
QCD, top and LHC
Lecture III: Parton branching

ICTP Summer School on Particle Physics,
June 2013

Keith Ellis
ellis@fnal.gov

Fermilab
Slides available from http://theory.fnal.gov/people/ellis/Talks/

QCD, top and LHCLecture III: Parton branching – p.1/42



Parton branching
Solution to the Dirac Equation
Branching Probabilities
DGLAP equation
Parton luminosities
Shower Monte Carlos
Sudakov form factor
Monte Carlo method
Soft gluon emission
Angular ordering

QCD, top and LHCLecture III: Parton branching – p.2/42



Dirac eqn. Massless fermions
The fermions involved in high energy processes can often be taken to be
massless.
We choose an explicit representation for the gamma matrices. The Bjorken and
Drell representation is,

γ0 =

 

1 0

0 −1

!

, γi =

 

0 σi

−σi 0

!

, γ5 =

 

0 1

1 0

!

,

The Weyl representation is more suitable at high energy

γ0 =

 

0 1

1 0

!

, γi =

 

0 −σi

σi 0

!

, γ5 =

 

1 0

0 −1

!

,

In the Weyl representation upper and lower components have different helicities.

γR =
1

2
(1 + γ5) =

 

1 0

0 0

!

, γL =
1

2
(1 − γ5) = =

 

0 0

0 1

!

,
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Weyl representation
Both representations satisfy the same commutation relations.

γµγν + γνγµ = 2gµν

in the Weyl representation γ0γi =

 

σi 0

0 −σi

!

. σ are the Pauli matrices.

To derive an explicit solution for the massless Dirac equation "pu(p) = 0, write out
an explicit expression for "p = γ0p0 − γ1p1 − γ2p2 − γ3p3 in the Weyl
representation, NB p± = p0 ± p3, and for a massless particle
p+p− = (p1)2 + (p2)2

"p =

0

B

B

B

@

0 0 p+ p1 − ip2

0 0 p1 + ip2 p−

p− −p1 + ip2 0 0

−p1 − ip2 p+ 0 0

1

C

C

C

A

.

0

B

B

B

@

0 0 p+ p1 − ip2

0 0 p1 + ip2 p−

p− −p1 + ip2 0 0

−p1 − ip2 p+ 0 0

1

C

C

C

A

2

6

6

6

4

p

p+

(p1 + ip2)/
p

p+

0

0

3

7

7

7

5

=

2

6

6

6

4

0

0

0

0

3

7

7

7

5
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Spinor solutions of Dirac equation
The massless spinor solns of Dirac eqn are

u+(p) =

2

6

6

6

4

p

p+
p

p−eiϕp

0

0

3

7

7

7

5

, u−(p) =

2

6

6

6

4

0

0
p

p−e−iϕp

−
p

p+

3

7

7

7

5

,

where

e±iϕp ≡
p1 ± ip2

p

(p1)2 + (p2)2
=

p1 ± ip2

p

p+p−
, p± = p0 ± p3.

Form massless particles charge conjugation is almost trivial; u±(p) = v∓(p)

In the Weyl representation the conjugate spinors are

u†
+(p) =

h

p

p+,
p

p−e−iϕp , 0, 0
i

u†
−(p) =

h

0, 0,
p

p−eiϕp ,−
p

p+
i
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Parton branching - kinematics

pa = (Ea +
p2

a

4Ea
, 0, 0, Ea −

p2
a

4Ea
)

pb = (Eb, +Eb sin θb, 0, +Eb cos θb)

pc = (Ec,−Ec sin θc, 0, +Ec cos θc)

the kinematics and notation for the branching of parton a into b + c. We assume
that

p2
b , p2

c $ p2
a ≡ t

a is an outgoing parton, which is called timelike branching since t > 0.
The opening angle is θ = θb + θc. Defining the energy fraction as

z = Eb/Ea = 1 − Ec/Ea ,

we have for small angles, t = 2EbEc(1 − cos θ) = z(1 − z)E2
aθ

2

using transverse momentum conservation,

θ =
1

Ea

s

t

z(1 − z)
=
θb

1 − z
=
θc
z

.
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Branching probabilities
Consider the case where

pa = (Ea +
p2

a

4Ea
, 0, 0, Ea −

p2
a

4Ea
)

pb ∼ (Eb, +Ebθb, 0, +Eb)

pc ∼ (Ec,−Ecθc, 0, +Ec)

Thus for example

u†
+(pb) =

p

2Eb

»

1,
θb
2

, 0, 0

–

and

u+(pc) ≡ v−(pc) =
p

2Ec

2

6

6

6

4

1

− θc
2

0

0

3

7

7

7

5

Hence for polarization vectors εin = (0, 1, 0, 0), εout = (0, 0, 1, 0)

gūb
+ γ

0γ1 vc
− = g

p

4EbEc

„

1,
θb
2

«

 

0 1

1 0

! 

1

− θc
2

!

= −g
p

EbEc(θb − θc)
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−gūb
+γµε

pinµ
a vc

− = g
p

EbEc(θb − θc) = g
p

z(1 − z)(1 − 2z)Eaθ = g(1 − 2z)
√

t

−gūb
+γµε

poutµ
a vc

− = ig
p

EbEc(θb + θc) = ig
p

z(1 − z)Eaθ = ig
√

t

and the matrix element relation for the branching is

|Mn+1|2 ∼
g2

t
TRF (z; εa,λb,λc)|Mn|2

where the colour factor is now Tr(tAtA)/8 = TR = 1/2. The non-vanishing functions
F (z; εa,λb,λc) for quark and antiquark helicities λb and λc are

εa λb λc F (z; εa,λb,λc)

in ± ∓ (1 − 2z)2

out ± ∓ 1

Summing over the polarizations we get

2
h

(1 − 2z)2 + 1
i

= 4(z2 + (1 − z)2).

Angular momentum argument for vanishing of amplitude in forward direction.
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Branching probabilities
Z

dφ

2π
CF = P̂ba(z)

where P̂ba(z) is the appropriate splitting function

dσn+1 = dσn
dt

t
dz
αS

2π
P̂ba(z) .

Including all the color factors we find the results for the unregulated branching
probabilities.

P̂qq(z) = CF

»

1 + z2

(1 − z)

–

,

P̂qg(z) = TR

h

z2 + (1 − z)2
i

, TR =
1

2
,

P̂gq(z) = CF

»

1 + (1 − z)2

z

–

,

P̂gg(z) = CA

»

z

(1 − z)
+

1 − z

z
+ z (1 − z)

–
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DGLAP equation
Consider enhancement of higher-order contributions due to multiple small-angle
parton emission, for example in deep inelastic scattering ( DIS)

Incoming quark from target hadron, initially with low virtual mass-squared −t0 and
carrying a fraction x0 of hadron’s momentum, moves to more virtual masses and
lower momentum fractions by successive small-angle emissions, and is finally
struck by photon of virtual mass-squared q2 = −Q2.
Cross section will depend on Q2 and on momentum fraction distribution of partons
seen by virtual photon at this scale, D(x, Q2).

QCD, top and LHCLecture III: Parton branching – p.10/42



To derive evolution equation for Q2-dependence of D(x, Q2), first introduce
pictorial representation of evolution, also useful later for Monte Carlo simulation.

Represent sequence of branchings by path in (t, x)-space. Each branching is a
step downwards in x, at a value of t equal to (minus) the virtual mass-squared
after the branching.
At t = t0, paths have distribution of starting points D(x0, t0) characteristic of
target hadron at that scale. Then distribution D(x, t) of partons at scale t is just
the x-distribution of paths at that scale.
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Change in parton distribution
Consider change in the parton distribution D(x, t) when t is increased to t + δt.
This is number of paths arriving in element (δt, δx) minus number leaving that
element, divided by δx.
Number arriving is branching probability times parton density integrated over all
higher momenta x′ = x/z,

δDin(x, t) =
δt

t

Z 1

x
dx′ dz

αS

2π
P̂ (z)D(x′, t) δ(x − zx′)

=
δt

t

Z 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

Z x

0
dx′ dz

αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

Z 1

0
dz
αS

2π
P̂ (z)
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Change in parton distribution
Change in population of element is

δD(x, t) = δDin − δDout

=
δt

t

Z 1

0
dz
αS

2π
P̂ (z)

»

1

z
D(x/z, t) − D(x, t)

–

.

Introduce plus-prescription with definition
Z 1

0
dx f(x) g(x)+ =

Z 1

0
dx [f(x) − f(1)] g(x) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

Plus-prescription, like the Dirac-delta function, is only defined under integral sign.
Plus-prescription includes some of the effects of virtual diagrams.
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DGLAP
We obtain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Here D(x, t) represents parton momentum fraction distribution inside incoming
hadron probed at scale t.
In timelike branching, it represents instead hadron momentum fraction distribution
produced by an outgoing parton. Boundary conditions and direction of evolution
are different, but evolution equation remains the same.

QCD, top and LHCLecture III: Parton branching – p.14/42



Quarks and gluons
For several different types of partons, must take into account different processes
by which parton of type i can enter or leave the element (δt, δx). This leads to
coupled DGLAP evolution equations of form

t
∂

∂t
Di(x, t) =

X

j

Z 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) .

Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave
via q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

„

1 + z2

1 − z

«

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]

Pgg(z) = 2CA

"

„

z

1 − z
+

1

2
z(1 − z)

«

+

+
1 − z

z
+

1

2
z(1 − z)

#

−
2

3
Nf TR δ(1 − z)

Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF
1 + (1 − z)2

z
.
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Using definition of the plus-prescription, Pqq and Pgg can be written in more
common forms

Pqq(z) = CF

»

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

–

Pgg(z) = 2CA

»

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

–

+
1

6
(11CA − 4Nf TR) δ(1 − z) .
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Solution by moments
Given fi(x, t) at some scale t = t0, factorized structure of DGLAP equation
means we can compute its form at any other scale.
One strategy for doing this is to take moments (Mellin transforms) with respect to x:

f̃i(N, t) =

Z 1

0
dx xN−1 fi(x, t) .

Inverse Mellin transform is

fi(x, t) =
1

2πi

Z

C
dN x−N f̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of
integrand.
After Mellin transformation, convolution in DGLAP equation becomes simply a
product:

t
∂

∂t
f̃i(x, t) =

X

j

γij(N,αS)f̃j(N, t)

Lowest order approximation for γ, γ(0)ij (N) =
R 1
0 dx xN−1Pij(x)

t
∂

∂t
f̃i(x, t) =

αS

2π

X

j

γ(0)ij (N)f̃j(N, t)
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Scaling violation
Consider combination of parton distributions which is flavour non-singlet, e.g.
DV = Dqi − Dq̄i or Dqi − Dqj . Then mixing with the flavour-singlet gluons drops
out and solution for fixed αS is

D̃V (N, t) = D̃V (N, t0)

„

t

t0

«γqq(N,αS)

,

We see that dimensionless function DV , instead of being scale-independent
function of x as expected from dimensional analysis, has scaling violation: its
moments vary like powers of scale t (hence the name anomalous dimensions).
For running coupling αS(t), scaling violation is power-behaved in ln t rather than t.
Using leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

„

αS(t0)

αS(t)

«dqq(N)

where dqq(N) = γ(0)qq (N)/2πb.

γ0qq = CF

h

−
1

2
+

1

(N(N + 1)
− 2

N
X

k=2

1

k

i
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Combined data on F2 proton
HERA F2

0
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4

5

1 10 10
2

10
3

10
4

10
5

F 2 em
-lo

g 10
(x

)

Q2(GeV2)

ZEUS NLO QCD fit

H1 PDF 2000 fit

H1 94-00

H1 (prel.) 99/00

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5 x=0.000102
x=0.000161

x=0.000253
x=0.0004

x=0.0005
x=0.000632

x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus as t increases V
decreases at large x and increases at small x. Physically, this is due to increase
in the phase space for gluon emission by quarks as t increases, leading to
loss of momentum. This is clearly visible in data:
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Parton distributions
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Parton luminosity
Parton luminosity is determined by the parton distribution functions, fi(x1, µ2) and
fj(x2, µ2).

fj(x2, µ2) need to be determined by data.
the available centre-of-mass energy-squared of the parton-parton collision, ŝ, is
less than the overall hadron-hadron collision energy, s, by a factor of x1x2 ≡ τ .
Define differential parton luminosities

τ
dLij

dτ
=

1

1 + δij

Z 1

0
dx1dx2

×
h

`

x1fi(x1, µ2) x2fj(x2, µ2)
´

+
`

1 ↔ 2
´

i

δ(τ − x1x2).

The collider luminosity is quite distinct from the parton luminosity. The former is a
property of a machine, whereas the latter is a property of the proton.
We now assume that σ̂ depends only on ŝ.

σ(s) =
X

{ij}

Z 1

τ0

dτ

τ

"

1

s

dLij

dτ

#"

ŝσ̂ij

#

,
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Ratios of luminosities
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Shower Monte Carlos
Attempt to give a complete description of a hadron scattering event. Analysis of events
at the Tevatron and the LHC will be performed using these programs.

Large number of standard model hard scattering processes
Inclusion of some BSM processes.
Inclusion of real (and virtual) radiation using QCD-based parton shower
approximation
Fragmentation of partons into the observed hadrons.
Model for resonance decay included

f(x,Q2) f(x,Q2)
Parton
Distributions

Hard
SubProcess

Parton
Shower

Hadronization

Decay

+ Minimum Bias
Collisions
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Leading general purpose programs
Pythia, T. Sjöstrand, L. Lönnblad, S. Mrenna and P.Z. Skands,
http://www.thep.lu.se/∼torbjorn/Pythia.html
Pythia 8, T. Sjöstrand C++
http://www.thep.lu.se/∼torbjorn/Pythia.html
HERWIG, G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P.
Richardson, M.H. Seymour, B.R. Webber,
http://hepwww.rl.ac.uk/theory/seymour/herwig/
Herwig++
S. Gieseke, A. Ribon, P. Richardson, M.H. Seymour, P. Stephens, B.R. Webber
http://projects.hepforge.org/herwig/
SHERPA,
Tanju Gleisberg, Frank Krauss, Andreas Schälicke, Steffen Schumann, Jan Winter
http://www.sherpa-mc.de/
ISAJET,
F. Paige, S. Protopopescu, H. Baer and X. Tata
http://www.phy.bnl.gov/∼isajet
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Sudakov form factor
DGLAP equations are convenient for evolution of parton distributions. Expressed
in terms of the unregulated branching probability we have,

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P̂ (z)D(x/z, t) −

Z 1

0
dz
αS

2π
P̂ (z)D(x, t)

To study structure of final states, slightly different form is useful. Consider again
simplified treatment with only one type of branching. Introduce Sudakov form
factor:

∆(t) ≡ exp

»

−
Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ (z)

–

,

t
∂

∂t
D(x, t) =

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) +

D(x, t)

∆(t)
t
∂

∂t
∆(t) ,

t
∂

∂t

„

D

∆

«

=
1

∆

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) .

QCD, top and LHCLecture III: Parton branching – p.26/42



Sudakov form factor
This is similar to DGLAP, except D replaced by D/∆ and regularized splitting
function P replaced by unregularized P̂ . Integrating,

D(x, t) = ∆(t)D(x, t0) +

Z t

t0

dt′

t′
∆(t)

∆(t′)

Z

dz

z

αS

2π
P̂ (z)D(x/z, t′) .

This has simple interpretation. First term is contribution from paths that do not
branch between scales t0 and t. Thus Sudakov form factor ∆(t) is probability of
evolving from t0 to t without branching. Second term is contribution from paths
which have their last branching at scale t′. Factor of ∆(t)/∆(t′) is probability of
evolving from t′ to t without branching.
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Sudakov form factor
Generalization to several species of partons straightforward. Species i has
Sudakov form factor

∆i(t) ≡ exp

2

4−
X

j

Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ji(z)

3

5 ,

which is probability of it evolving from t0 to t without branching. Then

t
∂

∂t

„

Di

∆i

«

=
1

∆i

X

j

Z

dz

z

αS

2π
P̂ij(z)Dj(x/z, t) .
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Monte Carlo method
Monte Carlo branching algorithm operates as follows: given virtual mass scale and
momentum fraction (t1, x1) after some step of the evolution, or as initial
conditions, it generates values (t2, x2) after the next step.

, Since probability of evolving from t1 to t2 without branching is ∆(t2)/∆(t1),
t2 can be generated with the correct distribution by solving

∆(t2)

∆(t1)
= R

where R is random number (uniform on [0, 1]).
, If t2 is higher than hard process scale Q2, this means branching has finished.
, Otherwise, generate z = x2/x1 with distribution proportional to

(αS/2π)P (z), where P (z) is appropriate splitting function, by solving

Z x2/x1

ε
dz
αS

2π
P (z) = R′

Z 1−ε

ε
dz
αS

2π
P (z)

where R′ is another random number and ε is cutoff for resolvable branching.
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In DIS, (ti, xi) values generated define virtual masses and momentum fractions of
exchanged quark, from which momenta of emitted gluons can be computed.
Azimuthal emission angles are then generated uniformly in the range [0, 2π]. More
generally, e.g. when exchanged parton is a gluon, azimuths must be generated
with polarization angular correlations.
Each emitted (timelike) parton can itself branch. In that case t evolves downwards
towards cutoff value t0, rather than upwards towards hard process scale Q2.
Probability of evolving downwards without branching between t1 and t2 is now
given by

∆(t1)

∆(t2)
= R .

Thus branching stops when R < ∆(t1).
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Parton Cascade

Due to successive branching, parton cascade or shower develops. Each outgoing
line is source of new cascade, until all outgoing lines have stopped branching. At
this stage, which depends on cutoff scale t0, outgoing partons have to be
converted into hadrons via a hadronization model.
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Soft gluon emission
Parton branching formalism discussed so far takes account of collinear
enhancements to all orders in PT. There are also soft enhancements: When
external line with momentum p and mass m (not necessarily small) emits gluon
with momentum q, propagator factor is

1

(p ± q)2 − m2
=

±1

2p · q
=

±1

2ωE(1 − v cos θ)

where ω is emitted gluon energy, E and v are energy and velocity of parton
emitting it, and θ is angle of emission. This diverges as ω → 0, for any velocity and
emission angle.
Including numerator, soft gluon emission gives a colour factor times universal,
spin-independent factor in amplitude

Fsoft =
p · ε
p · q

where ε is polarization of emitted gluon.
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For example, emission from quark gives numerator factor N · ε, where

Nµ = ("p + "q + m)γµu(p) ω → 0→ (γνγµpν + γµm)u(p)

= (2pµ − γµ "p + γµm)u(p) = 2pµu(p) .

(using Dirac equation for on-mass-shell spinor u(p)).
Universal factor Fsoft coincides with classical eikonal formula for radiation from
current pµ, valid in long-wavelength limit.
No soft enhancement of radiation from off-mass-shell internal lines, since
associated denominator factor (p + q)2 − m2 → p2 − m2 "= 0 as ω → 0.
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Enhancement factor in amplitude for each external line implies cross section
enhancement is sum over all pairs of external lines {i, j}:

dσn+1 = dσn
dω

ω

dΩ

2π

αS

2π

X

i,j

CijWij

where dΩ is element of solid angle for emitted gluon, Cij is a colour factor, and
radiation function Wij is given by

Wij =
ω2pi · pj

pi · q pj · q
=

1 − vivj cos θij
(1 − vi cos θiq)(1 − vj cos θjq)

.

Colour-weighted sum of radiation functions CijWij is antenna pattern of hard
process.
Radiation function can be separated into two parts containing collinear
singularities along lines i and j. Consider for simplicity massless particles,
vi,j = 1. Then Wij = W i

ij + W j
ij where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq
−

1

1 − cos θjq

«

≡
1

2(1 − cos θiq)

„

1 +
cos θiq − cos θij

1 − cos θjq

«
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This function has remarkable property of angular ordering. Write angular
integration in polar coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq . Performing
azimuthal integration, we find

Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij , otherwise 0.

i

j

Thus, after azimuthal averaging, contribution from W i
ij is confined to

cone, centred on direction of i, extending in angle to direction of j. Sim-
ilarly, W j

ij , averaged over φjq , is confined to cone centred on line j ex-
tending to direction of i.
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Angular ordering
To prove angular ordering property, write ni = (0, 0, 1), nj =

(0, sin θij , cos θij), nq = (sin θiq sinφiq ,− sin θiq cosφiq , cos θiq), so that

1 − cos θjq = a − b cosφiq

where a = 1 − cos θij cos θiq , b = sin θij sin θiq . Defining z = exp(iφiq), we
have

Ii
ij ≡

Z 2π

0

dφiq

2π

1

1 − cos θjq
=

1

iπb

I

dz

(z+ − z)(z − z−)

where z-integration contour is the unit circle and

z± =
a

b
±

s

a2

b2
− 1 .

Now only pole at z = z− can lie inside unit circle, so

Ii
ij =

Z 2π

0

dφiq

2π

1

a − b cosφiq
=

r

1

a2 − b2
≡

1

| cos θiq − cos θij |
.
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Angular ordering (cont)

Z 2π

0

dφiq

2π
W i

ij =
1

2(1 − cos θiq)
[1 + (cos θiq − cos θij)I

i
ij ]

=
1

1 − cos θiq
if θiq < θij , otherwise 0.
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Chudakov effect
Angular ordering is coherence effect common to all gauge theories. In QED it
causes Chudakov effect – suppression of soft bremsstrahlung from e+e− pairs,
which has simple explanation in old-fashioned (time-ordered) perturbation theory.

Consider emission of soft photon at angle θ from electron in pair with opening
angle θee < θ. For simplicity assume θee, θ $ 1.
Transverse momentum of photon is kT ∼ zpθ and energy imbalance at e → eγ
vertex is

∆E ∼ k2
T /zp ∼ zpθ2 .

Time available for emission is ∆t ∼ 1/∆E. In this time transverse separation of
pair will be ∆b ∼ θee∆t.
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Chudakov effect
For non-negligible probability of emission, photon must resolve this transverse
separation of pair, so

∆b > λ/θ ∼ (zpθ)−1

where λ is photon wavelength.
This implies that

θee(zpθ2)−1 > (zpθ)−1 ,

and hence θee > θ. Thus soft photon emission is suppressed at angles larger than
opening angle of pair, which is angular ordering.
Photons at larger angles cannot resolve electron and positron charges separately
– they see only total charge of pair, which is zero, implying no emission.
More generally, if i and j come from branching of parton k, with (colour) charge
Qk = Qi + Qk, then radiation outside angular-ordered cones is emitted
coherently by i and j and can be treated as coming directly from (colour) charge of
k.
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Coherent branching
Angular ordering provides basis for coherent parton branching formalism, which
includes leading soft gluon enhancements to all orders.
In place of virtual mass-squared variable t in earlier treatment, use angular
variable

ζ =
pb · pc

Eb Ec
, 1 − cos θ

as evolution variable for branching a → bc, and impose angular ordering ζ′ < ζ for
successive branchings. Iterative formula for n-parton emission becomes

dσn+1 = dσn
dζ

ζ
dz
αS

2π
P̂ba(z) .
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Coherent branching
Note that for spacelike branching a → bc (a incoming, b spacelike), angular
ordering condition is

θθ

θ

ba

c

a b

c

θb > θa > θc ,

QCD, top and LHCLecture III: Parton branching – p.41/42



Recap
Parton evolution can be represented as a branching process from higher values of
x

DGLAP equation predicts growth at small x and shrinkage at large x with
increasing Q2.
The Sudakov form factor ∆(t) is the probability of evolving from t0 to t without
branching.
branching from (t1, x1) to (t2, x2) with the right probability can be performed with
by choosing three random numbers, (t, x,φ)

Branching is subject to an angular ordering constraint. Large angle emission is
dynamically suppressed.
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