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QCD, Feynman rules, and asymptotic freedom
Overview of Cross sections

Motivation for colour

Lagrangian of QCD
⋆ Local gauge invariance

⋆ Derivation of Feynman rules

Running coupling
⋆ Running coupling

⋆ Asymptotic freedom

⋆ Measurements of αS

⋆ Infrared slavery

QCD, top and LHCLecture I: QCD, Feynman rules, and asymptotic freedom – p.2/32



Overview
These lectures illustrate how we can make the best possible predictions for QCD
processes at the LHC.

Both CMS and ATLAS at the LHC have accumulated about 23fb−1 at
√

s = 8 TeV.

The number of events produced is the product of the integrated luminosity and the
cross section.

They will restart in 2015 at
√

s = 13 TeV.

Eventual goal of 3000 fb−1 at
√

s = 14 TeV by about 2030.

No branching ratios to observable states are included in the plot below
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Overview II
Many of the most interesting processes involve the production of (pairs of) vector
bosons.

These processes display the cancellations inherent in gauge theory and have an
important role as a background to the Higgs.

Plot includes branching ratio to one generation of charged fermions and cuts on
the photon pT where applicable.
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Overview III
Many of these processes have been observed at the LHC

√
s = 7, 8 TeV.
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Overview IV
Several different pieces required for a full description of the event.

I shall concentrate on methods for the hard scattering cross section, parton
distribution functions and the parton shower.

All of these have aspects that can be derived from a perturbative treatment of the
QCD Lagrangian.
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Motivation for Colour SU(3)
Consider the ratio R of the e+e− total hadronic cross section to the cross section
for the production of a pair of point-like, charge-one objects such as muons.

The virtual photon excites all electrically charged constituent-anticonstituent pairs
from the vacuum.

At low energy the virtual photon excites only the u, d and s quarks, each of which
occurs in three colours.
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Data
The data on R are in reasonable agreement with the prediction of the three colour model.

Re+e− =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)
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Colour SU(3) and spectroscopy
The observed baryons are interpreted as three-quark states.

The quark constituents of the baryons are forced to have half-integral spin in order
to account for the spins of the low-mass baryons.

The quarks in the spin- 3
2

baryons are then in a symmetrical state of space, spin
and SU(3)f degrees of freedom.

However the requirements of Fermi-Dirac statistics imply the total antisymmetry of
the wave function.
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We introduce the colour degree of freedom: a colour index a with three possible
values (usually called red, green, blue for a = 1, 2, 3) is carried by each quark.

The baryon wave functions are totally antisymmetric in this new index.

Quark Charge Mass Baryon Number Isospin

u + 2
3

∼ 4 MeV 1
3

+ 1
2

d − 1
3

∼ 7 MeV 1
3

− 1
2

c + 2
3

∼ 1.5 GeV 1
3

0

s − 1
3

∼ 135 MeV 1
3

0

t + 2
3

∼ 173 GeV 1
3

0

b − 1
3

∼ 5 GeV 1
3

0

The group of colour transformations is SU(3), with the quarks qa transforming
according to the fundamental representation

Why does this new degree of freedom not lead to a proliferation of states?

We hypothesize that only colour singlet states can exist in nature.

For a baryon the colour singlet state is totally antisymmetric
(|a〉|b〉|c〉 + |b〉|c〉|a〉 + |c〉|a〉|b〉 − |b〉|a〉|c〉 − |a〉|c〉|b〉 − |c〉|b〉|a〉)/

√
6

QCD, top and LHCLecture I: QCD, Feynman rules, and asymptotic freedom – p.10/32



Lagrangian of QCD
Feynman rules for perturbative QCD follow from Lagrangian

L = −1

4
F A

αβF αβ
A +

X

flavours

q̄a(i6D − m)abqb + Lgauge−fixing

F A
αβ is field strength tensor for spin-1 gluon field AA

α ,

F A
αβ = ∂αAA

β − ∂βAA
α − gfABCAB

α AC
β

Capital indices A, B, C run over 8 colour degrees of freedom of the gluon field.
Third ‘non-Abelian’ term distinguishes QCD from QED, giving rise to triplet and
quartic gluon self-interactions and ultimately to asymptotic freedom.

QCD coupling strength is αS ≡ g2/4π. Numbers fABC (A, B, C = 1, ..., 8) are
structure constants of the SU(3) colour group. Quark fields qa (a = 1, 2, 3) are in
triplet colour representation. D is covariant derivative:

(Dα)ab = ∂αδab + ig
“

tCAC
α

”

ab

(Dα)AB = ∂αδAB + ig(TCAC
α )AB
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t and T are matrices in the fundamental and adjoint representations of SU(3),
respectively:

tA =
1

2
λA,

ˆ

tA, tB
˜

= ifABCtC ,
ˆ

TA, TB
˜

= ifABCTC

where (TA)BC = −ifABC . We use the metric gαβ = diag(1,–1,–1,–1) and set
~ = c = 1. 6D is symbolic notation for γαDα. Normalisation of the t matrices is

Tr tAtB = TR δAB , TR =
1

2
.

Colour matrices obey the relations:

X

A

tAabt
A
bc = CF δac , CF =

N2 − 1

2N

Tr TCTD =
X

A,B

fABCfABD = CA δCD , CA = N

Thus CF = 4
3

and CA = 3 for SU(3).

QCD, top and LHCLecture I: QCD, Feynman rules, and asymptotic freedom – p.12/32



SU(3) generators
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The totally antisymmetric structure constants are given by, (
ˆ

λA, λB
˜

= 2ifABCλC )

f123 = 1

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2

f458 = f678 =

√
3

2
,

and all other fABC not related to these by permutation are zero.
QCD, top and LHCLecture I: QCD, Feynman rules, and asymptotic freedom – p.13/32



Gauge invariance
QCD Lagrangian is invariant under local gauge transformations. That is, one can
redefine quark fields independently at every point in space-time,

qa(x) → q′a(x) = exp(it · θ(x))abqb(x) ≡ Ω(x)abqb(x)

without changing physical content.

Covariant derivative is so called because it transforms in same way as field itself:

Dαq(x) → D′
αq′(x) ≡ Ω(x)Dαq(x) .

(omitting the colour labels of quark fields from now on). Use this to derive
transformation property of gluon field A

D′
αq′(x) =

`

∂α + igt · A′
α

´

Ω(x)q(x)

≡ (∂αΩ(x))q(x) + Ω(x)∂αq(x) + igt · A′
αΩ(x)q(x)

where t · Aα ≡PA tAAA
α . Hence

t · A′
α = Ω(x)t · AαΩ−1(x) +

i

g

`

∂αΩ(x)
´

Ω−1(x) .
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Transformation property of gluon field strength Fαβ is

t · Fαβ(x) → t · F ′
αβ(x) = Ω(x)t · Fαβ(x)Ω−1(x) .

Contrast this with gauge-invariance of QED field strength. QCD field strength is
not gauge invariant because of self-interaction of gluons. Carriers of the colour
force are themselves coloured, unlike the electrically neutral photon.

Note there is no gauge-invariant way of including a gluon mass. A term such as

m2AαAα

is not gauge invariant. This is similar to QED result for mass of the photon. On the
other hand the quark mass term is gauge invariant.
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Feynman rules
Use free piece of QCD Lagrangian to obtain inverse quark and gluon propagators.

⋆ Inverse quark propagator in momentum space obtained by setting ∂α = −ipα

for an incoming field. Result is on the next slide. The iε prescription for pole of
propagator is determined by causality, as in QED.

⋆ Gluon propagator impossible to define without a choice of gauge. The choice

Lgauge−fixing = − 1

2 λ

“

∂αAA
α

”2

defines covariant gauges with gauge parameter λ. Inverse gluon propagator is
then

Γ
(2)
{AB, αβ}

(p) = iδAB

»

p2gαβ − (1 − 1

λ
)pαpβ

–

.

(Check that without gauge-fixing term this function would have no inverse.)
Resulting propagator is in the table. λ = 1 (0) is Feynman (Landau) gauge.
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Gauge fixing explicitly breaks gauge invariance. However, in the end physical
results will be independent of gauge. For convenience, we usually use the
Feynman gauge.

In non-Abelian theories like QCD, covariant gauge-fixing term must be
supplemented by a ghost term which we do not discuss here. The ghost field,
shown by dashed lines in the above table, cancels unphysical degrees of freedom
of gluon which would otherwise propagate in covariant gauges.

Propagators determined from −S, interactions from S.
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Feynman rules – recipe
Consider a theory which contains only a complex scalar field φ and an action
which contains only bilinear terms, S = φ∗ (K + K′) φ.

MOE: both K and K′ are included in the free Lagrangian, S0 = φ∗ (K + K′) φ.
Using the above rule the propagator ∆ for the φ field is given by

∆ =
−1

K + K′
.

JOE: K is regarded as the free Lagrangian, S0 = φ∗Kφ, and K′ as the
interaction Lagrangian, SI = φ∗K′φ. Now SI is included to all orders in
perturbation theory by inserting the interaction term an infinite number of times:

∆ =
−1

K
+

„−1

K

«

K′

„−1

K

«

+

„−1

K

«

K′

„−1

K

«

K′

„−1

K

«

+ · · ·

=
−1

K + K′
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Running coupling
Consider dimensionless physical observable R which depends on a single large
energy scale, Q ≫ m where m is any mass. Then we can set m → 0 (assuming
this limit exists), and dimensional analysis suggests that R should be independent
of Q.

This is not true in quantum field theory. Calculation of R as a perturbation series in
the coupling αS = g2/4π requires renormalization to remove ultraviolet
divergences. This introduces a second mass scale µ — point at which
subtractions which remove divergences are performed. Then R depends on the
ratio Q/µ and is not constant. The renormalized coupling αS also depends on µ.

But µ is arbitrary! Therefore, if we hold bare coupling fixed, R cannot depend on µ.
Since R is dimensionless, it can only depend on Q2/µ2 and the renormalized
coupling αS . Hence

µ2 d

dµ2
R

 

Q2

µ2
, αS

!

≡
"

µ2 ∂

∂µ2
+ µ2 ∂αS

∂µ2

∂

∂αS

#

R = 0 .

This is the simplest expression of the renormalization group. At fixed bare
coupling, physical predictions cannot depend on an arbtitrary choice of
renormalization scale.
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Introducing

τ = ln

 

Q2

µ2

!

, β(αS) = µ2 ∂αS

∂µ2
,

we have
"

− ∂

∂τ
+ β(αS)

∂

∂αS

#

R = 0.

This renormalization group equation is solved by defining running coupling αS(Q):

τ =

Z αS(Q)

αS

dx

β(x)
, αS(µ) ≡ αS .

Then
∂αS(Q)

∂τ
= β(αS(Q)) ,

∂αS(Q)

∂αS
=

β(αS(Q))

β(αS)
.

and hence R(Q2/µ2, αS) = R(1, αS(Q)). Thus all scale dependence in R comes
from running of αS(Q).

We shall see QCD is asymptotically free: αS(Q) → 0 as Q → ∞. Thus for large
Q we can safely use perturbation theory. Then knowledge of R(1, αS) to fixed
order allows us to predict variation of R with Q.
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Beta function
Running of the QCD coupling αS is determined by the β function, which has the
expansion

β(αS) = −bα2
S(1 + b′αS) + O(α4

S)

b =
(11CA − 2Nf )

12π
, b′ =

(17C2
A − 5CANf − 3CF Nf )

2π(11CA − 2Nf )
,

where Nf is number of “active” light flavours. Terms up to O(α5
S) are known.

⋆ if dαS

dτ
= −bα2

S(1 + b′αS) and
αS → ᾱS(1 + cᾱS), it follows that
dᾱS

dτ
= −bᾱ2

S(1 + b′ᾱS) + O(ᾱ4
S)

⋆ first two coefficients b, b′ are thus
invariant under scheme change.
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Asymptotic freedom

Roughly speaking, quark loop diagram (a) contributes negative Nf term in b, while
gluon loop (b) gives positive CA contribution, which makes β function negative
overall. (This statement is literally correct in the background field method).

QED β function is βQED(α) = 1
3π

α2 + . . .

Thus b coefficients in QED and QCD have opposite signs.

From earlier slides,

∂αS(Q)

∂τ
= −bα2

S(Q)
h

1 + b′αS(Q)
i

+ O(α4
S).

Neglecting b′ and higher coefficients gives αS(Q) =
αS(µ)

1+αS(µ)bτ
, τ = ln

“

Q2

µ2

”

.
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Asymptotic freedom
As Q becomes large, αS(Q) decreases to zero: this is asymptotic freedom. Notice
that sign of b is crucial. In QED, b < 0 and coupling increases at large Q.

Including next coefficient b′ gives implicit equation for αS(Q):

bτ =
1

αS(Q)
− 1

αS(µ)
+ b′ ln

“ αS(Q)

1 + b′αS(Q)

”

− b′ ln
“ αS(µ)

1 + b′αS(µ)

”

What type of terms does the solution of the renormalization group equation take
into account in the physical quantity R?
Assume that R has perturbative expansion

R = αS + O(α2
S)

Solution R(1, αS(Q)) can be re-expressed in terms of αS(µ):

R(1, αS(Q)) = αS(µ)
∞
X

j=0

(−1)j(αS(µ)bτ)j

= αS(µ)
h

1 − αS(µ)bτ + α2
S(µ)(bτ)2 + . . .

i

Thus there are logarithms of Q2/µ2 which are automatically resummed by using
the running coupling. Neglected terms have fewer logarithms per power of αS .
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Lambda parameter
Perturbative QCD tells us how αS(Q) varies with Q, but its absolute value has to
be obtained from experiment. Nowadays we usually choose as the fundamental
parameter the value of the coupling at Q = MZ , which is simply a convenient
reference scale large enough to be in the perturbative domain.

Also useful to express αS(Q) directly in terms of a dimensionful parameter
(constant of integration) Λ:

ln
Q2

Λ2
= −

Z ∞

αS(Q)

dx

β(x)
=

Z ∞

αS(Q)

dx

bx2(1 + b′x + . . .)
.

Then (if perturbation theory were the whole story) αS(Q) → ∞ as Q → Λ. More
generally, Λ sets the scale at which αS(Q) becomes large.

In leading order (LO) keep only first β-function b:

αS(Q) =
1

b ln(Q2/Λ2)
(LO).
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In next-to-leading order (NLO) include also b′:

1

αS(Q)
+ b′ ln

“ b′αS(Q)

1 + b′αS(Q)

”

= b ln
“Q2

Λ2

”

.

This can be solved numerically, or we can obtain an approximate solution to
second order in 1/ log(Q2/Λ2):

αS(Q) =
1

b ln(Q2/Λ2)

»

1 − b′

b

ln ln(Q2/Λ2)

ln(Q2/Λ2)

–

(NLO).

This is Particle Data Group (PDG) definition.

Note that Λ depends on number of active flavours Nf . ‘Active’ means mq < Q.
Thus for 5 < Q < 175 GeV we should use Nf = 5. See ESW for relation between
Λ’s for different values of Nf .
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Measurements ofαS

pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

The most recent compilation of measurements of αS (Bethke, arXiv:1210.0325) is
shown above. Evidence that αS(Q) has a logarithmic fall-off with Q is persuasive.

The value of αS is normally expressed as the value of the coupling constant in the
MS scheme at the mass of the Z-boson.
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The static force between two quarks

Lattice calculation of the static qq̄ potential, performed in the quenched
approximation.

At small distances V (R) = V0 − αS(aR)
R

, logarithmic modification of Coulomb
potential.

At large distances V (R) = V0 + KR, linearly rising potential. This is infra-red
slavery.
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Renormalization schemes
Λ also depends on renormalization scheme. Consider two calculations of the
renormalized coupling which start from the same bare coupling α0

S :

αA
S = ZAα0

S , αB
S = ZBα0

S

Infinite parts of renormalization constants ZA and ZB must be same in all orders
of perturbation theory. Therefore two renormalized couplings must be related by a
finite renormalization:

αB
S = αA

S (1 + c1αA
S + . . .).

Note that first two β-function, coefficients, b and b′, are unchanged by such a
transformation: they are therefore renormalization-scheme independent.

Two values of Λ are related by

log
ΛB

ΛA
=

1

2

Z αB
S

(Q)

αA
S

(Q)

dx

β(x)

This must be true for all Q, so take Q → ∞, to obtain

ΛB = ΛA exp
c1

2b

Thus relations between different definitions of Λ are given by the one-loop
calculation that fixes c1.
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Nowadays, most calculations are performed in modified minimal subtraction (MS)
renormalization scheme. Ultraviolet divergences are ‘dimensionally regularized’ by
reducing number of space-time dimensions to D < 4:

d4k

(2π)4
−→ (µ)2ǫ d4−2ǫk

(2π)4−2ǫ

where ǫ = 2 − D
2

. Note that renormalization scale µ still has to be introduced to
preserve dimensions of couplings and fields.

Loop integrals of form
Z

dDk

(k2 + m2)2

lead to poles at ǫ = 0. The minimal subtraction prescription is to subtract poles and
replace bare coupling by renormalized coupling αS(µ). In practice poles always
appear in combination

1

ǫ
+ ln(4π) − γE ,

(Euler’s constant γE = 0.5772 . . .). In modified minimal subtraction scheme
ln(4π) − γE is subtracted as well. From argument above, it follows that

Λ
MS

= ΛMSe[ln(4π)−γE ]/2 = 2.66ΛMS

Current best fit value of αS at mass of Z is [Bethke, arXiv:1210.0325]
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Recap
QCD is an SU(3) gauge theory of quarks (3 colours) and gluons (8
colours,self-interacting).

The Lagrangian of QCD has the property of local gauge invariance.

Renormalization of dimensionless observables depending on a single large scale
implies that the scale dependence enters through the running coupling.

Asymptotic freedom implies the running coupling becomes small at high energies.
The energy at which this occurs is determined from experiment. (Λ ∼ 300 MeV).

α(MZ) ≃ 0.118 in five flavour MS-renormalization scheme.
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