel shifting
before averaging.

5 μm

640 nm

Figure 3 | Site-resolved imaging of single atoms on a 640-nm-period
optical lattice, loaded with a high density Bose–Einstein condensate. Inset,
magnified view of the central section of the picture. The lattice structure and
the discrete atoms are clearly visible. Owing to light-assisted collisions and
molecule formation on multiply occupied sites during imaging, only empty
and singly occupied sites can be seen in the image.
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atoms, which ideally should remain unaffected. For this purpose, we
monitored the probability of finding a hole at the sites next to the
addressed ones (dark blue regions in Fig. 3a, b and points in Fig. 3c). In
order to distinguish accidentally flipped neighbouring atoms from
holes that originate from thermal excitations of the initial Mott insu-
lator28, we also monitored the probability of finding a hole at the
second next neighbours (light blue regions and points in Fig. 3). As
both yielded the same hole probability of 6(2)%, we attribute all holes
to thermal excitations and conclude that the probability of addressing
a neighbouring atom is indiscernibly small. We fitted the hole prob-
ability p0(dx) of the addressed site with a flat-top model function (see
Methods), keeping the offset fixed at the thermal contribution of 6%.
From the fit, we derived a spin-flip fidelity of 95(2)%, an FWHM of
sa 5 330(10) nm and an edge sharpness of ss 5 50(10) nm (Fig. 3c).
These values correspond to 60% and 10% of the addressing beam
diameter, demonstrating that our method reaches sub-diffraction-
limited resolution, well below the lattice spacing.

The observed maximum spin-flip fidelity is currently limited by the
population transfer efficiency of our microwave sweep. The edge
sharpness ss originates from the beam pointing error of = 0.1 alat
and from variations in the magnetic bias field. The latter causes fre-
quency fluctuations of ,5 kHz, which translate into an effective
pointing error of 0.05 alat at the maximum slope of the addressing
beam profile. The resolution sa could in principle be further reduced
by a narrower microwave sweep, at the cost of a larger sensitivity to
the magnetic field fluctuations. A larger addressing beam power
would reduce this sensitivity, but we observed that this deformed
the lattice potential, owing to the imperfect s2-polarization, allowing
neighbouring atoms to tunnel to the addressed sites.

Coherent tunnelling dynamics
The preparation of an arbitrary atom distribution opens up new pos-
sibilities for exploring coherent quantum dynamics at the single-atom
level. As an example, we studied the tunnelling dynamics in a one-
dimensional lattice (Fig. 4) which allowed us to determine how much
our addressing scheme affects the vibrational state of the atoms. We
started by preparing a single line of up to 18 atoms along the y direction
before we lowered the lattice along the x direction to Vx 5 5.0(5) Er

within 200ms. At the same time, the other lattices were lowered to
Vy 5 30 Er and Vz 5 23 Er, which reduced the external confinement
along the x direction, but still suppressed tunnelling in the y and z
directions. After a varying hold time t, allowing the atoms to tunnel
along x, the atomic distribution was frozen by a rapid 100ms ramp of all
lattice axes to 56–90 Er. By averaging the resulting atomic distribution
along the y direction and repeating the experiment several times, we
obtained the probability distribution of finding an atom at the different
lattice sites (Fig. 4, bottom row).

This probability distribution samples the single-atom wave-
function after a coherent tunnelling evolution. We observed how
the wavefunction expands in the lattice and how the interference of
different paths leads to distinct maxima and minima in the distri-
bution, leaving for example almost no atoms at the initial position
after a single tunnelling time (Fig. 4c). This behaviour differs mark-
edly from the evolution in free space, where a Gaussian wave packet
disperses without changing its shape, always preserving a maximum
probability in the centre. For longer hold times, an asymmetry in the
spatial distribution becomes apparent (Fig. 4d), which originates from
an offset between the bottom of the external harmonic confinement
and the initial position of the atoms.

We describe the observed tunnelling dynamics by a simple
Hamiltonian including the tunnel coupling J(0) between two neighbour-
ing sites and an external harmonic confinement, parameterized by the
trap frequency vtrap, and the position offset xoffs (Methods). A single fit
to all probability distributions recorded at different hold times yields
J(0)/B5 940(20) Hz, vtrap/(2p) 5 103(4) Hz and xoffs 5 26.3(6) alat.
This is in agreement with the trap frequency vtrap/(2p) 5 107(2) Hz
obtained from an independent measurement via excitation of the dipole
mode without the x lattice, whose contribution to the external confine-
ment is negligible compared to the other two axes. From J(0), we calcu-
lated a lattice depth of Vx 5 4.6(1) Er, which agrees with an independent
calibration via parametric heating. The expansion of the wave packet
can also be understood by writing the initial localized wavefunc-
tion as a superposition of all Bloch waves of quasi-momentum Bq,
with 2p/alat # q #p/alat. To each quasi-momentum Bq, one can
assign a velocity vq~

1
B

LE
Lq, determined by the dispersion relation

E(q) 5 22J(0) cos(qalat) of the lowest band. The edges of the wave

e
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f
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Figure 2 | Single-site addressing. a, Top, experimentally obtained
fluorescence image of a Mott insulator with unity filling in which the spin of
selected atoms was flipped from | 0æ to | 1æ using our single-site addressing
scheme. Atoms in state | 1æ were removed by a resonant laser pulse before
detection. Bottom, the reconstructed atom number distribution on the lattice.
Each filled circle indicates a single atom; the points mark the lattice sites. b, Top,
as for a except that a global microwave sweep exchanged the population in | 0æ

and | 1æ, such that only the addressed atoms were observed. Bottom, the
reconstructed atom number distribution shows 14 atoms on neighbouring
sites. c–f, As for b, but omitting the atom number distribution. The images
contain 29 (c), 35 (d), 18 (e) and 23 (f) atoms. The single isolated atoms in
b, e and f were placed intentionally to allow for the correct determination of the
lattice phase for the feedback on the addressing beam position.
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Simpler atomic/molecular/solid state implementations
(not in the talk: QLM with magnetic atoms/polar molecules!)?

Superconducting Qubits (D. Marcos,...), Dipoles and Rydberg (A. Glaetzle, ...)

Connection with gauge magnets and spin liquids (in 
principle accessible within this toolbox)

Finite-temperature confinement/deconfinement phase transition, 
deconfined criticality in ‘feasible quantum link’?

Still very far away from QCD (even with the SU(3)): next steps?

Conclusions
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