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Majorana fermions in a tunable semiconductor device

Jason Alicea
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The experimental realization of Majorana fermions presents an important problem due to their non-Abelian
nature and potential exploitation for topological quantum computation. Very recently Sau et al. #Phys. Rev.
Lett. 104, 040502 !2010"$ demonstrated that a topological superconducting phase supporting Majorana fermi-
ons can be realized using surprisingly conventional building blocks: a semiconductor quantum well coupled to
an s-wave superconductor and a ferromagnetic insulator. Here we propose an alternative setup, wherein a
topological superconducting phase is driven by applying an in-plane magnetic field to a !110"-grown semicon-
ductor coupled only to an s-wave superconductor. This device offers a number of advantages, notably a simpler
architecture and the ability to tune across a quantum phase transition into the topological superconducting state
while still largely avoiding unwanted orbital effects. Experimental feasibility of both setups is discussed in
some detail.
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I. INTRODUCTION

The problem of realizing and manipulating Majorana fer-
mions in condensed-matter systems is currently a topic of
great theoretical and experimental interest. Roughly, Majo-
rana fermions constitute “half” of a usual fermion. That is,
creating an ordinary fermion f requires superposing two Ma-
jorana modes "1,2—which can be separated by arbitrary
distances—via f ="1+ i"2. The presence of 2n well-separated
Majorana bound states thus allows for the construction of n
ordinary fermions, producing !ideally" a manifold of 2n de-
generate states. Braiding Majorana fermions around one an-
other produces not just a phase factor, as in the case of con-
ventional bosons or fermions, but rather transforms the state
nontrivially inside of this degenerate manifold: their ex-
change statistics is non-Abelian.1,2 Quantum information en-
coded in this subspace can thus be manipulated by such
braiding operations, providing a method for decoherence-
free topological quantum computation.3,4 !It should be noted,
however, that universal quantum computation with Majorana
fermions requires additional ingredients beyond braiding.4,5"
Majorana fermions are therefore clearly of great fundamental
as well as practical interest.

At present, there is certainly no dearth of proposals for
realizing Majorana fermions. Settings as diverse as fractional
quantum Hall systems1 at filling #=5 /2, strontium
ruthenate thin films,6 cold atomic gases,7–10 superfluid
He-3,11 the surface of a topological insulator,12,13 semicon-
ductor heterostructures,14 and noncentrosymmetric
superconductors15,16 have all been theoretically predicted to
host Majorana bound states under suitable conditions. Nev-
ertheless, their unambiguous detection remains an outstand-
ing problem, although there has been recent progress in this
direction in quantum Hall systems.17,18

Part of the experimental challenge stems from the fact
that stabilizing topological phases supporting Majorana fer-
mions can involve significant engineering obstacles and/or
extreme conditions such as ultralow temperatures, ultraclean
samples, and high magnetic fields in the case of the #=5 /2
fractional quantum Hall effect. The proposal by Fu and

Kane12 noted above for realizing a topological superconduct-
ing state by depositing a conventional s-wave supercon-
ductor on a three-dimensional topological insulator surface
appears quite promising in this regard. This setting should in
principle allow for a rather robust topological superconduct-
ing phase to be created without such extreme conditions,
although experiments demonstrating this await development.
Moreover, Fu and Kane proposed methods in such a setup
for creating and manipulating Majorana fermions for quan-
tum computation. The more recent solid-state proposals
noted above involving semiconductor heterostructures14 and
noncentrosymmetric superconductors15,16 utilize clever ways
of creating an environment similar to the surface of a topo-
logical insulator !i.e., eliminating a sort of fermion-doubling
problem19" in order to generate topological phases support-
ing Majorana modes.

The present work is inspired by the semiconductor pro-
posal of Sau et al.,14 so we briefly elaborate on it here. These
authors demonstrated that a semiconductor with Rashba
spin-orbit coupling, sandwiched between an s-wave super-
conductor and a ferromagnetic insulator as in Fig. 1!a", can
realize a topological superconducting phase supporting Ma-
jorana modes. The basic principle here is that the ferromag-
netic insulator produces a Zeeman field perpendicular to the
semiconductor, which separates the two spin-orbit-split
bands by a finite gap. If the Fermi level lies inside of this
gap, a weak superconducting pair field generated via the
proximity effect drives the semiconductor into a topological
superconducting state that smoothly connects to a spinless
px+ ipy superconductor. Sau et al. also discussed how such a
device can be exploited along the lines of the Fu-Kane pro-
posal for topological quantum computation. The remarkable
aspect of this proposal is the conventional ingredients it
employs—semiconductors benefit from many more decades
of study compared to the relatively nascent topological
insulators—making this a promising experimental direction.

The main question addressed in this paper is largely a
practical one—can this proposed setup be further simplified
and made more tunable, thus !hopefully" streamlining the
route toward experimental realization of a topological super-
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Majorana fermion chain at the quantum spin Hall edge
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We study a realization of a 1D chain of Majorana bound states at the interfaces between alternating ferro-
magnetic and superconducting regions at a quantum spin Hall insulator edge. In the limit of well-separated
Majoranas, the system can be mapped to the transverse field Ising model. The disordered critical point can be
reached by tuning the relative magnitude or phases of the ferromagnetic and superconducting order parameters.
We compute the voltage dependence of the tunneling current from a metallic tip into the Majorana chain as a
direct probe of the random critical state.
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Some electronic phases support emergent quasiparticle
excitations that are in a sense fractions of the original elec-
trons, as in the fractional quantum Hall effect. One of the
most basic fractional excitations is the Majorana fermion fa-
miliar from particle physics: the Majorana fermion is its own
antiparticle and represents “half” of an ordinary !Dirac" fer-
mion. Several condensed-matter systems are theoretically be-
lieved to realize Majorana fermions in their excitation spec-
trum, and their direct observation is a major goal of current
research. In this work we compute the tunneling conductance
and other experimental signatures of one of the simplest sys-
tems of many Majorana fermions.

Proposals to observe Majorana fermions1–3 have been
based on the proximity effect between an ordinary s-wave
superconductor !SC" and the recently discovered “topologi-
cal insulator” phases in two-dimensional !2D" !Refs. 4–6"
and three-dimensional7–10 materials. These phases generally
support gapless edge or surface states. In the 2D case, the
gapless edge can be viewed as counterpropagating up-spin
and down-spin electrons, hence the terminology “quantum
spin Hall” !QSH" for this phase. In the three-dimensional
“strong topological insulator,”9 the surface state is a two-
dimensional metal with a Fermi surface that encloses an odd
number of Dirac points. The proximity effect between an
ordinary superconductor and this surface state leads to a su-
perconducting state2 that is time-reversal symmetric but to-
pologically similar to the p+ ip superconductor11 with Majo-
rana fermions trapped in vortices.

Perhaps the most appealing from a technical perspective
are Majorana realizations in 1D systems. In particular, a
QSH edge supports a localized Majorana fermion
excitation.1,12 When the edge state is gapped by coupling to a
SC in one region and a ferromagnet !FM" in another, a single
zero-energy Majorana fermion appears at the SC/FM bound-
ary if it is sufficiently narrow #Fig. 1!a"$. Previously, likely
experimental Majorana signatures were discussed for one or
two Majorana pairs,3,13–15 and the phase diagram of a 2D
Majorana fermion model without disorder was obtained.16 In
this paper we study how unique features of a chain of Ma-
jorana fermions, created by alternately FM and SC regions
along a QSH edge, can be observed using a metallic tunnel-
ing tip.

Experimentally, it may be simpler to create many Majo-

rana fermions by patterning an irregular phase-separated
mixture of SC and FM materials to contact the QSH edge,
rather than a single Majorana pair via a precise controlled-
lithography FM-SC-FM configuration. An ideal, uniform
system realizes the interesting free-Majorana fermion quan-
tum critical point. Realistically, however, FM and SC do-
mains will inevitably vary randomly in size and proximity
amplitude, and therefore the proposed system would realize
an even more interesting model: the random Majorana-
fermion chain in its random-singlet phase.17 Although this
model is based on FM regions coupled to the QSH edge, we
calculate critical properties that apply to several other setups.
For example, a Majorana chain can also be realized by ap-
plying a magnetic field to a SC region with vortices at the
QSH edge or to a quantum wire with spin-orbit coupling.18,19

An experimental realization of these systems will most likely
include randomness in the location of the superconducting
vortices, and thus the Majorana fermions.

Furthermore, the Majorana fermion chain may give a first
convincing measurement of the random-singlet phase and its
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FIG. 1. !a" A Majorana chain realization: an array of alternating
FM and SC regions at the QSH edge. Following a real-space RG
analysis, the chain decouples into pairs, shown by the upper lines. "̃i
is the energy of the pair decimated with the ith highest energy. !b"
The RG effectively couples the STM tip to every Majorana pair
with tunneling suppressed by the coupling coefficient a. Majorana
pairs decimated at the edge are coupled more strongly to the lead
than pairs decimated in the bulk of the chain.
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Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological
Majorana particles in solid-state systems

Jay D. Sau,1 Sumanta Tewari,2,1 Roman M. Lutchyn,1 Tudor D. Stanescu,3,1 and S. Das Sarma1

1Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,
College Park, Maryland 20742, USA

2Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
3Department of Physics, West Virginia University, Morgantown, West Virginia 26506, USA

!Received 1 July 2010; revised manuscript received 4 September 2010; published 9 December 2010"

We show that an ordinary semiconducting thin film with spin-orbit coupling can, under appropriate circum-
stances, be in a quantum topologically ordered state supporting exotic Majorana excitations which follow
non-Abelian statistics. The key to the quantum topological order is the coexistence of spin-orbit coupling with
proximity-induced s-wave superconductivity and an externally induced Zeeman coupling of the spins. For the
Zeeman coupling below a critical value, the system is a nontopological !proximity-induced" s-wave supercon-
ductor. However, for a range of Zeeman coupling above the critical value, the lowest energy excited state
inside a vortex is a zero-energy Majorana fermion state. The system, thus, has entered into a non-Abelian
s-wave superconducting state via a topological quantum phase transition !TQPT" tuned by the Zeeman cou-
pling. In the topological phase, since the time-reversal symmetry is explicitly broken by the Zeeman term in the
Hamiltonian, the edge of the film constitutes a chiral Majorana wire. Just like the s-wave superconductivity,
the Zeeman coupling can also be proximity induced in the film by an adjacent magnetic insulator. We show this
by an explicit model tight-binding calculation for both types of proximity effects in the heterostructure geom-
etry. Here we show that the same TQPT can be accessed by varying the interface transparency between the film
and the superconductor. For the transparency below !above" a critical value, the system is a topological
!regular" s-wave superconductor. In the one-dimensional version of the same structure and for the Zeeman
coupling above the critical value, there are localized Majorana zero-energy modes at the two ends of a
semiconducting quantum nanowire. In this case, the Zeeman coupling can be induced more easily by an
external magnetic field parallel to the wire, obviating the need for a magnetic insulator. We show that, despite
the fact that the superconducting pair potential in the nanowire is explicitly s wave, tunneling of electrons to
the ends of the wire reveals a pronounced zero-bias peak. Such a peak is absent when the Zeeman coupling is
below its critical value, i.e., the nanowire is in the nontopological s-wave superconducting state. We argue that
the observation of this zero-bias tunneling peak in the semiconductor nanowire is possibly the simplest and
clearest experiment proposed so far to unambiguously detect a Majorana fermion mode in a condensed-matter
system.

DOI: 10.1103/PhysRevB.82.214509 PACS number!s": 03.67.Lx, 71.10.Pm, 74.45.!c

I. INTRODUCTION

Particle statistics of a collection of indistinguishable par-
ticles is a genuinely quantum-mechanical concept without
any classical analog. In spatial dimensions three and above,
pairwise interchange of particle coordinates in a many-body
system is equivalent to a simple permutation of the coordi-
nates. Consequently, each interchange has the effect of either
a change in sign !fermion" or no change at all !boson" on the
many-body quantum wave function. In !2+1" dimensions,
however, exchanges and permutations are not necessarily
equivalent.1–3 In this case, under simple interchange of the
particle coordinates, the corresponding space-time trajecto-
ries can form nontrivial braids in the !2+1"-dimensional
space time.4 Consequently, in !2+1" dimensions, particles
can have quantum statistics strikingly different from the sta-
tistics of bosons and fermions.

A straightforward extension of the statistics of bosons and
fermions is the Abelian anyonic statistics, in which the
many-body wave function, under pairwise exchange of the
particle coordinates, picks up a phase ", which can take any
value between 0 !bosons" and # !fermions". Since a phase

factor is only a one-dimensional representation of the braid
group in two dimensions !2D", the statistics is still Abelian.
On the other hand, if the many-body ground-state wave func-
tion happens to be a linear combination of states from a
degenerate subspace, a pairwise exchange of the particles
can unitarily rotate the wave function in the ground-state
subspace. In this case, the effect of exchanging the particle
positions is an operation on the wave-function vector by a
unitary matrix representing this rotation. Consequently, the
statistics is non-Abelian,4,5 and the corresponding system is a
non-Abelian quantum system. It has been proposed that such
systems, if the ground-state subspace is concurrently pro-
tected by an energy gap, can be used as a fault-tolerant plat-
form for topological quantum computation !TQC".4–6

One important class of non-Abelian quantum systems,
sometimes referred to as the Ising topological class,4 is char-
acterized by quasiparticle excitations called Majorana fermi-
ons, which involve no energy cost !when the mutual separa-
tion among the excitations is large". The second quantized
operators, $i, corresponding to these zero-energy excitations
are self-Hermitian, $i

†=$i, which is in striking contrast to
ordinary fermionic !or bosonic" operators for which ci!ci

†.
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Conductance and noise signatures of Majorana backscattering
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We propose a conductance measurement to detect the backscattering of chiral Majorana edge states. Because
normal and Andreev processes have equal probability for backscattering of a single chiral Majorana edge state,
there is qualitative difference from backscattering of a chiral Dirac edge state, giving rise to half-integer Hall
conductivity and decoupling of fluctuation in incoming and outgoing modes. The latter can be detected through
thermal noise measurement. These experimental signatures of Majorana fermions are robust at finite temperature
and do not require the size of the backscattering region to be mesoscopic.

DOI: 10.1103/PhysRevB.83.100512 PACS number(s): 74.45.+c, 71.10.Pm, 03.67.Lx, 73.40.−c

From particle physics to condensed-matter physics, Ma-
jorana fermions currently arouse great interest.1 In particle
physics, where the concept first originated,2 the experimental
signature of Majorana fermions, though not yet detected, has
been known for a long time, that is, the neutrinoless double β
decay in the case of neutrinos.

In condensed-matter physics, two-dimensional (2D) sys-
tems where Majorana fermions can arise have been attracting
a great deal of attention recently, partly due to potential
applications to topological quantum computation.3–8 One class
of systems where Majorana fermions can appear is the 2D
chiral superconductor which has a full pairing gap in the bulk,
and N gapless chiral 1D Majorana fermions4,9 at the edge.
This system can be considered as the superconducting analog
of the quantum Hall (QH) state with N gapless chiral edge
states and is called a topological superconductor (TSC).10

The challenge now is to find a way to detect the Majorana
nature of the 1D edge state in this class of systems. There has
been no experiment so far which explicitly shows the Majorana
nature of gapless states at the boundary of a TSC, though
methods of detection have been proposed recently.11,12 The
first issue is to find a physical system which unequivocally
belongs to this class. Despite theoretical prediction that the
superconducting phase of Sr2RuO4 is the spinful version of
the N = 1 chiral TSC due to its px + ipy pairing,13 attempts
to detect the gapless edge states have not been successful.14

Therefore, we base our discussion on a recent proposal to
induce topological superconductivity through the proximity
effect on a magnetically doped Bi2Se3 film.15 The second
issue is to devise an experiment that can work at reasonable
temperatures, as interference effects get washed out above
the temperature scale set by the size of the TSC region.16–18

Our approach makes use of a generalization of the Landauer-
Büttiker formalism19 to superconducting systems,20 which was
recently used in a proposal for detecting a zero-dimensional
Majorana bound state.21

In this Rapid Communication, we study the backscattering
of the edge state of a quantum anomalous Hall (QAH) system
off aN = 1 TSC island. We find a strikingly different behavior
in both conductance and noise depending on the topological
invariant N of the TSC, which is equal to the number of chiral
Majorana edge states. In particular, for strong backscattering
by the N = 1 TSC, the incoming and outgoing channels

in the leads decouple as the probabilities for normal and
Andreev scattering become equal. Indeed, whereas Andreev
processes do not play any role in the case of the normal,
topologically trivial superconductor (NSC) or theN = 2 TSC,
backscattering due to the N = 1 TSC imposes a special
condition between the probabilities for normal and Andreev
scattering. Andreev scattering in the case of the N = 1 TSC
is due to the single chiral Dirac edge state of the QAH state
splitting into two chiral Majorana edge states.

We first discuss how to obtain a N = 1 TSC. When Cr
or Fe magnetic dopants are introduced into Bi2Se3 or Bi2Te3
thin films, the spin exchange interaction leads to the effective
Hamiltonian near the Fermi level,22

hQAH =
(

m + Bp2 A(px − ipy)

A(px + ipy) −m − Bp2

)
,

where the basis is (cp↑,cp↓)T with cpσ annihilating an electron
of momentum p and spin σ =↑ , ↓ and the QAH effect
obtained when m < 0. When this system is in proximity to
an s-wave superconductor, the combination of Cooper pair
formation through proximity effect and the electron-electron
interaction gives us a nonzero pairing gap function.23 This
gives us the Bogoliubov–de Gennes (BdG) Hamiltonian

hBdG =
(

hQAH(p) − µ i#σ y

−i#∗σ y −h∗
QAH(−p) + µ

)

,

the basis for which is (cp↑,cp↓,c
†
−p↑,c

†
−p↓)T . The BdG Hamil-

tonian can be written in a simple form for µ = 0,

hBdG =
(

h+(p) 0
0 −h∗

−(−p)

)
, (1)

where

h±(p) =
(

m ± |#| + Bp2 A(px − ipy)

A(px + ipy) −m ∓ |#| − Bp2

)
, (2)

if we use the basis 1√
2
(cp↑ + c

†
−p↓,cp↓ + c

†
−p↑, − cp↑ +

c
†
−p↓, − cp↓ + c

†
−p↑)T . The existence of Majorana edge states

due to h± depends entirely on the sign of m ± |#|4,15,24

as Eq. (2) is identical to the Hamiltonian of a px + ipy

superconductor.4 Thus, |#| < −m gives two chiral Majorana

100512-11098-0121/2011/83(10)/100512(4) ©2011 American Physical Society
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Counting Majorana zero modes in superconductors
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A counting formula for computing the number of (Majorana) zero modes bound to topological point defects is
evaluated in a gradient expansion for systems with charge-conjugation symmetry. This semi-classical counting
of zero modes is applied to some examples that include graphene and a chiral p-wave superconductor in
two-dimensional space. In all cases, we explicitly relate the counting of zero modes to Chern numbers.

DOI: 10.1103/PhysRevB.83.104522 PACS number(s): 74.90.+n

I. INTRODUCTION

The counting of zero modes, eigenstates annihilated by
a single-particle Hamiltonian H, has a long history in
physics. Charge-conjugation symmetry, the existence of a
norm-preserving linear (antilinear) transformation C that
anticommutes with H, protects the parity of the number
of zero modes. When the parity is odd, at least one zero
mode must be robust to any perturbation that preserves the
charge-conjugation symmetry. This paper aims at calculating
the parity of zero modes of a single-particle Hamiltonian
H( p̂,ϕ(x)) when (1) it obeys charge-conjugation symmetry,
(2) it describes fermionic quasiparticles, and (3) it depends
on a position dependent vector-valued order parameter ϕ(x).
These three assumptions are often met in mean-field treatments
of electrons interacting with each other or with collective
excitations such as phonons or magnons in condensed matter
physics.

Zero mode solutions can be found by direct means, in
practice solving a differential equation. This requires a non-
universal definition of the model since both microscopic
and macroscopic data must be supplied, say the boundary
conditions to be obeyed at the origin and at infinity in space.

Is there an alternative approach to calculating the parity
in the number of zero modes that is more universal? The
celebrated index theorem for elliptic differential operators
gives a positive answer to this question for those problems in
physics for which this theorem applies (Dirac Hamiltonians for
example).1 The index theorem achieves this by relating some
(not all!) zero modes to a topological number (a global property
of the Hamiltonian that can only take integer values). However,
the index theorem cannot be applied to most Hamiltonians of
relevance to condensed matter physics.

In this paper, we start from an exact integral representation
of the total number of unoccupied zero modes (up to exponen-
tial accuracy) N for fermionic single-particle Hamiltonians
with charge-conjugation symmetry in terms of a conserved
quasiparticle charge Q,

N = −2Q. (1.1)

This counting formula appears implicitly in Ref. 2 and
explicitly in Ref. 3, both in the context of polyacetylene.4 For
polyacetylene, it relates the number of unoccupied zero modes
to the conserved electric charge Qdw induced by domain walls

in the spontaneous bond ordering triggered by the coupling
of electrons to phonons. Remarkably, the electric charge
Qdw = ±1/2 induced by a single domain wall is fractional and
counts a single zero mode, with the sign ambiguity resolved by
whether the midgap state is filled or empty.5–7 Alternatively,
this sign ambiguity can be removed by the application of
a small charge-conjugation-symmetry-breaking perturbation
that shifts the energy of the zero mode up or down (see Fig. 1).
Hence, the counting formula (1.1) becomes

N = 2Q mod 2 (1.2)

if no prescription is given as to whether the filled Fermi sea
includes or not a zero mode. The same assignment of quantum
numbers also relates a single zero mode and the conserved
electric charge QKekule induced by a vortex with unit vorticity
in the Kekulé dimerization pattern of graphene.8–12

For polyacetylene and graphene, the charge-conjugation
symmetry is approximate, for it originates from a sublattice
symmetry that is broken as soon as next-nearest-neighbor
hopping is included in the tight-binding model. To the
extend that the Bardeen-Cooper-Schrieffer (BCS) mean-field
approximation to superconductivity is empirically observed
to be excellent, single-particle Bogoliubov-de-Gennes (BdG)
Hamiltonians realize a much more robust charge-conjugation
symmetry.13 For BdG Hamiltonians, zero modes are associated
to Majorana fermions. Majorana fermions do not carry a
well-defined electric charge since global electro-magnetic
gauge invariance is broken in any mean-field treatment of
superconductivity. The counting formula (1.1) nevertheless
applies to any BdG Hamiltonian HBdG with the important
caveat that the conserved quasiparticle charge QBdG is unre-
lated to the electric charge. Rather, the conservation of QBdG
encodes, for any local BdG Hamiltonian, a local continuity
equation obeyed by the Bogoliubov quasiparticles that is
responsible for the conservation of the thermal flow in the
mean-field treatment of superconductivity.14–16

In this paper, we represent the counting formula (1.1) in
terms of single-particle Green functions. The advantage of this
choice is that it easily lends itself to a perturbative (gradient)
expansion of the conserved quasiparticle charge Q that
forgoes the non-universal short-distance data.17–19 To leading
order, this expansion is akin to an adiabatic approximation.
We thus propose the adiabatic approximation to the conserved

104522-11098-0121/2011/83(10)/104522(19) ©2011 American Physical Society

Splitting of a Cooper Pair by a Pair of Majorana Bound States
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We propose a method to probe the nonlocality of a pair of Majorana bound states by crossed Andreev

reflection, which is the injection of an electron into one bound state followed by the emission of a hole by

the other (equivalent to the splitting of a Cooper pair). We find that, at sufficiently low excitation energies,

this nonlocal scattering process dominates over local Andreev reflection involving a single bound state. As

a consequence, the low-temperature and low-frequency fluctuations !Ii of currents into the two bound

states i ¼ 1, 2 are maximally correlated: !I1!I2 ¼ !I2i .

DOI: 10.1103/PhysRevLett.101.120403 PACS numbers: 03.75.Lm, 73.21."b, 74.45.+c, 74.78.Na

Majorana bound states are coherent superpositions of
electron and hole excitations of zero energy, trapped in the
middle of the superconducting energy gap by a nonuni-
formity in the pair potential. Two Majorana bound states
nonlocally encode a single qubit (see Fig. 1, top panel). If
the bound states are widely separated, the qubit is robust
against local sources of decoherence and provides a build-
ing block for topological quantum computation [1,2].

While Majorana bound states have not yet been demon-
strated experimentally, there is now a variety of candidate
systems. In an s-wave superconductor, zero-point motion
prevents the formation of bound states at zero energy. Early
proposals for Majorana bound states therefore considered
p-wave superconductors [3,4], with Sr2RuO4 as a candi-
date material [5], or p-wave superfluids formed by fermi-
onic cold atoms [6]. More recently, it was discovered [7–9]
that Majorana bound states can be induced by s-wave
superconductivity in a metal with a Dirac spectrum (such
as graphene or the boundary of a topological insulator).
Several tunneling experiments have been proposed [10–12]
to search for the Majorana bound states predicted to occur
in these systems.

Here we show that crossed Andreev reflection [13–15]
by a pair of Majorana bound states is a direct probe of the
nonlocality. Crossed Andreev reflection is the nonlocal
conversion of an electron excitation into a hole excitation,
each in a separate lead. Local Andreev reflection, in con-
trast, converts an electron into a hole in the same lead.
Equivalently, local Andreev reflection injects a Cooper pair
in a single lead, while crossed Andreev reflection splits a
Cooper pair over two leads. We have found that at suffi-
ciently low excitation energies, local Andreev reflection by
a pair of Majorana bound states is fully suppressed in favor
of crossed Andreev reflection.

The suppression is not a property of the dispersion
relation in the leads (as in Refs. [16,17]), but directly
probes the Majorana character of the Hamiltonian [2],

HM ¼ iEM"1"2; (1)

of the pair of weakly coupled bound states (labeled 1 and

2). The "i’s are Majorana operators, defined by "i ¼ "y
i ,

"i"j þ "j"i ¼ 2!ij. The coupling energy EM splits the
two zero-energy levels into a doublet at $EM. The sup-
pression of local Andreev reflection happens when the
width !M of the levels in the doublet (which is finite
because of leakage into the leads) and the excitation energy
E are both % EM. (The relative magnitude of !M and E
does not matter.)
Our theoretical analysis is particularly timely in view of

recent advances in the experimental realization of topo-
logical insulators in two-dimensional (2D) HgTe quantum
wells [18] and 3D BiSb crystals [19]. Topological insula-
tors are characterized by an inverted band gap, which

FIG. 1. Top panel: Energy diagram of two Majorana bound
states (levels at zero energy), which split into a pair of levels at
$EM upon coupling. Whether the upper level is excited deter-
mines the states j1i and j0i of a qubit. Crossed Andreev reflec-
tion probes the nonlocality of this Majorana qubit. Lower panel:
Detection of crossed Andreev reflection by correlating the cur-
rents I1 and I2 that flow into a superconductor via two Majorana
bound states.
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Majorana fermions in a tunable semiconductor device
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The experimental realization of Majorana fermions presents an important problem due to their non-Abelian
nature and potential exploitation for topological quantum computation. Very recently Sau et al. #Phys. Rev.
Lett. 104, 040502 !2010"$ demonstrated that a topological superconducting phase supporting Majorana fermi-
ons can be realized using surprisingly conventional building blocks: a semiconductor quantum well coupled to
an s-wave superconductor and a ferromagnetic insulator. Here we propose an alternative setup, wherein a
topological superconducting phase is driven by applying an in-plane magnetic field to a !110"-grown semicon-
ductor coupled only to an s-wave superconductor. This device offers a number of advantages, notably a simpler
architecture and the ability to tune across a quantum phase transition into the topological superconducting state
while still largely avoiding unwanted orbital effects. Experimental feasibility of both setups is discussed in
some detail.
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I. INTRODUCTION

The problem of realizing and manipulating Majorana fer-
mions in condensed-matter systems is currently a topic of
great theoretical and experimental interest. Roughly, Majo-
rana fermions constitute “half” of a usual fermion. That is,
creating an ordinary fermion f requires superposing two Ma-
jorana modes "1,2—which can be separated by arbitrary
distances—via f ="1+ i"2. The presence of 2n well-separated
Majorana bound states thus allows for the construction of n
ordinary fermions, producing !ideally" a manifold of 2n de-
generate states. Braiding Majorana fermions around one an-
other produces not just a phase factor, as in the case of con-
ventional bosons or fermions, but rather transforms the state
nontrivially inside of this degenerate manifold: their ex-
change statistics is non-Abelian.1,2 Quantum information en-
coded in this subspace can thus be manipulated by such
braiding operations, providing a method for decoherence-
free topological quantum computation.3,4 !It should be noted,
however, that universal quantum computation with Majorana
fermions requires additional ingredients beyond braiding.4,5"
Majorana fermions are therefore clearly of great fundamental
as well as practical interest.

At present, there is certainly no dearth of proposals for
realizing Majorana fermions. Settings as diverse as fractional
quantum Hall systems1 at filling #=5 /2, strontium
ruthenate thin films,6 cold atomic gases,7–10 superfluid
He-3,11 the surface of a topological insulator,12,13 semicon-
ductor heterostructures,14 and noncentrosymmetric
superconductors15,16 have all been theoretically predicted to
host Majorana bound states under suitable conditions. Nev-
ertheless, their unambiguous detection remains an outstand-
ing problem, although there has been recent progress in this
direction in quantum Hall systems.17,18

Part of the experimental challenge stems from the fact
that stabilizing topological phases supporting Majorana fer-
mions can involve significant engineering obstacles and/or
extreme conditions such as ultralow temperatures, ultraclean
samples, and high magnetic fields in the case of the #=5 /2
fractional quantum Hall effect. The proposal by Fu and

Kane12 noted above for realizing a topological superconduct-
ing state by depositing a conventional s-wave supercon-
ductor on a three-dimensional topological insulator surface
appears quite promising in this regard. This setting should in
principle allow for a rather robust topological superconduct-
ing phase to be created without such extreme conditions,
although experiments demonstrating this await development.
Moreover, Fu and Kane proposed methods in such a setup
for creating and manipulating Majorana fermions for quan-
tum computation. The more recent solid-state proposals
noted above involving semiconductor heterostructures14 and
noncentrosymmetric superconductors15,16 utilize clever ways
of creating an environment similar to the surface of a topo-
logical insulator !i.e., eliminating a sort of fermion-doubling
problem19" in order to generate topological phases support-
ing Majorana modes.

The present work is inspired by the semiconductor pro-
posal of Sau et al.,14 so we briefly elaborate on it here. These
authors demonstrated that a semiconductor with Rashba
spin-orbit coupling, sandwiched between an s-wave super-
conductor and a ferromagnetic insulator as in Fig. 1!a", can
realize a topological superconducting phase supporting Ma-
jorana modes. The basic principle here is that the ferromag-
netic insulator produces a Zeeman field perpendicular to the
semiconductor, which separates the two spin-orbit-split
bands by a finite gap. If the Fermi level lies inside of this
gap, a weak superconducting pair field generated via the
proximity effect drives the semiconductor into a topological
superconducting state that smoothly connects to a spinless
px+ ipy superconductor. Sau et al. also discussed how such a
device can be exploited along the lines of the Fu-Kane pro-
posal for topological quantum computation. The remarkable
aspect of this proposal is the conventional ingredients it
employs—semiconductors benefit from many more decades
of study compared to the relatively nascent topological
insulators—making this a promising experimental direction.

The main question addressed in this paper is largely a
practical one—can this proposed setup be further simplified
and made more tunable, thus !hopefully" streamlining the
route toward experimental realization of a topological super-

PHYSICAL REVIEW B 81, 125318 !2010"

Selected for a Viewpoint in Physics

1098-0121/2010/81!12"/125318!10" ©2010 The American Physical Society125318-1

Majorana fermion chain at the quantum spin Hall edge
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We study a realization of a 1D chain of Majorana bound states at the interfaces between alternating ferro-
magnetic and superconducting regions at a quantum spin Hall insulator edge. In the limit of well-separated
Majoranas, the system can be mapped to the transverse field Ising model. The disordered critical point can be
reached by tuning the relative magnitude or phases of the ferromagnetic and superconducting order parameters.
We compute the voltage dependence of the tunneling current from a metallic tip into the Majorana chain as a
direct probe of the random critical state.
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Some electronic phases support emergent quasiparticle
excitations that are in a sense fractions of the original elec-
trons, as in the fractional quantum Hall effect. One of the
most basic fractional excitations is the Majorana fermion fa-
miliar from particle physics: the Majorana fermion is its own
antiparticle and represents “half” of an ordinary !Dirac" fer-
mion. Several condensed-matter systems are theoretically be-
lieved to realize Majorana fermions in their excitation spec-
trum, and their direct observation is a major goal of current
research. In this work we compute the tunneling conductance
and other experimental signatures of one of the simplest sys-
tems of many Majorana fermions.

Proposals to observe Majorana fermions1–3 have been
based on the proximity effect between an ordinary s-wave
superconductor !SC" and the recently discovered “topologi-
cal insulator” phases in two-dimensional !2D" !Refs. 4–6"
and three-dimensional7–10 materials. These phases generally
support gapless edge or surface states. In the 2D case, the
gapless edge can be viewed as counterpropagating up-spin
and down-spin electrons, hence the terminology “quantum
spin Hall” !QSH" for this phase. In the three-dimensional
“strong topological insulator,”9 the surface state is a two-
dimensional metal with a Fermi surface that encloses an odd
number of Dirac points. The proximity effect between an
ordinary superconductor and this surface state leads to a su-
perconducting state2 that is time-reversal symmetric but to-
pologically similar to the p+ ip superconductor11 with Majo-
rana fermions trapped in vortices.

Perhaps the most appealing from a technical perspective
are Majorana realizations in 1D systems. In particular, a
QSH edge supports a localized Majorana fermion
excitation.1,12 When the edge state is gapped by coupling to a
SC in one region and a ferromagnet !FM" in another, a single
zero-energy Majorana fermion appears at the SC/FM bound-
ary if it is sufficiently narrow #Fig. 1!a"$. Previously, likely
experimental Majorana signatures were discussed for one or
two Majorana pairs,3,13–15 and the phase diagram of a 2D
Majorana fermion model without disorder was obtained.16 In
this paper we study how unique features of a chain of Ma-
jorana fermions, created by alternately FM and SC regions
along a QSH edge, can be observed using a metallic tunnel-
ing tip.

Experimentally, it may be simpler to create many Majo-

rana fermions by patterning an irregular phase-separated
mixture of SC and FM materials to contact the QSH edge,
rather than a single Majorana pair via a precise controlled-
lithography FM-SC-FM configuration. An ideal, uniform
system realizes the interesting free-Majorana fermion quan-
tum critical point. Realistically, however, FM and SC do-
mains will inevitably vary randomly in size and proximity
amplitude, and therefore the proposed system would realize
an even more interesting model: the random Majorana-
fermion chain in its random-singlet phase.17 Although this
model is based on FM regions coupled to the QSH edge, we
calculate critical properties that apply to several other setups.
For example, a Majorana chain can also be realized by ap-
plying a magnetic field to a SC region with vortices at the
QSH edge or to a quantum wire with spin-orbit coupling.18,19

An experimental realization of these systems will most likely
include randomness in the location of the superconducting
vortices, and thus the Majorana fermions.

Furthermore, the Majorana fermion chain may give a first
convincing measurement of the random-singlet phase and its
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FIG. 1. !a" A Majorana chain realization: an array of alternating
FM and SC regions at the QSH edge. Following a real-space RG
analysis, the chain decouples into pairs, shown by the upper lines. "̃i
is the energy of the pair decimated with the ith highest energy. !b"
The RG effectively couples the STM tip to every Majorana pair
with tunneling suppressed by the coupling coefficient a. Majorana
pairs decimated at the edge are coupled more strongly to the lead
than pairs decimated in the bulk of the chain.
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Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological
Majorana particles in solid-state systems
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We show that an ordinary semiconducting thin film with spin-orbit coupling can, under appropriate circum-
stances, be in a quantum topologically ordered state supporting exotic Majorana excitations which follow
non-Abelian statistics. The key to the quantum topological order is the coexistence of spin-orbit coupling with
proximity-induced s-wave superconductivity and an externally induced Zeeman coupling of the spins. For the
Zeeman coupling below a critical value, the system is a nontopological !proximity-induced" s-wave supercon-
ductor. However, for a range of Zeeman coupling above the critical value, the lowest energy excited state
inside a vortex is a zero-energy Majorana fermion state. The system, thus, has entered into a non-Abelian
s-wave superconducting state via a topological quantum phase transition !TQPT" tuned by the Zeeman cou-
pling. In the topological phase, since the time-reversal symmetry is explicitly broken by the Zeeman term in the
Hamiltonian, the edge of the film constitutes a chiral Majorana wire. Just like the s-wave superconductivity,
the Zeeman coupling can also be proximity induced in the film by an adjacent magnetic insulator. We show this
by an explicit model tight-binding calculation for both types of proximity effects in the heterostructure geom-
etry. Here we show that the same TQPT can be accessed by varying the interface transparency between the film
and the superconductor. For the transparency below !above" a critical value, the system is a topological
!regular" s-wave superconductor. In the one-dimensional version of the same structure and for the Zeeman
coupling above the critical value, there are localized Majorana zero-energy modes at the two ends of a
semiconducting quantum nanowire. In this case, the Zeeman coupling can be induced more easily by an
external magnetic field parallel to the wire, obviating the need for a magnetic insulator. We show that, despite
the fact that the superconducting pair potential in the nanowire is explicitly s wave, tunneling of electrons to
the ends of the wire reveals a pronounced zero-bias peak. Such a peak is absent when the Zeeman coupling is
below its critical value, i.e., the nanowire is in the nontopological s-wave superconducting state. We argue that
the observation of this zero-bias tunneling peak in the semiconductor nanowire is possibly the simplest and
clearest experiment proposed so far to unambiguously detect a Majorana fermion mode in a condensed-matter
system.
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I. INTRODUCTION

Particle statistics of a collection of indistinguishable par-
ticles is a genuinely quantum-mechanical concept without
any classical analog. In spatial dimensions three and above,
pairwise interchange of particle coordinates in a many-body
system is equivalent to a simple permutation of the coordi-
nates. Consequently, each interchange has the effect of either
a change in sign !fermion" or no change at all !boson" on the
many-body quantum wave function. In !2+1" dimensions,
however, exchanges and permutations are not necessarily
equivalent.1–3 In this case, under simple interchange of the
particle coordinates, the corresponding space-time trajecto-
ries can form nontrivial braids in the !2+1"-dimensional
space time.4 Consequently, in !2+1" dimensions, particles
can have quantum statistics strikingly different from the sta-
tistics of bosons and fermions.

A straightforward extension of the statistics of bosons and
fermions is the Abelian anyonic statistics, in which the
many-body wave function, under pairwise exchange of the
particle coordinates, picks up a phase ", which can take any
value between 0 !bosons" and # !fermions". Since a phase

factor is only a one-dimensional representation of the braid
group in two dimensions !2D", the statistics is still Abelian.
On the other hand, if the many-body ground-state wave func-
tion happens to be a linear combination of states from a
degenerate subspace, a pairwise exchange of the particles
can unitarily rotate the wave function in the ground-state
subspace. In this case, the effect of exchanging the particle
positions is an operation on the wave-function vector by a
unitary matrix representing this rotation. Consequently, the
statistics is non-Abelian,4,5 and the corresponding system is a
non-Abelian quantum system. It has been proposed that such
systems, if the ground-state subspace is concurrently pro-
tected by an energy gap, can be used as a fault-tolerant plat-
form for topological quantum computation !TQC".4–6

One important class of non-Abelian quantum systems,
sometimes referred to as the Ising topological class,4 is char-
acterized by quasiparticle excitations called Majorana fermi-
ons, which involve no energy cost !when the mutual separa-
tion among the excitations is large". The second quantized
operators, $i, corresponding to these zero-energy excitations
are self-Hermitian, $i

†=$i, which is in striking contrast to
ordinary fermionic !or bosonic" operators for which ci!ci

†.
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Conductance and noise signatures of Majorana backscattering
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We propose a conductance measurement to detect the backscattering of chiral Majorana edge states. Because
normal and Andreev processes have equal probability for backscattering of a single chiral Majorana edge state,
there is qualitative difference from backscattering of a chiral Dirac edge state, giving rise to half-integer Hall
conductivity and decoupling of fluctuation in incoming and outgoing modes. The latter can be detected through
thermal noise measurement. These experimental signatures of Majorana fermions are robust at finite temperature
and do not require the size of the backscattering region to be mesoscopic.
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From particle physics to condensed-matter physics, Ma-
jorana fermions currently arouse great interest.1 In particle
physics, where the concept first originated,2 the experimental
signature of Majorana fermions, though not yet detected, has
been known for a long time, that is, the neutrinoless double β
decay in the case of neutrinos.

In condensed-matter physics, two-dimensional (2D) sys-
tems where Majorana fermions can arise have been attracting
a great deal of attention recently, partly due to potential
applications to topological quantum computation.3–8 One class
of systems where Majorana fermions can appear is the 2D
chiral superconductor which has a full pairing gap in the bulk,
and N gapless chiral 1D Majorana fermions4,9 at the edge.
This system can be considered as the superconducting analog
of the quantum Hall (QH) state with N gapless chiral edge
states and is called a topological superconductor (TSC).10

The challenge now is to find a way to detect the Majorana
nature of the 1D edge state in this class of systems. There has
been no experiment so far which explicitly shows the Majorana
nature of gapless states at the boundary of a TSC, though
methods of detection have been proposed recently.11,12 The
first issue is to find a physical system which unequivocally
belongs to this class. Despite theoretical prediction that the
superconducting phase of Sr2RuO4 is the spinful version of
the N = 1 chiral TSC due to its px + ipy pairing,13 attempts
to detect the gapless edge states have not been successful.14

Therefore, we base our discussion on a recent proposal to
induce topological superconductivity through the proximity
effect on a magnetically doped Bi2Se3 film.15 The second
issue is to devise an experiment that can work at reasonable
temperatures, as interference effects get washed out above
the temperature scale set by the size of the TSC region.16–18

Our approach makes use of a generalization of the Landauer-
Büttiker formalism19 to superconducting systems,20 which was
recently used in a proposal for detecting a zero-dimensional
Majorana bound state.21

In this Rapid Communication, we study the backscattering
of the edge state of a quantum anomalous Hall (QAH) system
off aN = 1 TSC island. We find a strikingly different behavior
in both conductance and noise depending on the topological
invariant N of the TSC, which is equal to the number of chiral
Majorana edge states. In particular, for strong backscattering
by the N = 1 TSC, the incoming and outgoing channels

in the leads decouple as the probabilities for normal and
Andreev scattering become equal. Indeed, whereas Andreev
processes do not play any role in the case of the normal,
topologically trivial superconductor (NSC) or theN = 2 TSC,
backscattering due to the N = 1 TSC imposes a special
condition between the probabilities for normal and Andreev
scattering. Andreev scattering in the case of the N = 1 TSC
is due to the single chiral Dirac edge state of the QAH state
splitting into two chiral Majorana edge states.

We first discuss how to obtain a N = 1 TSC. When Cr
or Fe magnetic dopants are introduced into Bi2Se3 or Bi2Te3
thin films, the spin exchange interaction leads to the effective
Hamiltonian near the Fermi level,22

hQAH =
(

m + Bp2 A(px − ipy)

A(px + ipy) −m − Bp2

)
,

where the basis is (cp↑,cp↓)T with cpσ annihilating an electron
of momentum p and spin σ =↑ , ↓ and the QAH effect
obtained when m < 0. When this system is in proximity to
an s-wave superconductor, the combination of Cooper pair
formation through proximity effect and the electron-electron
interaction gives us a nonzero pairing gap function.23 This
gives us the Bogoliubov–de Gennes (BdG) Hamiltonian

hBdG =
(

hQAH(p) − µ i#σ y

−i#∗σ y −h∗
QAH(−p) + µ

)

,

the basis for which is (cp↑,cp↓,c
†
−p↑,c

†
−p↓)T . The BdG Hamil-

tonian can be written in a simple form for µ = 0,

hBdG =
(

h+(p) 0
0 −h∗

−(−p)

)
, (1)

where

h±(p) =
(

m ± |#| + Bp2 A(px − ipy)

A(px + ipy) −m ∓ |#| − Bp2

)
, (2)

if we use the basis 1√
2
(cp↑ + c

†
−p↓,cp↓ + c

†
−p↑, − cp↑ +

c
†
−p↓, − cp↓ + c

†
−p↑)T . The existence of Majorana edge states

due to h± depends entirely on the sign of m ± |#|4,15,24

as Eq. (2) is identical to the Hamiltonian of a px + ipy

superconductor.4 Thus, |#| < −m gives two chiral Majorana
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A counting formula for computing the number of (Majorana) zero modes bound to topological point defects is
evaluated in a gradient expansion for systems with charge-conjugation symmetry. This semi-classical counting
of zero modes is applied to some examples that include graphene and a chiral p-wave superconductor in
two-dimensional space. In all cases, we explicitly relate the counting of zero modes to Chern numbers.
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I. INTRODUCTION

The counting of zero modes, eigenstates annihilated by
a single-particle Hamiltonian H, has a long history in
physics. Charge-conjugation symmetry, the existence of a
norm-preserving linear (antilinear) transformation C that
anticommutes with H, protects the parity of the number
of zero modes. When the parity is odd, at least one zero
mode must be robust to any perturbation that preserves the
charge-conjugation symmetry. This paper aims at calculating
the parity of zero modes of a single-particle Hamiltonian
H( p̂,ϕ(x)) when (1) it obeys charge-conjugation symmetry,
(2) it describes fermionic quasiparticles, and (3) it depends
on a position dependent vector-valued order parameter ϕ(x).
These three assumptions are often met in mean-field treatments
of electrons interacting with each other or with collective
excitations such as phonons or magnons in condensed matter
physics.

Zero mode solutions can be found by direct means, in
practice solving a differential equation. This requires a non-
universal definition of the model since both microscopic
and macroscopic data must be supplied, say the boundary
conditions to be obeyed at the origin and at infinity in space.

Is there an alternative approach to calculating the parity
in the number of zero modes that is more universal? The
celebrated index theorem for elliptic differential operators
gives a positive answer to this question for those problems in
physics for which this theorem applies (Dirac Hamiltonians for
example).1 The index theorem achieves this by relating some
(not all!) zero modes to a topological number (a global property
of the Hamiltonian that can only take integer values). However,
the index theorem cannot be applied to most Hamiltonians of
relevance to condensed matter physics.

In this paper, we start from an exact integral representation
of the total number of unoccupied zero modes (up to exponen-
tial accuracy) N for fermionic single-particle Hamiltonians
with charge-conjugation symmetry in terms of a conserved
quasiparticle charge Q,

N = −2Q. (1.1)

This counting formula appears implicitly in Ref. 2 and
explicitly in Ref. 3, both in the context of polyacetylene.4 For
polyacetylene, it relates the number of unoccupied zero modes
to the conserved electric charge Qdw induced by domain walls

in the spontaneous bond ordering triggered by the coupling
of electrons to phonons. Remarkably, the electric charge
Qdw = ±1/2 induced by a single domain wall is fractional and
counts a single zero mode, with the sign ambiguity resolved by
whether the midgap state is filled or empty.5–7 Alternatively,
this sign ambiguity can be removed by the application of
a small charge-conjugation-symmetry-breaking perturbation
that shifts the energy of the zero mode up or down (see Fig. 1).
Hence, the counting formula (1.1) becomes

N = 2Q mod 2 (1.2)

if no prescription is given as to whether the filled Fermi sea
includes or not a zero mode. The same assignment of quantum
numbers also relates a single zero mode and the conserved
electric charge QKekule induced by a vortex with unit vorticity
in the Kekulé dimerization pattern of graphene.8–12

For polyacetylene and graphene, the charge-conjugation
symmetry is approximate, for it originates from a sublattice
symmetry that is broken as soon as next-nearest-neighbor
hopping is included in the tight-binding model. To the
extend that the Bardeen-Cooper-Schrieffer (BCS) mean-field
approximation to superconductivity is empirically observed
to be excellent, single-particle Bogoliubov-de-Gennes (BdG)
Hamiltonians realize a much more robust charge-conjugation
symmetry.13 For BdG Hamiltonians, zero modes are associated
to Majorana fermions. Majorana fermions do not carry a
well-defined electric charge since global electro-magnetic
gauge invariance is broken in any mean-field treatment of
superconductivity. The counting formula (1.1) nevertheless
applies to any BdG Hamiltonian HBdG with the important
caveat that the conserved quasiparticle charge QBdG is unre-
lated to the electric charge. Rather, the conservation of QBdG
encodes, for any local BdG Hamiltonian, a local continuity
equation obeyed by the Bogoliubov quasiparticles that is
responsible for the conservation of the thermal flow in the
mean-field treatment of superconductivity.14–16

In this paper, we represent the counting formula (1.1) in
terms of single-particle Green functions. The advantage of this
choice is that it easily lends itself to a perturbative (gradient)
expansion of the conserved quasiparticle charge Q that
forgoes the non-universal short-distance data.17–19 To leading
order, this expansion is akin to an adiabatic approximation.
We thus propose the adiabatic approximation to the conserved
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We propose a method to probe the nonlocality of a pair of Majorana bound states by crossed Andreev

reflection, which is the injection of an electron into one bound state followed by the emission of a hole by

the other (equivalent to the splitting of a Cooper pair). We find that, at sufficiently low excitation energies,

this nonlocal scattering process dominates over local Andreev reflection involving a single bound state. As

a consequence, the low-temperature and low-frequency fluctuations !Ii of currents into the two bound

states i ¼ 1, 2 are maximally correlated: !I1!I2 ¼ !I2i .
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Majorana bound states are coherent superpositions of
electron and hole excitations of zero energy, trapped in the
middle of the superconducting energy gap by a nonuni-
formity in the pair potential. Two Majorana bound states
nonlocally encode a single qubit (see Fig. 1, top panel). If
the bound states are widely separated, the qubit is robust
against local sources of decoherence and provides a build-
ing block for topological quantum computation [1,2].

While Majorana bound states have not yet been demon-
strated experimentally, there is now a variety of candidate
systems. In an s-wave superconductor, zero-point motion
prevents the formation of bound states at zero energy. Early
proposals for Majorana bound states therefore considered
p-wave superconductors [3,4], with Sr2RuO4 as a candi-
date material [5], or p-wave superfluids formed by fermi-
onic cold atoms [6]. More recently, it was discovered [7–9]
that Majorana bound states can be induced by s-wave
superconductivity in a metal with a Dirac spectrum (such
as graphene or the boundary of a topological insulator).
Several tunneling experiments have been proposed [10–12]
to search for the Majorana bound states predicted to occur
in these systems.

Here we show that crossed Andreev reflection [13–15]
by a pair of Majorana bound states is a direct probe of the
nonlocality. Crossed Andreev reflection is the nonlocal
conversion of an electron excitation into a hole excitation,
each in a separate lead. Local Andreev reflection, in con-
trast, converts an electron into a hole in the same lead.
Equivalently, local Andreev reflection injects a Cooper pair
in a single lead, while crossed Andreev reflection splits a
Cooper pair over two leads. We have found that at suffi-
ciently low excitation energies, local Andreev reflection by
a pair of Majorana bound states is fully suppressed in favor
of crossed Andreev reflection.

The suppression is not a property of the dispersion
relation in the leads (as in Refs. [16,17]), but directly
probes the Majorana character of the Hamiltonian [2],

HM ¼ iEM"1"2; (1)

of the pair of weakly coupled bound states (labeled 1 and

2). The "i’s are Majorana operators, defined by "i ¼ "y
i ,

"i"j þ "j"i ¼ 2!ij. The coupling energy EM splits the
two zero-energy levels into a doublet at $EM. The sup-
pression of local Andreev reflection happens when the
width !M of the levels in the doublet (which is finite
because of leakage into the leads) and the excitation energy
E are both % EM. (The relative magnitude of !M and E
does not matter.)
Our theoretical analysis is particularly timely in view of

recent advances in the experimental realization of topo-
logical insulators in two-dimensional (2D) HgTe quantum
wells [18] and 3D BiSb crystals [19]. Topological insula-
tors are characterized by an inverted band gap, which

FIG. 1. Top panel: Energy diagram of two Majorana bound
states (levels at zero energy), which split into a pair of levels at
$EM upon coupling. Whether the upper level is excited deter-
mines the states j1i and j0i of a qubit. Crossed Andreev reflec-
tion probes the nonlocality of this Majorana qubit. Lower panel:
Detection of crossed Andreev reflection by correlating the cur-
rents I1 and I2 that flow into a superconductor via two Majorana
bound states.
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Majorana fermions in a tunable semiconductor device
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The experimental realization of Majorana fermions presents an important problem due to their non-Abelian
nature and potential exploitation for topological quantum computation. Very recently Sau et al. #Phys. Rev.
Lett. 104, 040502 !2010"$ demonstrated that a topological superconducting phase supporting Majorana fermi-
ons can be realized using surprisingly conventional building blocks: a semiconductor quantum well coupled to
an s-wave superconductor and a ferromagnetic insulator. Here we propose an alternative setup, wherein a
topological superconducting phase is driven by applying an in-plane magnetic field to a !110"-grown semicon-
ductor coupled only to an s-wave superconductor. This device offers a number of advantages, notably a simpler
architecture and the ability to tune across a quantum phase transition into the topological superconducting state
while still largely avoiding unwanted orbital effects. Experimental feasibility of both setups is discussed in
some detail.
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I. INTRODUCTION

The problem of realizing and manipulating Majorana fer-
mions in condensed-matter systems is currently a topic of
great theoretical and experimental interest. Roughly, Majo-
rana fermions constitute “half” of a usual fermion. That is,
creating an ordinary fermion f requires superposing two Ma-
jorana modes "1,2—which can be separated by arbitrary
distances—via f ="1+ i"2. The presence of 2n well-separated
Majorana bound states thus allows for the construction of n
ordinary fermions, producing !ideally" a manifold of 2n de-
generate states. Braiding Majorana fermions around one an-
other produces not just a phase factor, as in the case of con-
ventional bosons or fermions, but rather transforms the state
nontrivially inside of this degenerate manifold: their ex-
change statistics is non-Abelian.1,2 Quantum information en-
coded in this subspace can thus be manipulated by such
braiding operations, providing a method for decoherence-
free topological quantum computation.3,4 !It should be noted,
however, that universal quantum computation with Majorana
fermions requires additional ingredients beyond braiding.4,5"
Majorana fermions are therefore clearly of great fundamental
as well as practical interest.

At present, there is certainly no dearth of proposals for
realizing Majorana fermions. Settings as diverse as fractional
quantum Hall systems1 at filling #=5 /2, strontium
ruthenate thin films,6 cold atomic gases,7–10 superfluid
He-3,11 the surface of a topological insulator,12,13 semicon-
ductor heterostructures,14 and noncentrosymmetric
superconductors15,16 have all been theoretically predicted to
host Majorana bound states under suitable conditions. Nev-
ertheless, their unambiguous detection remains an outstand-
ing problem, although there has been recent progress in this
direction in quantum Hall systems.17,18

Part of the experimental challenge stems from the fact
that stabilizing topological phases supporting Majorana fer-
mions can involve significant engineering obstacles and/or
extreme conditions such as ultralow temperatures, ultraclean
samples, and high magnetic fields in the case of the #=5 /2
fractional quantum Hall effect. The proposal by Fu and

Kane12 noted above for realizing a topological superconduct-
ing state by depositing a conventional s-wave supercon-
ductor on a three-dimensional topological insulator surface
appears quite promising in this regard. This setting should in
principle allow for a rather robust topological superconduct-
ing phase to be created without such extreme conditions,
although experiments demonstrating this await development.
Moreover, Fu and Kane proposed methods in such a setup
for creating and manipulating Majorana fermions for quan-
tum computation. The more recent solid-state proposals
noted above involving semiconductor heterostructures14 and
noncentrosymmetric superconductors15,16 utilize clever ways
of creating an environment similar to the surface of a topo-
logical insulator !i.e., eliminating a sort of fermion-doubling
problem19" in order to generate topological phases support-
ing Majorana modes.

The present work is inspired by the semiconductor pro-
posal of Sau et al.,14 so we briefly elaborate on it here. These
authors demonstrated that a semiconductor with Rashba
spin-orbit coupling, sandwiched between an s-wave super-
conductor and a ferromagnetic insulator as in Fig. 1!a", can
realize a topological superconducting phase supporting Ma-
jorana modes. The basic principle here is that the ferromag-
netic insulator produces a Zeeman field perpendicular to the
semiconductor, which separates the two spin-orbit-split
bands by a finite gap. If the Fermi level lies inside of this
gap, a weak superconducting pair field generated via the
proximity effect drives the semiconductor into a topological
superconducting state that smoothly connects to a spinless
px+ ipy superconductor. Sau et al. also discussed how such a
device can be exploited along the lines of the Fu-Kane pro-
posal for topological quantum computation. The remarkable
aspect of this proposal is the conventional ingredients it
employs—semiconductors benefit from many more decades
of study compared to the relatively nascent topological
insulators—making this a promising experimental direction.

The main question addressed in this paper is largely a
practical one—can this proposed setup be further simplified
and made more tunable, thus !hopefully" streamlining the
route toward experimental realization of a topological super-
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Majorana fermion chain at the quantum spin Hall edge
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We study a realization of a 1D chain of Majorana bound states at the interfaces between alternating ferro-
magnetic and superconducting regions at a quantum spin Hall insulator edge. In the limit of well-separated
Majoranas, the system can be mapped to the transverse field Ising model. The disordered critical point can be
reached by tuning the relative magnitude or phases of the ferromagnetic and superconducting order parameters.
We compute the voltage dependence of the tunneling current from a metallic tip into the Majorana chain as a
direct probe of the random critical state.
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Some electronic phases support emergent quasiparticle
excitations that are in a sense fractions of the original elec-
trons, as in the fractional quantum Hall effect. One of the
most basic fractional excitations is the Majorana fermion fa-
miliar from particle physics: the Majorana fermion is its own
antiparticle and represents “half” of an ordinary !Dirac" fer-
mion. Several condensed-matter systems are theoretically be-
lieved to realize Majorana fermions in their excitation spec-
trum, and their direct observation is a major goal of current
research. In this work we compute the tunneling conductance
and other experimental signatures of one of the simplest sys-
tems of many Majorana fermions.

Proposals to observe Majorana fermions1–3 have been
based on the proximity effect between an ordinary s-wave
superconductor !SC" and the recently discovered “topologi-
cal insulator” phases in two-dimensional !2D" !Refs. 4–6"
and three-dimensional7–10 materials. These phases generally
support gapless edge or surface states. In the 2D case, the
gapless edge can be viewed as counterpropagating up-spin
and down-spin electrons, hence the terminology “quantum
spin Hall” !QSH" for this phase. In the three-dimensional
“strong topological insulator,”9 the surface state is a two-
dimensional metal with a Fermi surface that encloses an odd
number of Dirac points. The proximity effect between an
ordinary superconductor and this surface state leads to a su-
perconducting state2 that is time-reversal symmetric but to-
pologically similar to the p+ ip superconductor11 with Majo-
rana fermions trapped in vortices.

Perhaps the most appealing from a technical perspective
are Majorana realizations in 1D systems. In particular, a
QSH edge supports a localized Majorana fermion
excitation.1,12 When the edge state is gapped by coupling to a
SC in one region and a ferromagnet !FM" in another, a single
zero-energy Majorana fermion appears at the SC/FM bound-
ary if it is sufficiently narrow #Fig. 1!a"$. Previously, likely
experimental Majorana signatures were discussed for one or
two Majorana pairs,3,13–15 and the phase diagram of a 2D
Majorana fermion model without disorder was obtained.16 In
this paper we study how unique features of a chain of Ma-
jorana fermions, created by alternately FM and SC regions
along a QSH edge, can be observed using a metallic tunnel-
ing tip.

Experimentally, it may be simpler to create many Majo-

rana fermions by patterning an irregular phase-separated
mixture of SC and FM materials to contact the QSH edge,
rather than a single Majorana pair via a precise controlled-
lithography FM-SC-FM configuration. An ideal, uniform
system realizes the interesting free-Majorana fermion quan-
tum critical point. Realistically, however, FM and SC do-
mains will inevitably vary randomly in size and proximity
amplitude, and therefore the proposed system would realize
an even more interesting model: the random Majorana-
fermion chain in its random-singlet phase.17 Although this
model is based on FM regions coupled to the QSH edge, we
calculate critical properties that apply to several other setups.
For example, a Majorana chain can also be realized by ap-
plying a magnetic field to a SC region with vortices at the
QSH edge or to a quantum wire with spin-orbit coupling.18,19

An experimental realization of these systems will most likely
include randomness in the location of the superconducting
vortices, and thus the Majorana fermions.

Furthermore, the Majorana fermion chain may give a first
convincing measurement of the random-singlet phase and its
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FIG. 1. !a" A Majorana chain realization: an array of alternating
FM and SC regions at the QSH edge. Following a real-space RG
analysis, the chain decouples into pairs, shown by the upper lines. "̃i
is the energy of the pair decimated with the ith highest energy. !b"
The RG effectively couples the STM tip to every Majorana pair
with tunneling suppressed by the coupling coefficient a. Majorana
pairs decimated at the edge are coupled more strongly to the lead
than pairs decimated in the bulk of the chain.
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Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological
Majorana particles in solid-state systems
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We show that an ordinary semiconducting thin film with spin-orbit coupling can, under appropriate circum-
stances, be in a quantum topologically ordered state supporting exotic Majorana excitations which follow
non-Abelian statistics. The key to the quantum topological order is the coexistence of spin-orbit coupling with
proximity-induced s-wave superconductivity and an externally induced Zeeman coupling of the spins. For the
Zeeman coupling below a critical value, the system is a nontopological !proximity-induced" s-wave supercon-
ductor. However, for a range of Zeeman coupling above the critical value, the lowest energy excited state
inside a vortex is a zero-energy Majorana fermion state. The system, thus, has entered into a non-Abelian
s-wave superconducting state via a topological quantum phase transition !TQPT" tuned by the Zeeman cou-
pling. In the topological phase, since the time-reversal symmetry is explicitly broken by the Zeeman term in the
Hamiltonian, the edge of the film constitutes a chiral Majorana wire. Just like the s-wave superconductivity,
the Zeeman coupling can also be proximity induced in the film by an adjacent magnetic insulator. We show this
by an explicit model tight-binding calculation for both types of proximity effects in the heterostructure geom-
etry. Here we show that the same TQPT can be accessed by varying the interface transparency between the film
and the superconductor. For the transparency below !above" a critical value, the system is a topological
!regular" s-wave superconductor. In the one-dimensional version of the same structure and for the Zeeman
coupling above the critical value, there are localized Majorana zero-energy modes at the two ends of a
semiconducting quantum nanowire. In this case, the Zeeman coupling can be induced more easily by an
external magnetic field parallel to the wire, obviating the need for a magnetic insulator. We show that, despite
the fact that the superconducting pair potential in the nanowire is explicitly s wave, tunneling of electrons to
the ends of the wire reveals a pronounced zero-bias peak. Such a peak is absent when the Zeeman coupling is
below its critical value, i.e., the nanowire is in the nontopological s-wave superconducting state. We argue that
the observation of this zero-bias tunneling peak in the semiconductor nanowire is possibly the simplest and
clearest experiment proposed so far to unambiguously detect a Majorana fermion mode in a condensed-matter
system.
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I. INTRODUCTION

Particle statistics of a collection of indistinguishable par-
ticles is a genuinely quantum-mechanical concept without
any classical analog. In spatial dimensions three and above,
pairwise interchange of particle coordinates in a many-body
system is equivalent to a simple permutation of the coordi-
nates. Consequently, each interchange has the effect of either
a change in sign !fermion" or no change at all !boson" on the
many-body quantum wave function. In !2+1" dimensions,
however, exchanges and permutations are not necessarily
equivalent.1–3 In this case, under simple interchange of the
particle coordinates, the corresponding space-time trajecto-
ries can form nontrivial braids in the !2+1"-dimensional
space time.4 Consequently, in !2+1" dimensions, particles
can have quantum statistics strikingly different from the sta-
tistics of bosons and fermions.

A straightforward extension of the statistics of bosons and
fermions is the Abelian anyonic statistics, in which the
many-body wave function, under pairwise exchange of the
particle coordinates, picks up a phase ", which can take any
value between 0 !bosons" and # !fermions". Since a phase

factor is only a one-dimensional representation of the braid
group in two dimensions !2D", the statistics is still Abelian.
On the other hand, if the many-body ground-state wave func-
tion happens to be a linear combination of states from a
degenerate subspace, a pairwise exchange of the particles
can unitarily rotate the wave function in the ground-state
subspace. In this case, the effect of exchanging the particle
positions is an operation on the wave-function vector by a
unitary matrix representing this rotation. Consequently, the
statistics is non-Abelian,4,5 and the corresponding system is a
non-Abelian quantum system. It has been proposed that such
systems, if the ground-state subspace is concurrently pro-
tected by an energy gap, can be used as a fault-tolerant plat-
form for topological quantum computation !TQC".4–6

One important class of non-Abelian quantum systems,
sometimes referred to as the Ising topological class,4 is char-
acterized by quasiparticle excitations called Majorana fermi-
ons, which involve no energy cost !when the mutual separa-
tion among the excitations is large". The second quantized
operators, $i, corresponding to these zero-energy excitations
are self-Hermitian, $i

†=$i, which is in striking contrast to
ordinary fermionic !or bosonic" operators for which ci!ci

†.
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Conductance and noise signatures of Majorana backscattering
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We propose a conductance measurement to detect the backscattering of chiral Majorana edge states. Because
normal and Andreev processes have equal probability for backscattering of a single chiral Majorana edge state,
there is qualitative difference from backscattering of a chiral Dirac edge state, giving rise to half-integer Hall
conductivity and decoupling of fluctuation in incoming and outgoing modes. The latter can be detected through
thermal noise measurement. These experimental signatures of Majorana fermions are robust at finite temperature
and do not require the size of the backscattering region to be mesoscopic.
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From particle physics to condensed-matter physics, Ma-
jorana fermions currently arouse great interest.1 In particle
physics, where the concept first originated,2 the experimental
signature of Majorana fermions, though not yet detected, has
been known for a long time, that is, the neutrinoless double β
decay in the case of neutrinos.

In condensed-matter physics, two-dimensional (2D) sys-
tems where Majorana fermions can arise have been attracting
a great deal of attention recently, partly due to potential
applications to topological quantum computation.3–8 One class
of systems where Majorana fermions can appear is the 2D
chiral superconductor which has a full pairing gap in the bulk,
and N gapless chiral 1D Majorana fermions4,9 at the edge.
This system can be considered as the superconducting analog
of the quantum Hall (QH) state with N gapless chiral edge
states and is called a topological superconductor (TSC).10

The challenge now is to find a way to detect the Majorana
nature of the 1D edge state in this class of systems. There has
been no experiment so far which explicitly shows the Majorana
nature of gapless states at the boundary of a TSC, though
methods of detection have been proposed recently.11,12 The
first issue is to find a physical system which unequivocally
belongs to this class. Despite theoretical prediction that the
superconducting phase of Sr2RuO4 is the spinful version of
the N = 1 chiral TSC due to its px + ipy pairing,13 attempts
to detect the gapless edge states have not been successful.14

Therefore, we base our discussion on a recent proposal to
induce topological superconductivity through the proximity
effect on a magnetically doped Bi2Se3 film.15 The second
issue is to devise an experiment that can work at reasonable
temperatures, as interference effects get washed out above
the temperature scale set by the size of the TSC region.16–18

Our approach makes use of a generalization of the Landauer-
Büttiker formalism19 to superconducting systems,20 which was
recently used in a proposal for detecting a zero-dimensional
Majorana bound state.21

In this Rapid Communication, we study the backscattering
of the edge state of a quantum anomalous Hall (QAH) system
off aN = 1 TSC island. We find a strikingly different behavior
in both conductance and noise depending on the topological
invariant N of the TSC, which is equal to the number of chiral
Majorana edge states. In particular, for strong backscattering
by the N = 1 TSC, the incoming and outgoing channels

in the leads decouple as the probabilities for normal and
Andreev scattering become equal. Indeed, whereas Andreev
processes do not play any role in the case of the normal,
topologically trivial superconductor (NSC) or theN = 2 TSC,
backscattering due to the N = 1 TSC imposes a special
condition between the probabilities for normal and Andreev
scattering. Andreev scattering in the case of the N = 1 TSC
is due to the single chiral Dirac edge state of the QAH state
splitting into two chiral Majorana edge states.

We first discuss how to obtain a N = 1 TSC. When Cr
or Fe magnetic dopants are introduced into Bi2Se3 or Bi2Te3
thin films, the spin exchange interaction leads to the effective
Hamiltonian near the Fermi level,22

hQAH =
(

m + Bp2 A(px − ipy)

A(px + ipy) −m − Bp2

)
,

where the basis is (cp↑,cp↓)T with cpσ annihilating an electron
of momentum p and spin σ =↑ , ↓ and the QAH effect
obtained when m < 0. When this system is in proximity to
an s-wave superconductor, the combination of Cooper pair
formation through proximity effect and the electron-electron
interaction gives us a nonzero pairing gap function.23 This
gives us the Bogoliubov–de Gennes (BdG) Hamiltonian

hBdG =
(

hQAH(p) − µ i#σ y

−i#∗σ y −h∗
QAH(−p) + µ

)

,

the basis for which is (cp↑,cp↓,c
†
−p↑,c

†
−p↓)T . The BdG Hamil-

tonian can be written in a simple form for µ = 0,

hBdG =
(

h+(p) 0
0 −h∗

−(−p)

)
, (1)

where

h±(p) =
(

m ± |#| + Bp2 A(px − ipy)

A(px + ipy) −m ∓ |#| − Bp2

)
, (2)

if we use the basis 1√
2
(cp↑ + c

†
−p↓,cp↓ + c

†
−p↑, − cp↑ +

c
†
−p↓, − cp↓ + c

†
−p↑)T . The existence of Majorana edge states

due to h± depends entirely on the sign of m ± |#|4,15,24

as Eq. (2) is identical to the Hamiltonian of a px + ipy

superconductor.4 Thus, |#| < −m gives two chiral Majorana
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Counting Majorana zero modes in superconductors
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A counting formula for computing the number of (Majorana) zero modes bound to topological point defects is
evaluated in a gradient expansion for systems with charge-conjugation symmetry. This semi-classical counting
of zero modes is applied to some examples that include graphene and a chiral p-wave superconductor in
two-dimensional space. In all cases, we explicitly relate the counting of zero modes to Chern numbers.
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I. INTRODUCTION

The counting of zero modes, eigenstates annihilated by
a single-particle Hamiltonian H, has a long history in
physics. Charge-conjugation symmetry, the existence of a
norm-preserving linear (antilinear) transformation C that
anticommutes with H, protects the parity of the number
of zero modes. When the parity is odd, at least one zero
mode must be robust to any perturbation that preserves the
charge-conjugation symmetry. This paper aims at calculating
the parity of zero modes of a single-particle Hamiltonian
H( p̂,ϕ(x)) when (1) it obeys charge-conjugation symmetry,
(2) it describes fermionic quasiparticles, and (3) it depends
on a position dependent vector-valued order parameter ϕ(x).
These three assumptions are often met in mean-field treatments
of electrons interacting with each other or with collective
excitations such as phonons or magnons in condensed matter
physics.

Zero mode solutions can be found by direct means, in
practice solving a differential equation. This requires a non-
universal definition of the model since both microscopic
and macroscopic data must be supplied, say the boundary
conditions to be obeyed at the origin and at infinity in space.

Is there an alternative approach to calculating the parity
in the number of zero modes that is more universal? The
celebrated index theorem for elliptic differential operators
gives a positive answer to this question for those problems in
physics for which this theorem applies (Dirac Hamiltonians for
example).1 The index theorem achieves this by relating some
(not all!) zero modes to a topological number (a global property
of the Hamiltonian that can only take integer values). However,
the index theorem cannot be applied to most Hamiltonians of
relevance to condensed matter physics.

In this paper, we start from an exact integral representation
of the total number of unoccupied zero modes (up to exponen-
tial accuracy) N for fermionic single-particle Hamiltonians
with charge-conjugation symmetry in terms of a conserved
quasiparticle charge Q,

N = −2Q. (1.1)

This counting formula appears implicitly in Ref. 2 and
explicitly in Ref. 3, both in the context of polyacetylene.4 For
polyacetylene, it relates the number of unoccupied zero modes
to the conserved electric charge Qdw induced by domain walls

in the spontaneous bond ordering triggered by the coupling
of electrons to phonons. Remarkably, the electric charge
Qdw = ±1/2 induced by a single domain wall is fractional and
counts a single zero mode, with the sign ambiguity resolved by
whether the midgap state is filled or empty.5–7 Alternatively,
this sign ambiguity can be removed by the application of
a small charge-conjugation-symmetry-breaking perturbation
that shifts the energy of the zero mode up or down (see Fig. 1).
Hence, the counting formula (1.1) becomes

N = 2Q mod 2 (1.2)

if no prescription is given as to whether the filled Fermi sea
includes or not a zero mode. The same assignment of quantum
numbers also relates a single zero mode and the conserved
electric charge QKekule induced by a vortex with unit vorticity
in the Kekulé dimerization pattern of graphene.8–12

For polyacetylene and graphene, the charge-conjugation
symmetry is approximate, for it originates from a sublattice
symmetry that is broken as soon as next-nearest-neighbor
hopping is included in the tight-binding model. To the
extend that the Bardeen-Cooper-Schrieffer (BCS) mean-field
approximation to superconductivity is empirically observed
to be excellent, single-particle Bogoliubov-de-Gennes (BdG)
Hamiltonians realize a much more robust charge-conjugation
symmetry.13 For BdG Hamiltonians, zero modes are associated
to Majorana fermions. Majorana fermions do not carry a
well-defined electric charge since global electro-magnetic
gauge invariance is broken in any mean-field treatment of
superconductivity. The counting formula (1.1) nevertheless
applies to any BdG Hamiltonian HBdG with the important
caveat that the conserved quasiparticle charge QBdG is unre-
lated to the electric charge. Rather, the conservation of QBdG
encodes, for any local BdG Hamiltonian, a local continuity
equation obeyed by the Bogoliubov quasiparticles that is
responsible for the conservation of the thermal flow in the
mean-field treatment of superconductivity.14–16

In this paper, we represent the counting formula (1.1) in
terms of single-particle Green functions. The advantage of this
choice is that it easily lends itself to a perturbative (gradient)
expansion of the conserved quasiparticle charge Q that
forgoes the non-universal short-distance data.17–19 To leading
order, this expansion is akin to an adiabatic approximation.
We thus propose the adiabatic approximation to the conserved
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We propose a method to probe the nonlocality of a pair of Majorana bound states by crossed Andreev

reflection, which is the injection of an electron into one bound state followed by the emission of a hole by

the other (equivalent to the splitting of a Cooper pair). We find that, at sufficiently low excitation energies,

this nonlocal scattering process dominates over local Andreev reflection involving a single bound state. As

a consequence, the low-temperature and low-frequency fluctuations !Ii of currents into the two bound

states i ¼ 1, 2 are maximally correlated: !I1!I2 ¼ !I2i .

DOI: 10.1103/PhysRevLett.101.120403 PACS numbers: 03.75.Lm, 73.21."b, 74.45.+c, 74.78.Na

Majorana bound states are coherent superpositions of
electron and hole excitations of zero energy, trapped in the
middle of the superconducting energy gap by a nonuni-
formity in the pair potential. Two Majorana bound states
nonlocally encode a single qubit (see Fig. 1, top panel). If
the bound states are widely separated, the qubit is robust
against local sources of decoherence and provides a build-
ing block for topological quantum computation [1,2].

While Majorana bound states have not yet been demon-
strated experimentally, there is now a variety of candidate
systems. In an s-wave superconductor, zero-point motion
prevents the formation of bound states at zero energy. Early
proposals for Majorana bound states therefore considered
p-wave superconductors [3,4], with Sr2RuO4 as a candi-
date material [5], or p-wave superfluids formed by fermi-
onic cold atoms [6]. More recently, it was discovered [7–9]
that Majorana bound states can be induced by s-wave
superconductivity in a metal with a Dirac spectrum (such
as graphene or the boundary of a topological insulator).
Several tunneling experiments have been proposed [10–12]
to search for the Majorana bound states predicted to occur
in these systems.

Here we show that crossed Andreev reflection [13–15]
by a pair of Majorana bound states is a direct probe of the
nonlocality. Crossed Andreev reflection is the nonlocal
conversion of an electron excitation into a hole excitation,
each in a separate lead. Local Andreev reflection, in con-
trast, converts an electron into a hole in the same lead.
Equivalently, local Andreev reflection injects a Cooper pair
in a single lead, while crossed Andreev reflection splits a
Cooper pair over two leads. We have found that at suffi-
ciently low excitation energies, local Andreev reflection by
a pair of Majorana bound states is fully suppressed in favor
of crossed Andreev reflection.

The suppression is not a property of the dispersion
relation in the leads (as in Refs. [16,17]), but directly
probes the Majorana character of the Hamiltonian [2],

HM ¼ iEM"1"2; (1)

of the pair of weakly coupled bound states (labeled 1 and

2). The "i’s are Majorana operators, defined by "i ¼ "y
i ,

"i"j þ "j"i ¼ 2!ij. The coupling energy EM splits the
two zero-energy levels into a doublet at $EM. The sup-
pression of local Andreev reflection happens when the
width !M of the levels in the doublet (which is finite
because of leakage into the leads) and the excitation energy
E are both % EM. (The relative magnitude of !M and E
does not matter.)
Our theoretical analysis is particularly timely in view of

recent advances in the experimental realization of topo-
logical insulators in two-dimensional (2D) HgTe quantum
wells [18] and 3D BiSb crystals [19]. Topological insula-
tors are characterized by an inverted band gap, which

FIG. 1. Top panel: Energy diagram of two Majorana bound
states (levels at zero energy), which split into a pair of levels at
$EM upon coupling. Whether the upper level is excited deter-
mines the states j1i and j0i of a qubit. Crossed Andreev reflec-
tion probes the nonlocality of this Majorana qubit. Lower panel:
Detection of crossed Andreev reflection by correlating the cur-
rents I1 and I2 that flow into a superconductor via two Majorana
bound states.
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ã†j =
1

2
(c2j + ic2j+1)

a†5

Montag, 20. Mai 13



Majorana Fermions in the Kitaev Wire

supercond
uctor

wire

A. Kitaev 
Physics-Uspekhi, 44, 131 (2001)

a†1 a†2 a†L

J = |�|, µ = 0

Bogoliubov transformation

H = 2J
L�1X

j=1

ã†j ãj ã†L : zero energy mode

New basis:
c2j�1 = a†j + aj

c2j = (�i)(a†j � aj)

c2 = 1c = c†

H = �J

L�1X

j=1

a†jaj+1 + h.c.+
L�1X

j=1

�ajaj+1 + h.c.� µ

LX

j=1

a†jaj

c9 c10
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Properties of Majorana Fermions
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Exploring Majorana Physics 
in the Kitaev Wire using AMO Tools

Montag, 20. Mai 13



Majorana Physics in an AMO Realization of the Kitaev Wire

laser

BEC reservoir

optical lattice

laser

RF pulse

L. Jiang et al. PRL 106 (2011)

Montag, 20. Mai 13



Majorana Physics in an AMO Realization of the Kitaev Wire

laser

BEC reservoir

optical lattice

laser

RF pulse

L. Jiang et al. PRL 106 (2011)

Detection with AMO tools
- Time-of-flight imaging
- Spectroscopy

aRj = ja

x

vx=(x-Rj)/t

Preparation of ground state  
with a definite parity

2a

1 2L-1

a

1 2L

C.K, S. Diehl, P. Zoller, M. Baranov, NJP 2012

Montag, 20. Mai 13



Majorana Physics in an AMO Realization of the Kitaev Wire

laser

BEC reservoir

optical lattice

laser

RF pulse

L. Jiang et al. PRL 106 (2011)

Detection with AMO tools
- Time-of-flight imaging
- Spectroscopy

aRj = ja

x

vx=(x-Rj)/t

Preparation of ground state  
with a definite parity

2a

1 2L-1

a

1 2L

C.K, S. Diehl, P. Zoller, M. Baranov, NJP 2012

Implementation of 
Deutsch-Jozsa algorithm for 
2 qubits via braiding only

(Braiding of MFs not universal!)

Efficient braiding of MFs
- local site addressing
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We investigate....

Are there Majoranas in the 
INTERACTING double wire system ?

DMRG

Bosonization
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Low energy field theory 
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DMRG Study

DMRG

Z2 Symmetry
Two-fold degenerate 
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DMRG Study

DMRG

Z2 Symmetry
Two-fold degenerate 
Ground State with 
Different Parities

 Non-local CorrelationTopological Order

Same properties as Kitaev wire

U(1) ! Z2pair hopping:
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Gaps and non-local Correlations
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Topological Order

✓Double wire is in a topological phase.
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Engineering of the Pair Hopping
• Raman assisted tunneling along the wires

• Central site: two levels, interaction U

• Energy offsets allow pair hopping and 
   forbid single particle hopping
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Effects of Perturbations

Perturbations

Hopping between the chainsTopological Order

• Random local potentials
• Randomness in W

• Single particle intra-chain hopping 
• Assisted single particle hopping
• Density-density interactions

 AMO Realization

...breaks Z2 symmetry
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Effects of Perturbations

No qualitative effect!
(at least in the experimentally relevant regime)
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• Random local potentials
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Summary and Outlook

C.K, M. Dalmonte, M. Baranov, 
A. Läuchli, P. Zoller, arxiv ’13
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Detection with AMO tools
- Time-of-flight imaging
- Spectroscopy
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Majorana Physics in the Kitaev Wire

Majorana Physics in a double wire with pair hopping

MFs in an interacting number
conserving system

Engineering of the 
pair hopping

U
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C.K, S. Diehl, P. Zoller, M. Baranov (NJP ‘12) C.K,  P. Zoller, M. Baranov, arxiv, ’13

Outlook

• Hybrid system for TQC
• Braiding in the double 
   wire system
• Further applications of 
   pair hopping
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