- Implications of the Higgs discovery |

) esie)
N Abdelhak DJOUADI (LPT Paris-Sud) e rc

e First, is it a Higgs?
e Implications for the SM
e Implications for the MSSM: mass
e Other implications for the MSSM
e What next?
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1. Is it a Higgs?

After 48 years of postulat, 30 years of search (and a few heart attack
f“a boson” is discovered at LHC on the 4th of July: Hi(gg)storical day!

CMS Preliminary —=— Observed i
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A longstanding and most crucial problem in particle physics:
how to generate particle masses in an SU(2) X U(1) gauge invariant wayﬂ

Introduce a doublet of scalar fields & = (£, ) with (0|®°|0) # 0:
fields/interactions symmetric under SU(2) x U(1) but vaccum not.

Ls :DMCI)TD“(I)—/LZ(I)T(I)—)\((I)T(I))Z
vV = (—u2/)\)1/2 = 246 GeV
= three d.o.f. for M+ and M.
For fermion masses, use same P:
,Cyuk:—fe(é, E)L(I)GR -+ ...
Residual d.o.f corresponds to spin—0 H particle.

e The scalar Higgs boson: J*¢ = 0™ quantum numbers (CP—even)
e Masses and self-couplings from V : M#; —2)\V g = 3@’ N
e Higgs couplings x particle masses: gyg = — = opvv = 2—Y .

\_ (since v is known, the only free parameter in the SM is My or \). J
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pin: the state decays into vy
e not spin—-1: Landau-Yang
e could be spin-2 like graviton?
— miracle that couplings fit that of H,
— “prima facie” evidence against it:

e.g.: Cg 7# C,Cy > 35¢, e TR
CP: is it CP—even or CP—odd? i

dI(H-ZZ*) dI'(H—ZZ) e
= ML and 3

L.
Problem: if H is CP mixture, only 5
0" component is projected out!
(or very large 0~ VV loop cplg).
%Eo - M“fo - 3030

2xIn(L /L)
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W,ZH — bb
\s=7TeV: [Ldt=4.7 1"
Vs=8TeV: [Ldt=131b"
H— 1t

Vs =7TeV: [Ldt = 4.6 fo”
\s= svaLd 13fb
H— ww' %Mv

Vs =8TeV: f[Ldt=131b"

H—y

\s = TVdet 481"
\s = svaLdt 591"
H—zz" - 4l
\s=7TeV: [Ldt = 4.8 "
\s=8TeV: [Ldt=5.810"

| w w w w
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CMS Preliminary
Vs=7TeV.L=5.1fb"
Vs=7TeV,L<51f" \s=8TeV,L=12.2 0" gl Vs=8TeV,L=531"

CMS Preliminary m,, = 125.8 GeV

H— bb (VH tag
H — bb (itH tag

) -I—-—
) ]
H — tt (0/1 jet)
H — <t (VBF tag)
H — =t (VH tag)
——

H— yy (untagged)
H— vy (VBF tag) ——
H— WW (0/1 jet) - 7
47 ATLAS Preliminary + SM =
H— WW (VBF tag) —— E Vs=7TeV, Ldt - 4.8 x Best fit
3*F 8TeV, Ldt=5.8-5.9fb" _g: 2 :;;<§(3);
H— WW (VH tag) n L . F E
H= 2z P 1- L 13 /O,\; E
-2 0 2 4 b T B E
Best fit o/og,, £ E
T N K E

Higgs couplings to elementary particles as predicted by Higgs mechanisn
e couplings to WW,ZZ,~~ roughly as expected for a CP-even Higgs

e couplings proportionial to masses as expected for the Higgs boson

So, it is not only a “new particle”, the “126 GeV boson”, a “new state”...

IT IS A HIGGS BOSON!

L But is it THE SM Higgs boson or A Higgs boson from some extensionﬁ

ICTP School, 13/06/2013
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1. First, is it a Higgs?
a SM or a BSM Higgs?

Which Higgs?

o @
U nﬁiggg? Private H’.‘?ﬁ@’? (@m!nﬁk@" Yhiggs*
Litlle Higgs:

@augephgiﬁ ﬁfygg? ]‘_(,;bbﬂe S ﬁ""”‘g
Bused ¥998°  r 0 et ﬁﬂgy@ gwrﬂ*qfﬁ

ot

@g},zrﬁgifﬂ ﬁuﬂ& : - o) :
f 7 1 L 2
3 Fotihigss H"ﬂé“fe@%@
G eTiaL :ﬁ'ﬁ?gg :
? R | ll @ iﬁgﬁg %auf*E"ﬂ f.ﬂ‘" I3 1[’_[‘19‘9@
@w qu—ﬁﬁ ??@?3? Lﬁne ﬁiggg?
| T‘l'(in- ﬂiﬁgg?
@Sﬁ?ﬁp ﬁ? S f ﬁﬁyﬂ'@f ? @}t&n’ ol Hﬁgyg?

CArstorhe Grojecn Evatic £8d sactors alarsas, Fad.io

To check this you need very precise measurements to see small deviations..]
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2. Implications in the SM

r50 its looks like expected in SM = 6 ﬁ
a triumph for high-energy physics! ;. 2_3%17;00_00033 ]
Indirect constraints from EW data[ ol Wiramee ]
H contributes to RC to W/Z masses: S ]
’ H \ Oé log _|_ ... 2_- _
W% 1 i
] o o LExcluded  Ne A~ |
Fit the EW precision measurements, 30 100 300
one obtains My = 92752 GeV, or my Gev
s 40 reliminary {s=7TeV,L 5.1fb" {s=8TeV, L 12.23’1
MH < 160 GeV at 95% CL . - fgi
compared with the measured mass " b
' 12
MH ~ 126 GeV. 2.0 10
A very non-trivial consistency check! - -
(remember the stop of the top quark!). 05 I;‘
The SM is a very successfull theory! 0%0 122 124 126 128 130O

2 Still some problems with A%B (LEP), A%B (TeV) and g — 2 but not severe...
ICTP School, 13/06/2013 Implications of the Higgs discovery — A. Djouadi — p.7/26



2. Implications in the SM

oy A

f. The theory preserves unitarity:
without H: |[Ao(VV — VV) | x E2
including H: |Ag| oc M%; /v?

theory unitary if Mg <700 GeV...
e Particle spectrum complete:

Fourth generation excluded by
H — Z7Z, WW, ~vv, bb rates...

e Extrapolable up to highest scales.

2M7,+M7Z —4mg

A(v?2) ~1+43

tops make )\ < O: unstable vacuum
Ac~Mp; = Muy=2129 GeV!

at 2loops for mP°'° =173 GeV.....
Degrassi et al., Bezrukov et al.
but what is measured m; value?

e SM = TOE? Maybe not (?):
m,,, DM, GUT, hierarchy...
ICTP School, 13/06/2013
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2. Implications in the SM

Fit of u ratios

Rates compatible with ol £
those expected in the SM | il
Fit of all LHC Higgs data =,

cr I | R SRR
(| <=

=3

agreement at 20-30% level
with SM predictions!

-0.5r

Moreau+AD | ::
and >20 TH+EXP analyses -10p

Cy

Some beyond the SM scenarios are in ‘mortuary”:
e Higgsless models, extreme Technicolor and composite scenarios, ..
e fermiophobic Higgs, gauge-phobic Higgs, 4th generation, ...
Some beyond the SM scenarios are in “hospital”:
Other BSM scenarios are strongly constrained...
Here, | discuss the example of Supersymmetry and the MSSM: J
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fln the MSSM: two Higgs doublets: H; = (E(f) and H, = (Eg ) T
After EWSB (which can be made radiative: more elegant than in SM):
Three dof to make Wf, 71, = 5 physical states left out: h, H, A, H*
Only two free parameters at tree—level: tan(5, M 5 but rad. cor. important
Mp<SMgz|cos25|+RC<S130 GeV , Mg~Mpa ~My+ SMgewss

— Couplings of h, H to VV are suppressed; no AVV couplings (CP).
—For tanf > 1: couplings to b () quarks enhanced (suppressed).

¢ Jobuu 9odd govv

h N ang 1 COS%;%% 1 sin(f — a)— 1
H G5~ 1/tanf &5 —tanf  cos(f —a)— 0
A 1/tan g tan S 0

In the decoupling limit: MSSM reduces to SM but with a light SM Higgs.

At tan3 >1, one SM-like and two CP-odd like Higgses with cpig to b,
. Ma<Mp®==h=A H=Hsy, Ma>M**=H=A h =Hgy |

ICTP School, 13/06/2013 Implications of the Higgs discovery — A. Djouadi — p.10/26



The mass value 126 GeV is rather large for the MSSM h boson,
—> one needs from the very beginning to almost maximize it... T
Maximizing M, is maximizing the radiative corrections; at 1-loop:

MA>>MZ 3mj M32 X2
My, Mz|cos2j3]| + 372vZsinZ llog —5 M2 1 — 121\‘;%

my
e decoupling regime with M 5 ~ O(TeV);
e large values of tanS 2> 10 to maximize tree-level value;
e maximal mixing scenario: X; = v/6Mg;
e heavy stops, i.e. large Mg = /Mg, Mg ;
we choose at maximum Mg < 3 TeV, not to have too much fine-tuning....
e Do the complete job: two-loop corrections and full SUSY spectrum
e Use RGE codes (Suspect) with RC in ﬁ/compare with FeynHiggs (OS
Perform a full scan of the phenomenological MSSM with 22 free parametel
e determine the regions of parameter space where 123 <M, <129 Ge\
(3 GeV uncertainty includes both “experimental” and “theoretical’” error)

e require h to be SM-like: o(h) x BR (h) ~ Hgn (H = Hgyy later)
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140, :
ﬁllain results: § 1 E
e Large Mg values needed: = -
- Mg ~ 1 TeV: only maximal mixing ~ "———a— ,,HP' £
— Mg =~ 3 TeV: only typical mixing. ::: "“‘.rf:;,‘ @é‘f‘v & %
e Large tan(3 values favored norss S ’?ﬂ‘?"é:;ﬁf‘%a. - -
but tan3 ~ 3 possible if Mg~ 3TeV  wdt <3t (it .
soo B e e s Lt Y L e

v B

How light sparticles can be with o2 20t M
the constraint M;, = 126 GeV?

e 1s/2s gen. q should be heavy...
But not main player here: the stops:
= m; < 500 GeV still possible!
oM, M, and y unconstrained,

e non-univ. m;: decouple ¢ from q
EW sparticles can be still very light

but watch out the new limits..

ICTP School, 13/06/2013
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3. Implications for the MSSM: mass

fConstrained MSSMs are interesting from model building point of view:

gravity,..

— concrete schemes: SSB occurs in hidden sector = —~ MSSM fields
— provide solutions to some MSSM problems: CP, flavor, etc..

— parameters obey boundary conditions — small number of inputs...

e MSUGRA: tan 8, my /2, mg, Ao, sign(u)

e GMSB: tanﬁ ’ Slgn(,u) , Mmes . ASSB . Nmess fields
e AMSB:, m¢ , m3/5, tan 3, sign(u)
full scans of the model parameters with 123 GGeV <M, <129 GeV

135:""""' R R N LA AR S R RE AN Y %135:

_E.NUHM 9130__

. W cmssm = ;
[[Jvemssm 1257
] [ nmssm

] . No-scale 120 :
[Jomss I

0 10 20 30 40 50

tan 8
Lvery strong constraints and some (minimal) models ruled out... —
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|*As the scale M g seems to be large, consider two extreme possibilitiesT

e Split SUSY: allow fine—tuning h g
scalars (including H) at high scale o e
gauginos—higgsinos at weak scale i 140 -

(unification+DM solutions still OK) 5 o/ PR
My, x log(Mg/my) — large > :' o |
e SUSY broken at the GUT scale... " [ —
give up fine-tuning and everything else B T T TR TR
still, \ o MI%; related to gauge cplgs 160 g

A(1h) = gﬁ(fﬁ)jf%(ﬁ‘) (1 + 6m) ol Highscate sUSY § — |

... leading to M =120-140 GeV ... _—

In both cases small tan{3 needed... S ,
note 1: tans ~ 1 possible s
note 2: Mg large and not M 5, possible!?

Consider general MSSM with tan ~ 1! w24 . . |
10 10 10 10 10 10 10
Ms (GeV)
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fThere are other (stringent) constraints on pMSSM to be included:

-

e production/decay rates of the observed Higgs particle;

e CMS and ATLAS pp —+ A/H/(h) —77and t — bH™ searches;
e non observation of heavier Higgses in the ZZ,WW,tt channels;

e constraints from sparticle searches and eventually Dark Matter,

e constraints from flavor: at least (direct!) limits from Bs — 1 /...

I l I I I I I

ATLAS Preliminary i my =126 Gev

W,ZH bb i

Vs=7TeV: Ldt=4.71b" e e

Vs = 8 TeV. ! :

H i

\s=7TeV: = 4. o

Vs =8 TeV: Ldl(:*)13fb" :

Ho oww' 1 é

Vs=8TeV: Ldt=13fb" P —

H i

\s=7TeV: Ldt=48f" P _e—

Vs = 8 TeV. an]:s.gfb" :

Ho zz¥ 4 a

\5=7TeV: Ldt=48fb" e

\5=8TeV: Ldt=581b" H

Combined =13 0.3 :

V5=7TeV: Ldt=46-48f" _e—

Ys=8TeV: Ldt=58-13fb"

| | | | | I |
-1 0 +1

o

Signal strength ( )
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Higgs—strahlung

q

q
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1000

|7 Higgs searches are more complicated/challenging in the MSSM case—L
,H

e More Higgs particles: ®=h, H,

— some couple almost like the SM Higgs,
— but some are more weakly coupled.

e In general same production as in SM
but also new/more complicated processs
(rates can be smaller or larger than in SM
e Possibility of different decay modes
(and clean decays eg into 7y suppressed
e Impact of light SUSY particles?

—> In general very complicated situation!
But simpler in the decoupling regime:

—h as in SM with M}, =115—130GeV

— dominant mode: gg, bb—H/A — 77
It is even more tricky in beyond MSSM!
and also in some non-SUSY extensio@..
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fThere are other (stringent) constraints on pMSSM to be included: T
e production/decay rates of the observed Higgs particle;

e CMS and ATLAS pp —+ A/H/(h) —77and t — bH™ searches;

e non observation of heavier Higgses in the ZZ,WW,tt channels;

e constraints from sparticle searches and eventually Dark Matter,

e constraints from flavor: at least (direct!) limits from Bs — 1 /...

o

Maximal mixing - MS =2TeV

50

tan B

= H/A — 11" CMS 7+8 TeV

123 <M, <129 GeV

+ Excluded by flavour
LEP limit

H/A - 1"t CMS 7 TeV

Il lIIlllIIlIlllllllIllllllllllllllllll

ICTP School, 13/06/2013
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4. Other implications for the MSSM

What about the low tan/3 regime?

f tan( < 3 usually “excluded” by LEP2:
M, 2114 GeV for BMS with Mg~ 1 TeV.

Be we can be more relaxed: Mg > My
—> tan(3 as low as 1 could be allowed!

EEZZZE
<<d<d<<<

e We turn M}, ~ M| cos 23|+RC to

RC= 126 GeV - f(M,, tan j3) § e
ie. we "trade” RC with the measured M}, \\
MSSM with only 2 inputs at HO: M 5, tan (3 - e

— model indep. effective approach!

e Constraints on the low tan(3 region:
- H—->WW,ZZ in SM

— H—tt in BSM scenarios

— H—hh and A—hZ..

Use current data for constraints... J

Quevillon+AD . |
200 400 600 800 1000
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|7 Sets stingent constraints on pMSSM regimes/benchmark scenarios?w
e Heavier CP-even H being the observed Higgs is now excluded..

e Close h, H, A, H™ (intense coupling regime) excluded..

e Small o scenario with g1, ~ 0 and thus small I'};:

ruled out by LHC/Tevatron data: ex: loose Wh— {vbb signal..

¢ gluophobic h with g, < gH,,ee due to squark loops?
ruled out by ZZ, W W, v~ signals at LHC (and also the h mass)

But some difference with the SM!

Mn_126Gev Rpo,
a 2 20 excessin H — . VE=T7®8 TeV
e Statistical fluctuation? s
e Systematics problem?
e Maybe QCD uncertainties? o
ATLAS
Hope it is due to SUSY! R L

— total Higgs width suppressed? —

L — SUSY effects in hyy loop? 7 s
ICTP School, 13/06/2013 Implications of the Higgs discovery — A. Djouadi — p.19/26



o

A 126 GeV Higgs provides information on BSM and SUSY in particular:j
e My =119 GeV would have been a boring value: everybody OK..

e My =145 GeV would be a devastating value: mass extinction..

e My~ 126 GeV is Darwinian: (natural) selection among models..
SUSY spectrum heavy; except maybe for weakly interacting

sparticles and also stops — more focus on them in SUSY searches!

One has to include other Higgs/SUSY searches in particular:

e H/A /H= searches at the LHC are becoming very constraining..

e SUSY searches and flavor constraints are to be taken into account.
e No more room for some search channels such as H/A—> (i1,bb,..
(need to start thinking bout changing the benchmark scenarios....)

e Some search channels at low tan( still relevant: H—WW,ZZ,tt,hh,..
(need to continue/adapt the SM Higgs searches at high masses!)

7-8 TeV LHC for the lightest h and 13-14 TeV LHC for H/A/H™ ?
and maybe some supersymmetric particles will show up? J
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rEven if no signh of BSM physics is seen: is Particle Physics “closed”?
No! Need to check that H is indeed responsible of SEWSB (and SM-like?)
Measure its fundamental properties in the most precise way:

e its mass and total decay width (invisible width due to dark matter?),
e its spin—parity quantum numbers and check SM prediction for them,
e its couplings to fermions and gauge bosons and check that they are
indeed proportional to the particle masses (fundamental prediction!),
e its self—couplings to reconstruct the potential Vi that makes EWSB.
Possible for M g ~ 126 GeV as all productlon/decay channels useful!

100 ‘ 1F

bb’
(pp — H —l— X) [pb]
N Hwiv\
10 ] S
CC ——~_ % |
Hqq
WH., 0.01F ¢ F
ZH . .'.,"""' s
1 EH o

0.001 ¢

.',""“ '.',"“" Z ;
0.1 L . L L X e L 0.0001 7 h (o L
100 120 145 180 230 300 400 500 100 120 14 200 250 300 400 500
My [GeV] My [GeV]
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e Look at various H production/decay
channels and measure N., = 0 X BR
e But large errors mainly due to:

— experimental: stats, system., lumi...
— theory: PDFs, HO/scale, jetology...
total error about 20-30% in gg — H
Hjj contaminates VBF (now 30%)..

—> ratios of cxBR: many errors out!
Deal with width ratios I'x /Ty

— TH on 0 and some EX errors

— parametric errors in BRs

— TH ambiguities from T"tg*

e Achievable accuracy:

— now: 20-30% onyy/VV 177 /VV
— future: few % at HL—-LHC!

LSufficient to probe BSM physics?
ICTP School, 13/06/2013

20 ¢
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-

Challenge: measurement of Higgs self-couplings and access to V. T

o(pp — HH + X) [fb
e 213 from pp — HH + X = — L1000 | MH:125GeV)[ | gg+ HH
e 214 from pp—>3H+X, hopeless. >H
Various processes for HH prod: ’ -  qq ~ HHqd]
! v ,.:' e """”"""'M'(lq/gg—)tEHH

only gg — HHX relevant... M

40 ' ' : : : q QO e qq — WHH]

.| olpp = HH+X)/o™" R Sy 7 mRse @i~ ZHH

[ /5=14 TeV, My = 125 GeV 2
30 P
gg—-HH - :
5N qq' — HHqq' - 01 L . . .
20l ) q@ — WHH 8§ 25 50 75 100
qd - ZHH ----- - Vs [TeV]

15 e H — bb decay alone not clean

10| e H — ~ decay very rare,

sp e, e H — 77 would be possible?

05310;35 e H — WW not useful?

Nevt /N — bb77, bb~y viable?
— but needs 'very large luminosity.
Maybe even needs an ILC.....

ICTP School, 13/06/2013
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et Z Very precise measurements

@ 5 S— mostly at /s < 500 GeV

o g m) o L and mainlyinete” — ZH
) 7t (with 0 & 1/s) and ZHH, ttH

) Y grmww | £0.012

L grnzz | £0.012

e \ Ve e 1 s GHbb +0.022

OliHee ’ JHcc 10.037

e | HHW 9HTT +0.033

: L S0 L Jmtt +0.030

H o omomom wow AN +(.22
s GeY My | £0.0004

t
t
e e Ty 10.061
Mﬁ CP £0.038
e’ 7

—> difficult to be beaten by anything else for ~ 125 GeV Higgs

o |
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5. What next?

Now, this is not the end. T
It is not even the beginning to the end.
But it is, perhaps, the end of the beginning.
Sir Winston Churchill, November 1942

N0BOPY UNDERSTANDS ME!

L3
/

We hope that at the end we finally
understand the EWSB mechanism,
but there is a long way untill then....
and there might be many surprises!
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