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1. The Standard Model in brief
The SM of the electromagnetic, weak and strong interactions is:

• a relativistic quantum field theory,

• based on local gauge symmetry: invariance under symmetry gr oup,

• more or less a carbon–copy of QED, the theory of electromagne tism.

QED: invariance under local transformations of the abelian group U(1) Q

– transformation of electron field: Ψ(x) → Ψ′(x) = eieα(x)Ψ(x)

– transformation of photon field: Aµ(x)→A′
µ(x)=Aµ(x)− 1

e
∂µα(x)

The Lagrangian density is invariant under above field transf ormations

LQED = −1
4
FµνF

µν + iΨ̄Dµγ
µΨ −meΨ̄Ψ

field strength Fµν=∂µAν−∂νAµ and cov. derivative Dµ=∂µ−ieAµ

Very simple and extremely successful theory!

– minimal coupling: the interactions/couplings uniquely d etermined,

– renormalisable, perturbative, unitary (predictive), ve ry well tested...
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1. The Standard Model: brief introduction

The SM is based on the local gauge symmetry group

GSM ≡ SU(3)C × SU(2)L × U(1)Y

• The group SU(3)C describes the strong force:

– interaction between quarks which are SU(3) triplets: q, q , q

– mediated by 8 gluons, Ga
µ corresponding to 8 generators of SU(3)C

Gell-Man 3× 3 matrices: [Ta,Tb] = ifabcTc with Tr[TaTb] = 1
2
δab

– asymptotic freedom: interaction “weak” at high energy, αs =
g2
s

4π
≪ 1

The Lagrangian of the theory is given by:

LQCD = −1
4
Ga

µνG
µν
a + i

∑

i q̄i(∂µ − igsTaG
a
µ)γ

µqi (−
∑

i miq̄iqi)

with Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gs f

abcGb
µG

c
ν

The interactions/couplings are then uniquely determined:

– fermion gauge boson couplings : −giψVµγ
µψ

– V self-couplings : igiTr(∂νVµ−∂µVν)[Vµ,Vν ]+
1
2
g2
i Tr[Vµ,Vν ]

2

ICTP School, Trieste, 10–14/06/13 Higgs Physics – A. Djouadi – p.3/31



1. The Standard Model: brief introduction

• SU(2)L ×U(1)Y describes the electroweak interaction:

– between the three families of quarks and leptons: fL/R = 1
2
(1∓ γ5)f

I
3L,3R
f =±1

2
,0 ⇒ L =

(

νe
e−

)

L
, R = e−R, Q = (ud)L , uR, dR

Yf =2Qf−2I3f ⇒ YL=−1,YR=−2,YQ= 1
3
,YuR

= 4
3
,YdR

=−2
3

Same holds for the two other generations: µ, νµ, c, s; τ, ντ , t,b.

There is no νR (and neutrinos are and stay exactly massless)

– mediated by the Wi
µ (isospin) and Bµ (hypercharge) gauge bosons

the gauge bosons, corresp. to generators, are exactly massl ess

Ta = 1
2
τa ; [Ta,Tb] = iǫabcTc and [Y,Y] = 0

Lagrangian simple: with fields strengths and covariant deri vatives

Wa
µν=∂µW

a
ν−∂νWa

µ+g2ǫ
abcWb

µW
c
ν ,Bµν=∂µBν−∂νBµ

Dµψ =
(

∂µ − igTaW
a
µ − ig′Y

2
Bµ

)

ψ , Ta = 1
2
τa

LSM = −1
4
Wa

µνW
µν
a − 1

4
BµνB

µν + F̄Li iDµγ
µFLi + f̄Ri iDµγ

µ fRi
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1. The Standard Model: brief introduction
But if gauge boson and fermion masses are put by hand in LSM

1
2
M2

VV
µVµ and/or mf f̄ f terms: breaking of gauge symmetry.

This statement can be visualized by taking the example of QED where

the photon is massless because of the local U(1)Q local symmetry:

Ψ(x)→Ψ′(x)=eieα(x)Ψ(x) , Aµ(x)→A′
µ(x)=Aµ(x)− 1

e
∂µα(x)

• For the photon (or B field for instance) mass we would have:
1
2
M2

AAµA
µ → 1

2
M2

A(Aµ− 1
e
∂µα)(A

µ− 1
e
∂µα) 6= 1

2
M2

AAµA
µ

and thus, gauge invariance is violated with a photon mass.

• For the fermion masses, we would have (e.g. for the electron) :

meēe = meē

(

1
2
(1− γ5) +

1
2
(1+ γ5)

)

e = me(ēReL + ēLeR)

manifestly non–invariant under SU(2) isospin symmetry tra nsformations.

We need a less “brutal” way to generate particle masses in the SM:

⇒ The Brout-Englert-Higgs mechanism ⇒ the Higgs particle H.
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1. The Standard Model: brief introduction
⇒ High precision tests of the SM performed at quantum level: 1% –0.1%
The SM describes precisely (almost) all available experime ntal data!

• Couplings of fermions to γ,Z
• Z,W boson properties
• measure/running of αS

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02766

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01640

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1479

RbRb 0.21629 ± 0.00066 0.21585

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1037

AfbA0,c 0.0707 ± 0.0035 0.0741

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1479

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.392 ± 0.029 80.371

ΓW [GeV]ΓW [GeV] 2.147 ± 0.060 2.091

mt [GeV]mt [GeV] 171.4 ± 2.1 171.7

LEP1, SLC, LEP2, Tevatron

• SM gauge structure
• Properties of W bosons

LEP2, Tevatron
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YFSWW/RacoonWW
no ZWW vertex (Gentle)
only νe exchange (Gentle)
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PRELIMINARY

11/07/2003

• Physics of top&bottom quarks, QCD
Tevatron, HERA and B factories
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2. EWSB in the SM
In the SM, if gauge boson and fermion masses are put by hand in LSM

breaking of gauge symmetry ⇒ spontaneous EW symmetry breaking

⇒ introduce a doublet of complex scalar fields: Φ=
(

φ+

φ0

)

, YΦ=+1

with a Lagrangian that is invariant under SU(2)L ×U(1)Y

LS = (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2

µ2 > 0: 4 scalar particles.

µ2 < 0: Φ develops a vev:
〈0|Φ|0〉 = (0

v/
√
2
)

with vev ≡ v = (−µ2/λ)
1
2

– symmetric minimum: instable
– true vaccum: degenerate

⇒ to obtain the physical states,
write LS with the true vacuum:

0

�

2

> 0

>

�

V(�)

+v

0

�

2

< 0

>

�

V(�)
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2. EWSB in SM: mass generation

• Write Φ in terms of four fields θ1,2,3(x) and H(x) at 1st order:

Φ(x) = eiθa(x)τ
a(x)/v 1√

2
(0v+H(x)) ≃ 1√

2
(θ2+iθ1
v+H−iθ3

)

• Make a gauge transformation on Φ to go to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) = 1√
2
(0v+H(x))

• Then fully develop the term |DµΦ)|2 of the Lagrangian LS :

|DµΦ)|2 =
∣

∣

(

∂µ − ig1
τa
2
Wa

µ − ig2

2
Bµ

)

Φ
∣

∣

2

= 1
2

∣

∣

∣

∣

(

∂µ− i
2
(g2W

3
µ+g1Bµ)

− ig2
2

(W1
µ+iW2

µ)

− ig2
2

(W1
µ−iW2

µ)

∂µ+
i
2
(g2W3

µ−g1Bµ)

)

(

0
v+H

)

∣

∣

∣

∣

2

= 1
2
(∂µH)2+ 1

8
g2
2(v+H)2|W1

µ+iW2
µ|2+ 1

8
(v +H)2|g2W

3
µ−g1Bµ|2

• Define the new fields W±
µ and Zµ [Aµ is the orthogonal of Zµ]:

W± = 1√
2
(W1

µ ∓W2
µ) , Zµ =

g2W
3
µ−g1Bµ√
g2
2+g2

1

, Aµ =
g2W

3
µ+g1Bµ√
g2
2+g2

1

with sin2 θW ≡ g2/
√

g2
2 + g2

1 = e/g2
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2. EWSB in SM: mass generation
• And pick up the terms which are bilinear in the fields W±,Z,A:

M2
WW+

µW
−µ + 1

2
M2

ZZµZ
µ + 1

2
M2

AAµA
µ

⇒ 3 degrees of freedom for W±
L ,ZL and thus MW± ,MZ:

MW = 1
2
vg2 , MZ = 1

2
v
√

g2
2 + g2

1 , MA = 0 ,

with the value of the vev given by: v = 1/(
√
2GF)

1/2 ∼ 246 GeV.

⇒ The photon stays massless, U(1)QED is preserved.

• For fermion masses, use same doublet field Φ and its conjugate field

Φ̃ = iτ2Φ
∗ and introduce LYuk which is invariant under SU(2)xU(1):

LYuk=−fe(ē, ν̄)LΦeR − fd(ū, d̄)LΦdR − fu(ū, d̄)LΦ̃uR + · · ·
= − 1√

2
fe(ν̄e, ēL)(

0
v+H)eR · · · = − 1√

2
(v +H)ēLeR · · ·

⇒ me =
fe v√

2
, mu = fu v√

2
, md = fd v√

2

With same Φ, we have generated gauge boson and fermion masses,
while preserving SU(2)xU(1) gauge symmetry (which is now hi dden)!

What about the residual degree of freedom?
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2. EWSB in SM: the Higgs boson
It will correspond to the physical spin–zero scalar Higgs pa rticle, H.

The kinetic part of H field, 1
2
(∂µH)2, comes from |DµΦ)|2 term.

Mass and self-interaction part from V(Φ) = µ2Φ†Φ+ λ(Φ†Φ)2:

V = µ2

2
(0,v +H)(0v+H) +

λ
2
|(0,v +H)(0v+H)|2

Doing the exercise you find that the Lagrangian containing H i s,

LH = 1
2
(∂µH)(∂µH)−V = 1

2
(∂µH)2 − λv2 H2 − λvH3 − λ

4
H4

The Higgs boson mass is given by: M2
H = 2λv2 = −2µ2.

The Higgs triple and quartic self–interaction vertices are :
gH3 = 3iM2

H/v , gH4 = 3iM2
H/v

2

What about the Higgs boson couplings to gauge bosons and ferm ions?

They were almost derived previously, when we calculated the masses:

LMV
∼ M2

V(1+H/v)2 , Lmf
∼ −mf (1+H/v)

⇒ gHff = imf/v , gHVV = −2iM2
V/v , gHHVV = −2iM2

V/v
2

Since v is known, the only free parameter in the SM is MH or λ.

ICTP School, Trieste, 10–14/06/13 Higgs Physics – A. Djouadi – p.10/31



2. EWSB in SM: W/Z/H at high energies
Propagators of gauge and Goldstone bosons in a general ζ gauge:

−→ q
−i

q2−M2
V
+iǫ

[

gµν + (ζ − 1) qµqν
q2−ζM2

V

]

ζ=1: ’t Hooft-Feynman

ζ=∞: Landau gauge

−→ q
−i

q2−ζM2
V
+iǫω±, ω0 :

• In unitary gauge, Goldstones do not propagate and gauge boso ns

have usual propagators of massive spin–1 particles (old IVB theory).

• At very high energies, s≫M2
V, an approximation is MV∼0. The

VL components of V can be replaced by the Goldstones, VL → w.

• In fact, the electroweak equivalence theorem tells that at high energies,

massive vector bosons are equivalent to Goldstones. In VV sc attering e.g.:

A(V1
L · · ·Vn

L → V1
L · · ·Vn′

L ) = (i)n(−i)n
′

A(w1 · · ·wn → w1 · · ·wn′

)

Thus, we simply replace V by w in the scalar potential and use w :

V =
M2

H

2v
(H2 +w2

0 + 2w+w−)H+
M2

H

8v2 (H
2 +w2

0 + 2w+w−)2
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3. Constraints on MH

First, there were constraints from pre–LHC experiments... .
Indirect Higgs searches:

H contributes to RC to W/Z masses:

H
W/Z W/Z

Fit the EW precision measurements:
we obtain MH = 92+34

−26 GeV, or

0

1

2

3

4

5

6

10020 400

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.00036

0.02747±0.00012

incl. low Q2 data

Theory uncertainty

MH
<∼ 160 GeV at 95% CL

Direct searches at colliders:

H looked for in e+e−→ZH

e−

e+

Z∗ H

Z

MH > 114.4 GeV @95%CL

10
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3. Constraints on MH: perturbative unitarity
Scattering of massive gauge bosons VLVL → VLVL at high-energy

W−

W+

W−

W+
H H

Because w interactions increase with energy ( qµ terms in V propagator),

s ≫ M2
W ⇒ σ(w+w− → w+w−) ∝ s: ⇒ unitarity violation possible!

Decomposition into partial waves and choose J=0 for s ≫ M2
W:

a0 = − M2
H

8πv2

[

1+
M2

H

s−M2
H

+
M2

H

s
log

(

1+ s

M2
H

)]

For unitarity to be fullfiled, we need the condition |Re(a0)| < 1/2.

• At high energies, s ≫ M2
H,M

2
W, we have: a0

s≫M2
H−→ − M2

H

8πv2

unitarity ⇒ MH
<∼ 870 GeV (MH

<∼ 710 GeV)

• For a very heavy or no Higgs boson, we have: a0

s≪M2
H−→ − s

32πv2

unitarity ⇒ √
s <∼ 1.7 TeV (

√
s <∼ 1.2 TeV)

Otherwise (strong?) New Physics should appear to restore un itarity.
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3. Constraints on MH: triviality

The quartic coupling of the Higgs boson λ (∝ M2
H) increases with energy.

If the Higgs is heavy: the H contributions to λ is by far dominant

+ +

The RGE evolution of λ with Q2 and its solution are given by:

dλ(Q2)

dQ2
=

3

4π2
λ2(Q2) ⇒ λ(Q2) = λ(v2)

[

1− 3

4π2
λ(v2) log

Q2

v2

]−1

• If Q2 ≪ v2, λ(Q2) → 0+: the theory is trivial (no interaction).

• If Q2 ≫ v2, λ(Q2) → ∞: Landau pole at Q = v exp
(

4π2v2

M2
H

)

.

The SM is valid only at scales before λ becomes infinite:
If ΛC = MH, λ <∼ 4π ⇒ MH

<∼ 650 GeV
(comparable to results obtained with simulations on the lat tice!)

If ΛC = MP, λ <∼ 4π ⇒ MH
<∼ 180 GeV

(comparable to exp. limit if SM extrapolated to GUT/Planck s cales)
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3. Constraints on MH: vacuum stability

The top quark and gauge bosons also contribute to the evoluti on of λ.
(contributions dominant (over that of H itself) at low MH values)

H

H H

H
F V

The RGE evolution of the coupling at one–loop is given by

λ(Q2) = λ(v2) + 1
16π2

[

−12
m4

t

v4 + 3
16

(2g4
2 + (g2

2 + g2
1)

2)
]

logQ2

v2

If λ is small (H is light), top loops might lead to λ(0) < λ(v):

v is not the minimum of the potentiel and EW vacuum is instable .

⇒ Impose that the coupling λ stays always positive:

λ(Q2) > 0 ⇒ M2
H > v2

8π2

[

−12
m4

t

v4 + 3
16

(2g4
2 + (g2

2 + g2
1)

2)
]

logQ2

v2

Very strong constraint: Q = ΛC ∼ 1 TeV ⇒ MH
>∼ 70 GeV

(we understand why we have not observed the Higgs bofeore LEP 2...)
If SM up to high scales: Q = MP ∼ 1018 GeV ⇒ MH

>∼ 130 GeV
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3. Constraints on MH: triviality+stability

Combine the two constraints and include all possible effect s:
– corrections at two loops
– theoretical+exp. errors
– other refinements · · ·
ΛC≈1 TeV ⇒ 70<∼MH

<∼700 GeV

ΛC≈ MPl ⇒ 130<∼MH
<∼180 GeV

Cabibbo, Maiani, Parisi, Petronzio

Hambye, Riesselmann

A more up-to date (full two loop) calculation in 2012:
Degrassi et al., Berzukov et al.

At 2–loop for m
pole
t =173.1 GeV:

fully stable vaccum MH
>∼ 129 GeV...

but vacuum metastable below!
metastability OK: unstable vacuum
but very long lived τtunel >∼ τuniv...

Instability
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4. Higgs decays
Higgs couplings proportional to particle masses: once MH is fixed,

• the profile of the Higgs boson is determined and its decays fixe d,

• the Higgs has tendancy to decay into heaviest available part icle.

Higgs decays into fermions:

f

f̄

H

ΓBorn(H → f f̄) = GµNc

4
√
2π

MH m2
f β

3
f

βf =
√

1− 4m2
f /M

2
H : f velocity

Nc = color number

• Only bb̄, cc̄, τ+τ−, µ+µ− for MH < 350 GeV, also tt̄ beyond.

• Γ ∝ β3: H is CP–even scalar particle ( ∝ β for pseudoscalar H).

• Decay width grows as MH: moderate growth....

• QCD RC: Γ ∝ Γ0[1− αs

π
log

M2
H

m2
q
] ⇒ very large: absorbed/summed

using running masses at scale MH : mb(M
2
H)∼ 2

3
m

pole
b ∼3GeV.

• Include also direct QCD corrections (3 loops) and EW (one-lo op).
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4. Higgs decays: QCD corrections

with full QCD

with pole mass

with run. mass

�(H ! b

�

b) [MeV℄

M

H

[GeV℄

160150140130120110100

10
1

with full QCD

with pole mass

with run. mass

�(H ! �) [MeV℄

M

H

[GeV℄

160150140130120110100

1

0.1

Partial widths for the decays H → bb̄ and H → cc̄ as a function of MH.
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4. Higgs decays: decays into gauge bosons

V

V (∗)

H
Γ(H → VV) =

GµM
3
H

16
√
2π
δVβV (1− 4x+ 12x2)

x = M2
V/M

2
H, βV =

√
1− 4x

δW = 2, δZ = 1

• For a very heavy Higgs boson:

Γ(H → WW) = 2× Γ(H → ZZ); ⇒ BR(WW) ∼ 2
3
,BR(ZZ) ∼ 1

3

Γ(H → WW + ZZ) ∝ 1
2

M3
H

(1 TeV)3
because of contributions of VL:

heavy Higgs is obese: width very large, comparable to MH at 1 TeV.

EW radiative corrections from scalars large because ∝ λ =
M2

H

2v2 .

• For a light Higgs boson:

MH < 2MV: possibility of off–shell V decays, H → VV∗ → Vff̄ .

Virtuality and addition EW cplg compensated by large gHVV vs gHbb.

In fact: for MH
>∼ 130 GeV, H → WW∗ dominates over H → bb̄
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4. Higgs decays: decays into gauge bosons

Electroweak radiative corrections to H→VV :

Using the low–energy/equivalence theorem for MH≫MV, Born easy..

Γ(H→ZZ)∼! Γ(H→w0w0)=
(

1
2MH

)(

2!M2
H

2v

)2
1
2

(

1
8π

)

→ M3
H

32πv2

H→WW: remove statistical factor: Γ(H→W+W−)≃2Γ(H→ZZ).

Include now the one– and two–loop EW corrections from H/W/Z o nly:

ΓH→VV ≃ ΓBorn

[

1+ 3λ̂+ 62λ̂2 +O(λ̂3)
]

; λ̂ = λ/(16π2)

MH ∼ O(10 TeV) ⇒ one–loop term = Born term.
MH ∼ O(1 TeV) ⇒ one–loop term = two–loop term

⇒ for perturbation theory to hold, one should have MH
<∼ 1 TeV.

Approx. same result from the calculation of the fermionic Hi ggs decays:

ΓH→ff ≃ ΓBorn

[

1+ 2λ̂− 32λ̂2 +O(λ̂3)
]

ICTP School, Trieste, 10–14/06/13 Higgs Physics – A. Djouadi – p.20/31



4. Higgs decays: decays into gauge bosons

gd 2+3+4 body decay calculation of H→V∗V∗ :

Γ(H→V∗V∗)= 1
π2

∫M2
H

0

dq2
1MVΓV

(q2
1−M2

V
)2+M2

V
Γ2
V

∫ (MH−q1)2

0

dq2
2MVΓV

(q2
2−M2

V
)2+M2

V
Γ2
V

Γ0

λ(x,y; z) = (1− x/z− y/z)2 − 4xy/z2 with δW/Z= 2/1 and

Γ0=
GµM

3
H

16
√
2π
δV

√

λ(q2
1,q

2
2;M

2
H)

[

λ(q2
1,q

2
2;M

2
H) +

12q2
1q

2
2

M4
H

]
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4. Higgs decays: decays into gluons

Q
g

g

H
Γ (H → gg) =

Gµ α2
s M3

H

36
√
2π3

∣

∣

∣

3
4

∑

Q AH
1/2(τQ)

∣

∣

∣

2

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)] τ−2

f(τ) = arcsin2
√
τ for τ = M2

H/4m
2
Q ≤ 1

• Gluons massless and Higgs has no color: must be a loop decay.

• For mQ → ∞, τQ ∼ 0 ⇒ A1/2 = 4
3
= constant and Γ is finite!

Width counts the number of strong inter. particles coupling to Higgs!

• In SM: only top quark loop relevant, b–loop contribution <∼ 5%.

• Loop decay but QCD and top couplings: comparable to cc, ττ .

• Approximation mQ → ∞/τQ = 1 valid for MH
<∼ 2mt = 350 GeV.

Good approximation in decay: include only t–loop with mQ → ∞. But:

• Very large QCD RC: the two– and three–loops have to be include d:

Γ = Γ0[1+ 18αs

π
+ 156

α2
s

π2 ] ∼ Γ0[1+ 0.7+ 0.3] ∼ 2Γ0

• Reverse process gg → H very important for Higgs production in pp!
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4. Higgs decays: loop form factors

Im(A

H
1

)
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H
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)
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W
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(�
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�

Q

1010.1

3

2.5
2

1.5
1

0.5
0

W and fermion amplitudes in H→γγ as function of τi = M2
H/4M

2
i .

We could repeat the calculation of H → γγ and check that Barroso+
Pulido+Romao (1986) and Higgs Hunters Guide were correct?? ...
Trick for an easy calculation: low energy theorem for MH≪Mi....
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4. Higgs decays: decays into photons

Q,W

γ

γ(Z)

H
Γ=

Gµ α2 M3
H

128
√
2π3

∣

∣

∣

∑

f Nce
2
fA

H
1
2

(τf ) +AH
1 (τW)

∣

∣

∣

2

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)] τ−2

AH
1 (τ) = −[2τ2 + 3τ + 3(2τ − 1)f(τ)] τ−2

• Photon massless and Higgs has no charge: must be a loop decay.

• In SM: only W–loop and top-loop are relevant (b–loop too smal l).

• For mi → ∞ ⇒ A1/2 = 4
3
and A1 = −7: W loop dominating!

(approximation τW → 0 valid only for MH
<∼ 2MW: relevant here!).

γγ width counts the number of charged particles coupling to Hig gs!

• Loop decay but EW couplings: very small compared to H → gg.

• Rather small QCD (and EW) corrections: only of order αs

π
∼ 5%.

• Reverse process γγ → H important for H production in γγ.

• Same discussions hold qualitatively for loop decay H → Zγ.
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4. Higgs decays: branching ratios

Branching ratios: BR(H → X) ≡ Γ(H→X)
Γ(H→all)

• ’Low mass range’, MH
<∼ 130GeV:

– H → bb̄ dominant, BR = 60–90%

– H → τ+τ−, cc̄,gg BR= a few %

– H → γγ, γZ, BR = a few permille.

• ’High mass range’, MH
>∼ 130GeV:

– H → WW∗,ZZ∗ up to >∼ 2MW

– H → WW,ZZ above (BR → 2
3
, 1
3
)

– H → tt̄ for high MH; BR <∼ 20%.

• Total Higgs decay width:

– O(MeV) for MH∼100 GeV (small)

– O(TeV) for MH ∼ 1 TeV (obese).

Z



t

�

t

ZZ

WW

gg

��

s�s

�

��

b

�

b
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1000700500300200160130100

1

0.1

0.01

0.001
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4. Higgs decays: total width
Total decay width: ΓH ≡

∑

X Γ(H → X)

• ’Low mass range’, MH
<∼ 130GeV:

– H → bb̄ dominant, BR = 60–90%

– H → τ+τ−, cc̄,gg BR= a few %

– H → γγ, γZ, BR = a few permille.

• ’High mass range’, MH
>∼ 130GeV:

– H → WW∗,ZZ∗ up to >∼ 2MW

– H → WW,ZZ above (BR → 2
3
, 1
3
)

– H → tt̄ for high MH; BR <∼ 20%.

• Total Higgs decay width:

– O(MeV) for MH∼100 GeV (small)

– O(TeV) for MH ∼ 1 TeV (obese).
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4. Higgs decays: theory uncertainties
However: there are theoretical uncertainties....

• Input quark masses in H → bb̄, cc̄

M
pole
Q → mQ(µ = MH)

– mb(Mb) = 4.19+0.018
−0.006 GeV

– mc(Mc) = 1.27+0.007
−0.009 GeV

• Theory+experimental error on αs :

αs(M
2
Z) = 0.1171± 0.0014 @NNLO

• Scale error: measure of higher orders
1
2
MH ≤ µ ≤ 2MH

• Scale and αs errors in H → gg

Γ(H → gg) ∝ α2
s + large O(α3

s )

τ
+
τ
−

ZZ

WW

gg

cc̄

bb̄

BR(H → X)

MH [GeV]

200180160140120100

1

0.1

0.01

..

Include all items ⇒ non-negligible uncertainties.

esp. for MH ≈120–150 GeV: 5–10% for H → bb̄ and H → WW∗

ICTP School, Trieste, 10–14/06/13 Higgs Physics – A. Djouadi – p.27/31



5. SM Higgs at hadron colliders
Main Higgs production channels

q
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�
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�
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in assoiated with Q

�

Q

Large production cross sections

with gg → H by far dominant process

1 fb−1⇒O(104) events@lHC

⇒O(103) events @Tevatron

but eg BR(H →γγ,ZZ→4ℓ)≈10−3

... a small # of events at the end...
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5. SM Higgs at hadron colliders: generalities
⇒ an extremely challenging task!

• Huge cross sections for QCD processes
• Small cross sections for EW Higgs signal

S/B >∼ 1010 ⇒ a needle in a haystack!
• Need some strong selection criteria:
– trigger: get rid of uninteresting events...
– select clean channels: H→γγ,VV→ℓ
– use specific kinematic features of Higgs
• Combine # decay/production channels
(and eventually several experiments...)
• Have a precise knowledge of S and B rates
(higher orders can be factor of 2! see later)
• Gigantic experimental + theoretical efforts
(more than 30 years of very hard work!)
For a flavor of how it is complicated from the
theory side: a look at the gg → H case
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5. SM Higgs at hadron colliders: generalities

Example of process at LHC to see how things work: gg → H

g
g

H

P
P

X
X

Z
Z

�

+

�

�

q

�q

hadrons

1

Nev=L×P(g/p)×σ̂(gg→H)× B(H→ZZ)×B(Z → µµ)×BR(Z → qq)

For a large number of events, all these numbers should be larg e!

Two ingredients: hard process ( σ, B) and soft process (PDF, hadr).

Factorization theorem! Here discuss production/decay pro cess.

The partonic cross section of the subprocess, gg → H, is:

σ̂(gg → H) =
∫

1
2ŝ

× 1
2·8 × 1

2·8 |MHgg|2 d3pH

(2π)32EH
(2π4)δ4 (q− pH)

Flux factor, color/spin average, matrix element squared, p hase space.

Convolute with gluon densities to obtain total hadronic cro ss section

σ =
∫ 1

0
dx1

∫ 1

0
dx2

π2MH

8ŝ
Γ(H → gg)g(x1)g(x2)δ(ŝ−M2

H)
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5. SM Higgs at hadron colliders: generalities
The calculation of σborn is not enough in general at pp colliders:

need to include higher order radiative corrections which in troduce

terms of order αn
s log

m(Q/MH) where Q is either large or small...

• Since αs is large, these corrections are in general very important.

• Choose a (natural scale) which absorbs/resums the large log s.

Since we truncate pert. series: only NLO/NNLO corrections a vailable.

• The (hope small) not known HO corrections induce a theoretic al error.

• The scale variation is a (naive) measure of the HO: must be sma ll.

Also, precise knowledge of σ is not enough: need to calculate some

kinematical distributions (e.g. pT, η,
dσ
dM

) to distinguish S from B.

In fact, one has to do this for both the signal and background ( unless

directly measurable from data): the important quantity is σ= NS√
Nbjg⇒ a lot of theoretical work is needed!

But most complicated thing is to actually see the signal for S /B≪1!
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