Composite Higgs Models in the LHC Era

Michele Redi

OUTLINE

OUTLINE

- Standard Model Higgs
- Higgs as Nambu-Goldstone boson
- Realizations in 4d and 5d
- EWPT, flavor and LHC searches
- Higgs potential

July 31, 2012 Phys. Lett. B7I6

$m_{h} \approx 125 \mathrm{GeV}$

July 31, 2012 Phys. Lett. B7I6

$m_{h} \approx 125 \mathrm{GeV}$

What is the nature of the Higgs particle?

Mass for gauge bosons means new degrees of freedom

$$
m_{1}=0 \quad m_{1} \neq 0
$$

Mass for gauge bosons means new degrees of freedom

$$
m_{1}=0
$$

$$
m_{1} \neq 0
$$

Nambu-Goldstone Bosons

$$
S U(2)_{L} \otimes U(1)_{Y} \rightarrow U(1)_{Q}
$$

become longitudinal polarizations of W \& Z

Custodial symmetry

$$
\rho=\frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}} \approx 1 \quad \longrightarrow \quad S U(2)_{c}
$$

In SM electro-weak symmetry broken by scalar doublet

Physical scalar is the Higgs boson $\quad m_{h}=\sqrt{\lambda} v$

In principle Higgs scalar not even needed

$$
\mathcal{L}=\frac{v^{2}}{4} \operatorname{Tr}\left[\partial_{\mu} U \partial^{\mu} U^{\dagger}\right]=\frac{1}{2}\left(1-\frac{\pi^{i} \pi^{i}}{v^{2}}+\ldots\right) \partial_{\mu} \pi^{i} \partial^{\mu} \pi^{W^{+}}
$$

In principle Higgs scalar not even needed

$$
A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\frac{1}{v^{2}}(s+t)
$$

New physics must appear below

$$
\Lambda=4 \pi v \sim 3 \mathrm{TeV}
$$

QCD breaks electro-weak symmetry
$<\bar{\Psi}_{L}^{i} \Psi_{R}^{j}>=\Lambda_{Q C D}^{3} \delta_{i j} \longrightarrow \frac{S U(2)_{L} \otimes S U(2)_{R}}{S U(2)_{L+R}} \longrightarrow \mathcal{L}=f_{\pi}^{2} \operatorname{Tr}\left[\partial_{\mu} U \partial^{\mu} U^{\dagger}\right]$

QCD breaks electro-weak symmetry
$\left\langle\bar{\Psi}_{L}^{i} \Psi_{R}^{j}\right\rangle=\Lambda_{Q C D}^{3} \delta_{i j} \longrightarrow \frac{S U(2)_{L} \otimes S U(2)_{R}}{S U(2)_{L+R}} \longrightarrow \mathcal{L}=f_{\pi}^{2} T r\left[\partial_{\mu} U \partial^{\mu} U^{\dagger}\right]$

Technicolor is a rescaled version of $\mathrm{QCD} \mathrm{f}=\mathrm{v}$.
No Higgs scalar but techni-resonances (spin 0, I/2, I , ... etc.).

Ruled out.

In the SM :

$$
A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right) \simeq\left[s-a^{2} \frac{s^{2}}{s-m_{h}^{2}}+(s \rightarrow t]\right.
$$

Amplitude goes to constant if $\mathrm{a}=1$

$$
\mu \frac{d \lambda}{d \mu}=\frac{1}{16 \pi^{2}}\left(24 \lambda^{2}-6 y_{t}^{4}+\ldots\right)
$$

Giudice et al.
|||2.3022

$$
115 \mathrm{GeV}<m_{h}<160 \mathrm{GeV}
$$

With 125 GeV Higgs SM can be valid up Mp.

HIERARCHY PROBLEM

SM is an effective theory valid up to Λ

$$
\mathcal{L}=\mathcal{L}_{\text {kin }}+g A_{\mu} \bar{\psi} \gamma^{\mu} \psi+y \bar{\psi} H \psi-\lambda|H|^{4} \quad D=4
$$

HIERARCHY PROBLEM

SM is an effective theory valid up to Λ

$$
\mathcal{L}=\mathcal{L}_{\text {kin }}+g A_{\mu} \bar{\psi} \gamma^{\mu} \psi+y \bar{\psi} H \psi-\lambda|H|^{4}
$$

$$
D=4
$$

Irrelevant interactions:

$$
\frac{1}{\Lambda}\left(l H^{c}\right)^{2} \quad \frac{1}{\Lambda^{2}}(\bar{\psi} \psi)^{2} \quad \frac{1}{\Lambda} \bar{\psi} \sigma^{\mu \nu} \psi F_{\mu \nu} \quad D>4
$$

HIERARCHY PROBLEM

SM is an effective theory valid up to Λ

$$
\mathcal{L}=\mathcal{L}_{k i n}+g A_{\mu} \bar{\psi} \gamma^{\mu} \psi+y \bar{\psi} H \psi-\lambda|H|^{4}
$$

$$
D=4
$$

Irrelevant interactions:

$$
\frac{1}{\Lambda}\left(l H^{c}\right)^{2} \quad \frac{1}{\Lambda^{2}}(\bar{\psi} \psi)^{2} \quad \frac{1}{\Lambda} \bar{\psi} \sigma^{\mu \nu} \psi F_{\mu \nu} \quad D>4
$$

One relevant operator

$$
\left[H^{2}\right] \approx 2 \quad m_{h} \sim \Lambda
$$

Perturbatively:

$$
\delta m_{h}^{2}=-\frac{3 \lambda_{t}^{2}}{8 \pi^{2}} \Lambda_{t}^{2} \quad \longrightarrow \quad \Lambda_{t} \sim 3 m_{h}
$$

$$
\delta m_{h}^{2}=\frac{9 g^{2}+3 g^{\prime 2}}{32 \pi^{2}} \Lambda_{g}^{2} \quad \longrightarrow \quad \Lambda_{g} \sim 9 m_{h}
$$

Perturbatively:

$\delta m_{h}^{2}=-\frac{3 \lambda_{t}^{2}}{8 \pi^{2}} \Lambda_{t}^{2} \quad \longrightarrow \quad \Lambda_{t} \sim 3 m_{h}$

$$
\delta m_{h}^{2}=\frac{9 g^{2}+3 g^{\prime 2}}{32 \pi^{2}} \Lambda_{g}^{2} \quad \longrightarrow \quad \Lambda_{g} \sim 9 m_{h}
$$

If the theory is natural new physics beyond SM must exist at the TEV scale.

Two paradigms:

- Weak Coupling: Supersymmetry

Two paradigms:

- Weak Coupling:

Supersymmetry

- Strong Coupling:

Technicolor, Composite Higgs, Higgsless, Extra-dimensions ...

HIGGS NGB

Higgs doublet could be a light remnant of strong dynamics.

Strong sector: resonances + Higgs bound state

spinl
spin I/2
spin 0.... $\quad 2_{\frac{1}{2}}$

Higgs doublet could be a light remnant of strong dynamics.

```
Strong sector:
resonances +
Higgs bound state
```


spinl
spin I/2
spin 0.... $\quad 2_{\frac{1}{2}}$

Two parameters:

$$
\begin{array}{ll}
m_{\rho} \quad g_{\rho} & \left(1<g_{\rho}<4 \pi\right) \\
& \text { Large } \mathrm{N}: \quad g_{\rho} \sim \frac{4 \pi}{\sqrt{N}}
\end{array}
$$

Relieves hierarchy problem

$$
\delta m_{h}^{2} \sim \frac{3 \lambda_{t}^{2}}{8 \pi^{2}} m_{\rho}^{2}
$$

The Higgs scalar itself could be a NGB. If the symmetry is exact it is massless.

$$
\begin{aligned}
& \mathrm{NGB}=\frac{G}{H} \\
& U=e^{i \frac{\pi^{\hat{a}} T^{\hat{a}}}{f}}
\end{aligned}
$$

The Higgs scalar itself could be a NGB. If the symmetry is exact it is massless.

$$
\begin{aligned}
& \mathrm{NGB}=\frac{G}{H} \\
& U=e^{i \frac{\pi^{\hat{a}} T^{\hat{a}}}{f}}
\end{aligned}
$$

Low energy lagrangian

$$
\begin{gathered}
\mathcal{L}=f^{2} D_{\mu}^{\hat{a}} D^{\hat{a} \mu}+\ldots \\
\delta \pi=c+\ldots
\end{gathered}
$$

Ex:

$$
\frac{S O(5)}{S U(2)_{L} \otimes S U(2)_{R}} \quad \longrightarrow G B=(2,2)
$$

Agashe, Contino, Pomarol, '04

Ex:

$$
\frac{S O(5)}{S U(2)_{L} \otimes S U(2)_{R}} \quad \longrightarrow G B=(2,2)
$$

Agashe, Contino, Pomarol, '04

Many possibilities:

G	H	N_{G}	NGBs rep.[H]= rep.[SU(2) $\times \mathrm{SU}(2)]$
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	4	$\mathbf{4}=(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$\mathbf{5}=(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$\mathbf{4}_{+\mathbf{2}}+\overline{\mathbf{4}}_{-\mathbf{2}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	G_{2}	7	$\mathbf{7}=(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$\mathbf{1 0}=(\mathbf{3}, \mathbf{1})+(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
$\mathrm{SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}-\mathbf{5}+\mathbf{4}_{+\mathbf{5}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SU}(5)$	$\mathrm{SO}(5)$	14	$\mathbf{1 4}=(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})$

Mrazek et al.,'।l

Deviations from SM: $o\left(\frac{4}{f}\right)$

Deviations from SM:

Higgs is an angle,

$$
0<h<2 \pi f \quad \longrightarrow \quad \text { TUNING } \propto \frac{f^{2}}{v^{2}}
$$

$$
\text { Small Tuning } \quad f<T e V
$$

Spectrum:

$$
\mathcal{O}\left(\frac{v^{2}}{f^{2}}\right)
$$

Higgs cannot be exact NGB

$$
h \rightarrow h+c
$$

G symmetry broken explicitly in SM

$$
\begin{array}{ll}
\lambda_{i j}^{u} \bar{q}_{L}^{i} H^{c} u_{R}^{j}+\lambda_{i j}^{d} \tilde{q}_{L}^{i} H d_{R}^{j}+h . c . & \\
\left|\partial_{\mu} H+i A_{\mu} H\right|^{2} & S U(2) \times U(1)
\end{array}
$$

Higgs cannot be exact NGB

$$
h \rightarrow h+c
$$

G symmetry broken explicitly in SM

$$
\begin{gathered}
\lambda_{i j}^{u} \bar{q}_{L}^{i} H^{c} u_{R}^{j}+\lambda_{i j}^{d} \bar{q}_{L}^{i} H d_{R}^{j}+h . c . \\
\left|\partial_{\mu} H+i A_{\mu} H\right|^{2}
\end{gathered}
$$

$$
S U(2) \times U(1)
$$

Similar to QCD:

$$
U(2)_{L} \times U(2)_{R}
$$

$U(1)_{e m} \times U(1)$

- Bilinear couplings

$$
\frac{1}{\Lambda^{d-1}} \bar{q}_{L}\langle\mathcal{O}\rangle q_{R}
$$

- Bilinear couplings

$$
\frac{1}{\Lambda^{d-1}} \bar{q}_{L}\langle\mathcal{O}\rangle q_{R}
$$

- Linear couplings (partial compositeness)

$$
\begin{aligned}
y_{S M} & =\epsilon_{L} \cdot Y \cdot \epsilon_{R} \\
\epsilon & =\frac{\Delta}{m_{Q}}
\end{aligned}
$$

$\Delta_{R} \bar{q}_{R} \mathcal{O}_{L}+\Delta_{L} \bar{q}_{L} \mathcal{O}_{R}+Y \overline{\mathcal{O}}_{L} H \mathcal{O}_{R}$

- Anarchic scenario

Strong sector couplings have no hierarchies

$$
Y^{U, D} \sim g_{\rho} \quad y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
$$

SM hierarchies are generated by the mixings:

- Light quarks elementary
- Top strongly composite
- Anarchic scenario

Strong sector couplings have no hierarchies

$$
Y^{U, D} \sim g_{\rho} \quad y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
$$

SM hierarchies are generated by the mixings:

- Light quarks elementary
- Top strongly composite
- MFV scenario

$$
\epsilon_{R} \propto I d
$$

$$
\epsilon_{L} \propto y_{S M}
$$

MODELS

- 5D Models

Through AdS/CFT correspondence dual to 4D CFTs. Relevant physics dominated by the lowest modes.

SM gauge fields are obtained from zero modes of bulk fields

$$
S U(3)_{c} \otimes S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{X}
$$

SM gauge fields are obtained from zero modes of bulk fields

$$
S U(3)_{c} \otimes S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{X}
$$

NGB of G/H obtained from a G gauge theory

Higgs is a Wilson line

$$
H=\int_{z_{U V}}^{z_{I R}} A_{z} d z
$$

Each SM chirality is associated to a 5D field of mass ck. SM chiral fermions are obtained by boundary conditions

$$
\left(\begin{array}{c}
+ \\
+ \\
\cdot \\
+ \\
+
\end{array}\right) \Psi_{D} \in G \quad\left(\begin{array}{c}
- \\
- \\
\vdots \\
+
\end{array}\right)
$$

Each SM chirality is associated to a 5D field of mass $c k$. SM chiral fermions are obtained by boundary conditions

$$
\left(\begin{array}{c}
+ \\
+ \\
\vdots \\
+
\end{array}\right) \Psi_{D} \in G \quad:\left(\begin{array}{c}
- \\
- \\
\vdots \\
+
\end{array}\right)
$$

Yukawas hierarchies are generated

$$
y_{i j}^{S M}=\epsilon_{L i} Y_{i j}^{5} \epsilon_{R j} \quad \epsilon \sim\left(\frac{\mathrm{TeV}}{M_{p}}\right)^{c-\frac{1}{2}}
$$

$$
\mathbf{5}=(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})
$$

$S U(2)_{L} \otimes U(1)_{Y}$
Neumann

$$
S U(3)_{c} \times S O(5) \times U(1)_{X}
$$

$5_{\frac{2}{3}}^{\mathbf{t}_{\mathrm{L}}}$	$5_{\frac{2}{3}}^{\mathbf{t}_{R}}$
$5_{-\frac{1}{3}}^{\mathrm{b}_{\mathrm{L}}}$	$5_{-\frac{1}{3}}^{\mathrm{b}_{\mathrm{R}}}$

$$
A_{\mu}^{\hat{a}}=0
$$

$$
\frac{S O(5)}{S O(4)}
$$

$$
\partial_{z} A_{\mu}^{a}=0
$$

$$
S O(4)
$$

$$
\left.\left.\widetilde{m}_{u} \overline{(2,2}\right)_{\mathrm{L}}^{\mathrm{q}_{1}}(\mathbf{2}, \mathbf{2})_{\mathrm{R}}^{\mathrm{u}}+\widetilde{M}_{u} \overline{(1,1}\right)_{\mathrm{R}}^{\mathrm{q}_{1}}(1,1)_{\mathrm{L}}^{\mathrm{u}}+\widetilde{m}_{d} \overline{\left.(\mathbf{2}, \mathbf{2})_{\mathrm{L}}^{\mathrm{q}_{2}}(\mathbf{2}, 2)_{\mathrm{R}}^{\mathrm{d}}+\widetilde{M}_{d} \overline{(1,1)}\right)_{\mathrm{R}}^{\mathrm{q}_{2}}(\mathbf{1}, 1)_{\mathrm{L}}^{\mathrm{d}}+h . c .}
$$

5D models are dual to 4D strongly coupled theories

Arkani-Hamed, Porrati, Randall '00

5D gauge symmetry
4D global symmetry

5D models are dual to 4D strongly coupled theories
Arkani-Hamed, Porrati, Randall '00

5D gauge symmetry

$$
\begin{gathered}
\mathcal{L}=\lambda \bar{q}_{L} O_{R}^{d} \\
\mu \frac{d \lambda}{d \mu}=\left(d-\frac{5}{2}\right) \lambda
\end{gathered}
$$

- $d>5 / 2$ irrelevant, small in IR (light generations)
- $\mathrm{d}<5 / 2$ relevant, large in IR (top)

Hierarchies from dimensional transmutation

- 4D Models

Low energy lagrangian determined by the symmetries. CCWZ procedure

$$
\begin{gathered}
U(\Pi)=e^{\frac{i \Pi^{\widehat{a}} T^{\widehat{a}}}{f}} \quad U\left(\Pi^{\prime}\right)=g U(\Pi) h^{\dagger}(\Pi, g) \quad g \in G, \quad h \in H(x) \\
U^{\dagger} \partial_{\mu} U=i E_{\mu}^{a} T^{a}+i D_{\mu}^{\widehat{a}} T^{\widehat{a}}
\end{gathered}
$$

- 4D Models

Low energy lagrangian determined by the symmetries. CCWZ procedure

$$
\begin{gathered}
U(\Pi)=e^{\frac{i \Pi^{\widehat{a}} T^{\widehat{a}}}{f}} \quad U\left(\Pi^{\prime}\right)=g U(\Pi) h^{\dagger}(\Pi, g) \quad g \in G, \quad h \in H(x) \\
U^{\dagger} \partial_{\mu} U=i E_{\mu}^{a} T^{a}+i D_{\mu}^{\widehat{a}} T^{\widehat{a}}
\end{gathered}
$$

An effective lagrangian can be built similar to QCD

$$
\mathcal{L}=\frac{m_{\rho}^{4}}{g_{\rho}^{2}}\left[\mathcal{L}^{(0)}\left(U, \Phi, \partial / m_{\rho}\right)+\frac{g_{\rho}^{2}}{(4 \pi)^{2}} \mathcal{L}^{(1)}\left(U, \Phi, \partial / m_{\rho}\right)+\frac{g_{\rho}^{4}}{(4 \pi)^{4}} \mathcal{L}^{(2)}\left(U, \Phi, \partial / m_{\rho}\right)+\ldots\right]
$$

Giudice, Grojean, Pomarol, Rattazzi'07
SM fields are assigned to $\mathrm{SO}(5)$
$\Delta^{i j} \bar{q}^{i} \mathcal{O}^{j}$
$\mathcal{O} \in G$

To introduce resonances start from G/H

$$
\frac{G}{H}
$$

To introduce resonances start from G/H

$$
\begin{array}{cccc}
\frac{G_{L} \otimes G_{R}}{G_{L+R}} & \quad \rightarrow g_{L} \Omega g_{R}^{\dagger} & +\quad \frac{G}{H}
\end{array}
$$

To introduce resonances start from G/H

$$
\begin{array}{cccc}
\frac{G_{L} \otimes G_{R}}{G_{L+R}} & \quad \rightarrow g_{L} \Omega g_{R}^{\dagger} & + & \frac{G}{H}
\end{array}
$$

and gauge $G_{R}+G$

$$
\begin{gathered}
\mathcal{L}_{2-s i t e}=\frac{f_{1}^{2}}{4} \operatorname{Tr}\left|D_{\mu} \Omega\right|^{2}+\frac{f_{2}^{2}}{2} \mathcal{D}_{\mu}^{\widehat{a}} \mathcal{D}^{\mu \widehat{a}}-\frac{1}{4 g_{\rho}^{2}} \rho_{\mu \nu}^{A} \rho^{A \mu \nu} \\
D_{\mu} \Omega=\partial_{\mu} \Omega-i A_{\mu} \Omega+i \Omega \rho_{\mu}
\end{gathered}
$$

To introduce resonances start from G / H

$$
\begin{array}{cccc}
\frac{G_{L} \otimes G_{R}}{G_{L+R}} & \quad \rightarrow g_{L} \Omega g_{R}^{\dagger} & + & \frac{G}{H}
\end{array}
$$

and gauge $G_{R}+G$

$$
\begin{gathered}
\mathcal{L}_{2-\text { site }}=\frac{f_{1}^{2}}{4} \operatorname{Tr}\left|D_{\mu} \Omega\right|^{2}+\frac{f_{2}^{2}}{2} \mathcal{D}_{\mu}^{\widehat{a}} \mathcal{D}^{\mu \widehat{a}}-\frac{1}{4 g_{\rho}^{2}} \rho_{\mu \nu}^{A} \rho^{A \mu \nu} \\
D_{\mu} \Omega=\partial_{\mu} \Omega-i A_{\mu} \Omega+i \Omega \rho_{\mu}
\end{gathered}
$$

More resonances can be added.
Nearest neighbor interaction reproduce extra-dim:

Minimal SO(5)/SO(4) model

Composite spin-I lagrangian:

$$
\Omega=\frac{S O(5)_{L} \times S O(5)_{R}}{S O(5)_{L+R}} \quad \Phi=\frac{S O(5)}{S O(4)}
$$

Minimal SO(5)/SO(4) model

Composite spin-I lagrangian:

$$
\begin{array}{lr}
\Omega=\frac{S O(5)_{L} \times S O(5)_{R}}{S O(5)_{L+R}} & \Phi=\frac{S O(5)}{S O(4)} \\
\frac{f_{1}^{2}}{4} \operatorname{Tr}\left|D_{\mu} \Omega\right|^{2}+\frac{f_{2}^{2}}{2}\left(D_{\mu} \Phi\right)^{T}\left(D^{\mu} \Phi\right)-\frac{1}{4 g_{\rho}^{2}} \rho_{\mu \nu}^{a} \rho^{a \mu \nu} \\
D_{\mu} \Omega=\partial_{\mu} \Omega-i A_{\mu} \Omega+i \Omega \rho_{\mu} & D_{\mu} \Phi=\partial_{\mu} \Phi-i \rho_{\mu} \Phi
\end{array}
$$

$\mathrm{SO}(4)$ and $\mathrm{SO}(5) / \mathrm{SO}(4)$ spin- I resonances.

Spectrum:

$$
\begin{gathered}
m_{\rho}^{2}=\frac{g_{\rho}^{2} f_{1}^{2}}{2} \\
m_{a_{1}}^{2}=\frac{g_{\rho}^{2}\left(f_{1}^{2}+f_{2}^{2}\right)}{2} \\
m_{\rho_{X}}^{2}=\frac{g_{\rho_{X}}^{2} f_{X}^{2}}{2}
\end{gathered}
$$

SM fields are introduced adding kinetic terms for the sources

$$
\mathcal{L}_{\text {gauge }}^{e l}=-\frac{1}{4 g_{0}^{2}} F_{\mu \nu}^{a} F_{\mu \nu}^{a}-\frac{1}{4 g_{0 Y}^{2}} Y_{\mu \nu} Y^{\mu \nu}
$$

Physical parameters:

$$
\begin{aligned}
\frac{1}{g^{2}} & =\frac{1}{g_{0}^{2}}+\frac{1}{g_{\rho}^{2}} \\
\frac{1}{g^{\prime 2}} & =\frac{1}{g_{0 Y}^{2}}+\frac{1}{g_{\rho}^{2}}+\frac{1}{g_{\rho_{X}}^{2}} \\
m_{\rho_{a L}} & =\frac{m_{\rho}}{\cos \theta_{L}}, \quad \tan \theta_{L}=\frac{g_{0}}{g_{\rho}}
\end{aligned}
$$

Each SM fermion couples to Dirac fermion in a rep of SO(5).

Each SM fermion couples to Dirac fermion in a rep of SO(5).

CHM5:

Third generation:

$$
\begin{array}{rlr}
\mathcal{L}^{\mathrm{CHM}_{5}} & =\mathcal{L}_{\text {fermions }}^{e l} & \\
& +\Delta_{t_{L}} \bar{q}_{L}^{e l} \Omega_{1} \Psi_{T}+\Delta_{t_{R}} \bar{t}_{R}^{e l} \Omega_{1} \Psi_{\widetilde{T}}+h . c . & \\
& +\bar{\Psi}_{T}\left(i D^{\rho}-m_{T}\right) \Psi_{T}+\bar{\Psi}_{\widetilde{T}}\left(i D^{\rho}-m_{\widetilde{T}}\right) \Psi_{\widetilde{T}} & \\
& -Y_{T} \bar{\Psi}_{T, L} \Phi_{2}^{T} \Phi_{2} \Psi_{\widetilde{T}, R}-m_{Y_{T}} \bar{\Psi}_{T, L} \Psi_{\widetilde{T}, R}+h . c . & \longrightarrow \\
& +(T \rightarrow B) & \\
\text { Explicit SO(5) breaking } \\
\text { Composite physics }
\end{array}
$$

Useful a simple 4D description:

- theoretical:
- only very few resonances (I?) weakly coupled
- relevant physics largely independent of 5D or AdS
- what are the most general models?
- practical:
- LHC will at best produce the lightest resonances
- Simplified model useful for LHC

SIGNATURES

Higgs NGB:

$$
\operatorname{Higgs} \subset \frac{G}{H}
$$

Higgs NGB:

$$
\operatorname{Higgs} \subset \frac{G}{H}
$$

Elementary: SM Fermions + Gauge Fields

 mixing to fermionic operatorsElementary-composite states talk through linear couplings:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=g A_{\mu} J^{\mu} \\
\mathcal{L}_{\text {mixing }}=\lambda_{L} \bar{f}_{L} O_{R}+\lambda_{R} \bar{f}_{R} O_{R} \quad \xrightarrow{\epsilon \sim \frac{\lambda}{Y}} \quad y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
\end{gathered}
$$

Light generations are elementary, top composite.

- Precision Tests

$$
\begin{aligned}
\mathcal{L}_{e f f}= & \frac{c_{H}}{2 f^{2}} \partial^{\mu}\left(H^{\dagger} H\right) \partial_{\mu}\left(H^{\dagger} H\right)-\frac{c_{6} \lambda}{f^{2}}\left(H^{\dagger} H\right)^{3}+\left(\frac{c_{y} y}{f^{2}} H^{\dagger} H \bar{\psi}_{L} H \psi_{R}+\text { h.c. }\right) \\
& +\frac{c_{\gamma} g^{2}}{16 \pi^{2} m_{\rho}^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu}+\frac{c_{g} y_{t}^{2}}{16 \pi^{2} m_{\rho}^{2}} H^{\dagger} H G_{\mu \nu}^{a} G^{a \mu \nu} \\
& +\frac{i c_{W}}{2 m_{\rho}^{2}}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D^{\mu}} H\right)\left(D^{\nu} W_{\mu \nu}\right)^{i}+\frac{i c_{B}}{2 m_{\rho}^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right)\left(\partial^{\nu} B_{\mu \nu}\right) \\
& +\frac{i c_{H W}}{16 \pi^{2} f^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}+\frac{i c_{H B}}{16 \pi^{2} f^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}
\end{aligned}
$$

$f=\frac{m_{\rho}}{g_{\rho}} \ll m_{\rho}$
Giudice, Grojean, Pomarol, Rattazzi 07

Typical modifications

$$
\delta g_{S M}=\kappa \frac{v^{2}}{m_{\rho}^{2}}
$$

$$
\rho=\frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}} \approx 1
$$

$$
\delta \rho_{\text {naive }}=\frac{v^{2}}{f^{2}}
$$

$$
\delta \rho_{\max } \sim 10^{-3} \quad \longrightarrow \quad f>5 \mathrm{TeV}
$$

$$
\begin{gathered}
\rho=\frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}} \approx 1 \quad \delta \rho_{\text {naive }}=\frac{v^{2}}{f^{2}} \\
\delta \rho_{\max } \sim 10^{-3} \longrightarrow \quad f>5 \mathrm{TeV}
\end{gathered}
$$

Custodial Symmetry

$$
S U(2)_{L} \times S U(2)_{R} \in H
$$

Composite sector has $S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{X}$ symmetry $\quad\left(Y=T_{3 R}+U(1)_{X}\right)$

Extended Higgs sectors require extra symmetry

Third generation Z-couplings

$$
\frac{\delta g_{L}}{g_{L}} \sim \frac{g_{\rho}^{2} v^{2}}{m_{\rho}^{2}} \epsilon_{L}^{2}
$$

$$
\left.\frac{\delta g_{L b}}{g_{L b}}\right|_{\max } \sim 10^{-3} \quad \epsilon_{L b}>\frac{\lambda_{t}}{g_{\rho} \epsilon_{R t}} \longrightarrow \frac{\delta g_{L b}}{g_{L_{b}}}>\frac{\lambda_{t}^{2} v^{2}}{m_{\rho}^{2}}
$$

Possible problems with ρ at I-loop

Extend $S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{X}$ symmetry

Agashe, Contino,

$$
P_{L R}: \quad S U(2)_{L} \times S U(2)_{R} \rightarrow O(4)
$$

Couplings protected if symmetry respected.

$$
T_{3 L}=T_{3 R}
$$

Extend $S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{X}$ symmetry

Agashe , Contino,

$$
P_{L R}: \quad S U(2)_{L} \times S U(2)_{R} \rightarrow O(4)
$$

Couplings protected if symmetry respected.

$$
T_{3 L}=T_{3 R}
$$

Ex:

q_{L}		
u_{R}	$(2,2)_{\frac{2}{3}}$	$L_{U}=\left(\begin{array}{cc}T & T_{\frac{5}{3}} \\ B & T_{\frac{2}{3}}\end{array}\right)$
	$(1,1)_{\frac{2}{3}}$	U

S-parameter:

$$
\frac{S}{16 \pi v^{2}}\left(H^{\dagger} \tau^{a} H\right) W_{\mu \nu}^{a} B^{\mu \nu}
$$

Tree-level:

$$
S \sim 4 \pi v^{2}\left(\frac{1}{m_{\rho}^{2}}+\frac{1}{m_{a_{1}}^{2}}\right)
$$

$$
S<0.3
$$

$m_{\rho}>2-3 \mathrm{TeV}$

General Higgs lagrangian:

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} h\right)^{2}+\frac{v^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma\right)\left[1+2 \kappa_{V} \frac{h}{v}+\kappa_{h h} \frac{h^{2}}{v^{2}} \ldots\right] \\
& -m_{i} \bar{\psi}_{L i} \Sigma\left(1+\kappa_{F} \frac{h}{v}+\ldots\right) \psi_{R i}+\text { h.c. }+\ldots
\end{aligned}
$$

$$
\text { SM : } \quad \kappa_{F}=\kappa_{V}=1
$$

Corrections determined by group theory:

$$
m_{W}^{2}=\frac{g^{2} f^{2}}{4} \sin ^{2} \frac{h}{f} \quad \kappa_{V}=\sqrt{1-\xi} \quad \xi=\frac{v^{2}}{f^{2}}
$$

CHM5:

$$
m_{t} \propto \sin \frac{h}{f} \cos \frac{h}{f} \quad \longrightarrow \quad \kappa_{F}=\frac{1-2 \xi}{\sqrt{1-\xi}}
$$

CHM4:

$$
m_{t} \propto \sin \frac{h}{f} \quad \longrightarrow \quad \kappa_{F}=\sqrt{1-\xi}
$$

CHM5:

$$
m_{t} \propto \sin \frac{h}{f} \cos \frac{h}{f} \quad \longrightarrow \quad \kappa_{F}=\frac{1-2 \xi}{\sqrt{1-\xi}}
$$

CHM4:
$m_{t} \propto \sin \frac{h}{f}$

$$
\kappa_{F}=\sqrt{1-\xi}
$$

$$
\xi<\frac{1}{2}
$$

$$
\approx \frac{\alpha}{\pi v} F_{\mu \nu}^{2} h
$$

$$
\approx \frac{\alpha}{\pi v} F_{\mu \nu}^{2} h
$$

NGB symmetry protects the couplings

$$
\frac{\delta A}{A_{S M}} \sim \frac{v^{2}}{f^{2}}
$$

No large deviations expected.

WW scattering non perfectly unitarized

$$
A\left(W^{+} W^{-} \rightarrow W^{+} W^{-}\right) \simeq \frac{s}{v^{2}}\left(1-\kappa_{V}^{2}\right)
$$

$$
A\left(W^{+} W^{-} \rightarrow h h\right) \simeq \frac{s}{v^{2}}\left(\kappa_{h h}-\kappa_{V}^{2}\right)
$$

Most likely not visible at LHC

- Flavor

Resonance exchange generates 4-Fermi operators

$$
\sim \frac{g_{\rho}^{2}}{m_{\rho}^{2}}
$$

$\Delta F=2$ transitions generated by mixing

$$
\epsilon_{L}^{i} \epsilon_{L}^{j} \epsilon_{R}^{k} \epsilon_{R}^{l} \times \frac{g_{\rho}^{2}}{m_{\rho}^{2}} \times\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\left(\bar{d}_{R}^{k} \gamma_{\mu} d_{R}^{l}\right)\right.
$$

FCNC of the light generation are suppressed by the mixings.

Flavor superior to TC theories though not perfect.

$$
C_{4}^{K} \bar{d}_{R}^{\alpha} s_{L}^{\alpha} \bar{d}_{L}^{\beta} s_{R}^{\beta} \quad C_{4}^{K} \sim \frac{g_{\rho}^{2}}{m_{\rho}^{2}} \frac{m_{d} m_{s}}{v^{2}}
$$

Csaki, Falkowski, Weiler, ’08

$$
m_{\rho}>20 \mathrm{TeV}
$$

Dipoles:

$$
\epsilon_{L}^{i} \epsilon_{R}^{j} \times \frac{g_{\rho} v}{m_{\rho}^{2}} \times \frac{g_{\rho}^{2}}{16 \pi^{2}} \times \bar{q}_{L}^{i} \sigma^{\mu \nu} q_{R}^{j} G_{\mu \nu}
$$

$$
b \rightarrow s \gamma
$$

Neutron EDM

$$
m_{\rho}>2 g_{\rho} \mathrm{TeV}
$$

$$
\mu \rightarrow e \gamma
$$

$$
m_{\rho}>30 g_{\rho} \mathrm{TeV}
$$

$b \rightarrow s \gamma$

Neutron EDM

$$
\mu \rightarrow e \gamma
$$

$$
\} \quad \begin{aligned}
& m_{\rho}>2 g_{\rho} \mathrm{TeV} \\
& \\
& m_{\rho}>30 g_{\rho} \mathrm{TeV}
\end{aligned}
$$

CP violation in D-system:

$$
a_{D^{0} \rightarrow K^{+} K^{-}}-a_{D^{0} \rightarrow \pi^{+} \pi^{-}}=(-0.67 \pm 0.16) \%
$$

LHCb 'I2

Reasonable in composite Higgs

$$
m_{\rho} \simeq \frac{g_{\rho}}{4 \pi} \times 10 \mathrm{TeV}
$$

- Direct Searches

Heavy resonances mostly coupled to 3rd generation + Higgs

Spin- I : gluon, electro-weak

$$
g_{\rho \bar{q} q}=g\left(\sin ^{2} \varphi \cot \theta-\cos ^{2} \varphi \tan \theta\right) \quad \sin ^{2} \varphi \sim \epsilon
$$

- Direct Searches

Heavy resonances mostly coupled to 3rd generation + Higgs

Spin- I : gluon, electro-weak

$$
g_{\rho \bar{q} q}=g\left(\sin ^{2} \varphi \cot \theta-\cos ^{2} \varphi \tan \theta\right) \quad \sin ^{2} \varphi \sim \epsilon
$$

Decay into 3rd generation or heavy fermions.

Gluon resonances excluded up to 2 TeV !

Spin- I/2 :Top partners could be lighter + exotic charges

$$
\begin{gathered}
\left(\begin{array}{cc}
T & T_{5}^{3} \\
B & T_{2}^{3}
\end{array}\right) \quad \tilde{T} \\
\mathcal{L}_{y u k}=Y_{*} \sin \varphi_{L} \sin \varphi_{R}\left(\bar{t}_{L} \phi_{0}^{\dagger} t_{R}-\bar{b}_{L} \phi^{-} t_{R}\right)+Y_{*} \cos \varphi_{L} \sin \varphi_{R}\left(\bar{T} \phi_{0}^{\dagger} t_{R}-\bar{B} \phi^{-} t_{R}\right) \\
+Y_{*} \sin \varphi_{L} \cos \varphi_{R}\left(\bar{t}_{L} \phi_{0}^{\dagger} \tilde{T}-\bar{b}_{L} \phi^{-} \tilde{T}\right)+Y_{*} \sin \varphi_{R}\left(\bar{T}_{5 / 3} \phi^{+} t_{R}+\bar{T}_{2 / 3} \phi_{0} t_{R}\right)+\ldots
\end{gathered}
$$

Spin- I/2 :Top partners could be lighter + exotic charges

$$
\begin{gathered}
\left(\begin{array}{cc}
T & T_{\frac{5}{3}} \\
B & T_{\frac{2}{3}}
\end{array}\right) \tilde{T} \\
\mathcal{L}_{y u k}=Y_{*} \sin \varphi_{L} \sin \varphi_{R}\left(\bar{t}_{L} \phi_{0}^{\dagger} t_{R}-\bar{b}_{L} \phi^{-} t_{R}\right)+Y_{*} \cos \varphi_{L} \sin \varphi_{R}\left(\bar{T} \phi_{0}^{\dagger} t_{R}-\bar{B} \phi^{-} t_{R}\right) \\
+Y_{*} \sin \varphi_{L} \cos \varphi_{R}\left(\bar{t}_{L} \phi_{0}^{\dagger} \tilde{T}-\bar{b}_{L} \phi^{-} \tilde{T}\right)+Y_{*} \sin \varphi_{R}\left(\bar{T}_{5 / 3} \phi^{\dagger} t_{R}+\bar{T}_{2 / 3} \phi_{0} t_{R}\right)+\ldots
\end{gathered}
$$

Production:

Double

Contino, Servant. '08

Single
Mrazek, Wulzer '09
Aguilar-Saveedra '09

Mrazek, Wulzer '09
Decays:
$T_{5 / 3}$

Multi-lepton signatures.

ATLAS-CONF-20I2-I30

double production

double+single production

ATLAS-CONF-20I2-018

ATLAS Preliminary

$\sqrt{\mathrm{s}}=8 \mathrm{TeV}, \int \mathrm{Ldt}=14.3 \mathrm{fb}^{-1}$

- = = = $=95 \%$ CL expected exclusion
95% CL observed exclusion
$\star \mathrm{SU}(2)$ doublet
- $\mathrm{SU}(2)$ singlet

HIGGS MASS

SM couplings break NGB symmetry
$\epsilon_{t_{L}}$
$\epsilon_{t_{R}}$
g

Higgs potential generated at I-loop:

$$
V(h) \sim \frac{N_{c}}{16 \pi^{2}} \epsilon_{L, R}^{2} m_{\rho}^{4} \hat{V}\left(\frac{h}{f}\right)+\ldots
$$

SM couplings break NGB symmetry

$$
\epsilon_{t_{L}} \quad \epsilon_{t_{R}} \quad g
$$

Higgs potential generated at I-loop:

$$
V(h) \sim \frac{N_{c}}{16 \pi^{2}} \epsilon_{L, R}^{2} m_{\rho}^{4} \hat{V}\left(\frac{h}{f}\right)+\ldots
$$

Ex:

$$
\begin{aligned}
V(h) & \approx a \sin ^{2} \frac{h}{f}+b \sin ^{2} \frac{h}{f} \cos ^{2} \frac{h}{f} \\
v & \ll f \longrightarrow
\end{aligned}
$$

Recall pions:

$$
\begin{gathered}
\mathcal{L}=f_{\pi}^{2}\left|D_{\mu} U\right|^{2}+a \Lambda_{Q C D}^{2} \operatorname{Tr}\left[m \cdot\left(U+U^{\dagger}\right)\right] \\
D_{\mu} U=\partial_{\mu} U+i e A_{\mu} U \\
m_{\pi^{+}}^{2}=m_{\pi^{0}}^{2}=a^{\prime} \Lambda_{Q C D}\left(m_{u}+m_{d}\right)
\end{gathered}
$$

Recall pions:

$$
\begin{gathered}
\mathcal{L}=f_{\pi}^{2}\left|D_{\mu} U\right|^{2}+a \Lambda_{Q C D}^{2} \operatorname{Tr}\left[m \cdot\left(U+U^{\dagger}\right)\right] \\
D_{\mu} U=\partial_{\mu} U+i e A_{\mu} U \\
m_{\pi^{+}}^{2}=m_{\pi^{0}}^{2}=a^{\prime} \Lambda_{Q C D}\left(m_{u}+m_{d}\right)
\end{gathered}
$$

| -loop:

Vectors effective action:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}= \frac{1}{2} P_{\mu \nu}^{T}\left[\widehat{\Pi}_{0}^{X}\left(p^{2}\right) X^{\mu} X^{\nu}+\widehat{\Pi}_{0}\left(p^{2}\right) \operatorname{Tr}\left[A^{\mu} A^{\nu}\right]+\widehat{\Pi}_{1}\left(p^{2}\right) \Phi A^{\mu} A^{\nu} \Phi^{T}\right] \\
& \widehat{\Pi}_{0}\left(p^{2}\right)=\Pi_{a}\left(p^{2}\right), \quad \widehat{\Pi}_{0}^{X}\left(p^{2}\right)=\Pi_{X}\left(p^{2}\right), \quad \widehat{\Pi}_{1}\left(p^{2}\right)=2\left[\Pi_{\widehat{a}}\left(p^{2}\right)-\Pi_{a}\left(p^{2}\right)\right] \\
& \mathcal{L}_{\text {eff }}^{\text {gauge }}=\frac{1}{2} P_{\mu \nu}^{T}\left[\left(\Pi_{0}\left(p^{2}\right)+\frac{s_{h}^{2}}{4} \Pi_{1}\left(p^{2}\right)\right) A_{a L}^{\mu} A_{a L}^{\nu}\right. \\
&\left.+\left(\Pi_{Y}\left(p^{2}\right)+\frac{s_{h}^{2}}{4} \Pi_{1}\left(p^{2}\right)\right) Y^{\mu} Y^{\nu}+2 s_{h}^{2} \Pi_{1}\left(p^{2}\right) \widehat{H}^{\dagger} T_{L}^{a} Y \widehat{H} A_{\mu}^{a L} Y_{\nu}\right]
\end{aligned}
$$

Vectors effective action:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}= \frac{1}{2} P_{\mu \nu}^{T}\left[\widehat{\Pi}_{0}^{X}\left(p^{2}\right) X^{\mu} X^{\nu}+\widehat{\Pi}_{0}\left(p^{2}\right) \operatorname{Tr}\left[A^{\mu} A^{\nu}\right]+\widehat{\Pi}_{1}\left(p^{2}\right) \Phi A^{\mu} A^{\nu} \Phi^{T}\right] \\
& \widehat{\Pi}_{0}\left(p^{2}\right)=\Pi_{a}\left(p^{2}\right), \quad \widehat{\Pi}_{0}^{X}\left(p^{2}\right)=\Pi_{X}\left(p^{2}\right), \quad \widehat{\Pi}_{1}\left(p^{2}\right)=2\left[\Pi_{\widehat{a}}\left(p^{2}\right)-\Pi_{a}\left(p^{2}\right)\right] \\
& \mathcal{L}_{\text {eff }}^{\text {gauge }}=\frac{1}{2} P_{\mu \nu}^{T}\left[\left(\Pi_{0}\left(p^{2}\right)+\frac{s_{h}^{2}}{4} \Pi_{1}\left(p^{2}\right)\right) A_{a L}^{\mu} A_{a L}^{\nu}\right. \\
&\left.+\left(\Pi_{Y}\left(p^{2}\right)+\frac{s_{h}^{2}}{4} \Pi_{1}\left(p^{2}\right)\right) Y^{\mu} Y^{\nu}+2 s_{h}^{2} \Pi_{1}\left(p^{2}\right) \widehat{H}^{\dagger} T_{L}^{a} Y \widehat{H} A_{\mu}^{a L} Y_{\nu}\right]
\end{aligned}
$$

Coleman-Weinberg effective potential

$$
V(h)_{\text {gauge }}=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \ln \left[1+\frac{1}{4} \frac{\Pi_{1}\left(p^{2}\right)}{\Pi_{0}\left(p^{2}\right)} \sin ^{2} \frac{h}{f}\right] \approx \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{9 \Pi_{1}}{8 \Pi_{0}} \sin ^{2} \frac{h}{f}
$$

Fermions:

$$
V(h)_{\text {fermions }}=-2 N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\ln \Pi_{b_{L}}+\ln \left(p^{2} \Pi_{t_{L}} \Pi_{t_{R}}-\Pi_{t_{L} t_{R}}^{2}\right)\right]
$$

Fermions:

$$
V(h)_{\text {fermions }}=-2 N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\ln \Pi_{b_{L}}+\ln \left(p^{2} \Pi_{t_{L}} \Pi_{t_{R}}-\Pi_{t_{L} t_{R}}^{2}\right)\right]
$$

CHM5:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}= & \bar{q}_{L} \not p\left[\Pi_{0}^{q}\left(p^{2}\right)+\frac{s_{h}^{2}}{2}\left(\Pi_{1}^{q 1}\left(p^{2}\right) \widehat{H}^{c} \widehat{H}^{c \dagger}+\Pi_{1}^{q 2}\left(p^{2}\right) \widehat{H} \widehat{H}^{\dagger}\right)\right] q_{L} \\
& +\bar{u}_{R} \not p\left(\Pi_{0}^{u}\left(p^{2}\right)+\frac{s_{h}^{2}}{2} \Pi_{1}^{u}\left(p^{2}\right)\right) u_{R}+\bar{d}_{R} \not p\left(\Pi_{0}^{d}\left(p^{2}\right)+\frac{s_{h}^{2}}{2} \Pi_{1}^{d}\left(p^{2}\right)\right) d_{R} \\
& +\frac{s_{h} c_{h}}{\sqrt{2}} M_{1}^{u}\left(p^{2}\right) \bar{q}_{L} \widehat{H}^{c} u_{R}+\frac{s_{h} c_{h}}{\sqrt{2}} M_{1}^{d}\left(p^{2}\right) \bar{q}_{L} \widehat{H} d_{R}+h . c . .
\end{aligned}
$$

$V(h)_{\text {fermions }} \approx-N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\frac{\Pi_{1}^{q_{1}}}{\Pi_{0}^{q}}+\frac{\Pi_{1}^{u}}{\Pi_{0}^{u}}\right] \sin ^{2} \frac{h}{f}+N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\frac{\left(M_{1}^{u}\right)^{2}}{p^{2} \Pi_{0}^{q} \Pi_{0}^{u}}\right] \sin ^{2} \frac{h}{f} \cos ^{2} \frac{h}{f}$

Simplified models:

$$
\begin{gathered}
\Pi_{\text {gauge }}\left[m_{V}\right]=\frac{p^{2}}{p^{2}-m_{V}^{2}} \\
\widehat{\Pi}\left[m_{1}, m_{2}, m_{3}\right]=\frac{\left(m_{2}^{2}+m_{3}^{2}-p^{2}\right)}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}} \\
\widehat{M}\left[m_{1}, m_{2}, m_{3}\right]=-\frac{m_{1} m_{2} m_{3}}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}}
\end{gathered}
$$

Simplified models:

$$
\begin{gathered}
\Pi_{\text {gauge }}\left[m_{V}\right]=\frac{p^{2}}{p^{2}-m_{V}^{2}} \\
\widehat{\Pi}\left[m_{1}, m_{2}, m_{3}\right]=\frac{\left(m_{2}^{2}+m_{3}^{2}-p^{2}\right)}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}} \\
\widehat{M}\left[m_{1}, m_{2}, m_{3}\right]=-\frac{m_{1} m_{2} m_{3}}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}}
\end{gathered}
$$

Gauge potential:

$$
\begin{aligned}
V(h)_{\text {gauge }} & \approx \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{9}{8} \frac{\Pi_{1}}{\Pi_{0}} \sin ^{2} \frac{h}{f} \\
& =\frac{9}{4} \frac{1}{16 \pi^{2}} \frac{g_{0}^{2}}{g_{\rho}^{2}} \frac{m_{\rho}^{4}\left(m_{a_{1}}^{2}-m_{\rho}^{2}\right)}{m_{a_{1}}^{2}-m_{\rho}^{2}\left(1+g_{0}^{2} / g_{\rho}^{2}\right)} \ln \left[\frac{m_{a_{1}}^{2}}{m_{\rho}^{2}\left(1+g_{0}^{2} / g_{\rho}^{2}\right)}\right] \sin ^{2} \frac{h}{f}
\end{aligned}
$$

Potential is finite with a single G multiplet!

ESTIMATES

$$
\mathcal{L}_{Y u k}=y_{t} f \frac{s_{h} c_{h}}{h}\left(\bar{q}_{L} H^{c} t_{R}+h . c .\right) \quad \longrightarrow \quad V(h)_{Y u k} \sim N_{c} \frac{y_{t}^{2}}{16 \pi^{2}} m_{f}^{2} f^{2} s_{h}^{2} c_{h}^{2}
$$

$$
\mathcal{L}_{k i n}=\epsilon_{L}^{2} s_{h}^{2} \bar{t}_{L} D t_{L}+2 \epsilon_{R}^{2} s_{h}^{2} \bar{t}_{R} D t_{R} \quad \longrightarrow \quad V(h)_{k i n} \sim N_{c} \frac{2 \epsilon_{R}^{2}-\epsilon_{L}^{2}}{32 \pi^{2}} m_{f}^{4} s_{h}^{2}
$$

ESTIMATES

$$
\mathcal{L}_{Y u k}=y_{t} f \frac{s_{h} c_{h}}{h}\left(\bar{q}_{L} H^{c} t_{R}+h . c .\right) \quad \longrightarrow \quad V(h)_{Y u k} \sim N_{c} \frac{y_{t}^{2}}{16 \pi^{2}} m_{f}^{2} f^{2} s_{h}^{2} c_{h}^{2}
$$

$\mathcal{L}_{k i n}=\epsilon_{L}^{2} s_{h}^{2} \bar{t}_{L} D t_{L}+2 \epsilon_{R}^{2} s_{h}^{2} \bar{t}_{R} D t_{R} \quad \longrightarrow \quad V(h)_{k i n} \sim N_{c} \frac{2 \epsilon_{R}^{2}-\epsilon_{L}^{2}}{32 \pi^{2}} m_{f}^{4} s_{h}^{2}$

Potential:

$$
V(h) \approx \alpha s_{h}^{2}-\beta s_{h}^{2} c_{h}^{2} \quad s_{h} \equiv \sin \frac{h}{f}=\frac{v}{f}
$$

Quartic is determined by top Yukawa,

$$
m_{h} \sim \sqrt{\frac{N_{c}}{2}} \frac{y_{t}}{\pi} \frac{m_{f}}{f} v
$$

General scan:

$f=500 \mathrm{GeV}$

-CHM5
MR, Tesi ' 12

General scan:

$f=500 \mathrm{GeV}$

Low mass:

For $\mathrm{mH}=125 \mathrm{GeV}$, fermionic partners often rule out!

New fermions should be seen in the near future!

Tuning:

$$
\Delta=\operatorname{Max}_{\mathrm{i}}\left|\frac{\partial \log m_{Z}}{\partial \log x_{i}}\right|
$$

$$
f=800 \mathrm{GeV}
$$

$\Delta_{a v g} \sim 30$

Natural region of the theory will be tested at LHC!

SUMMARY

SUMMARY

+ The Higgs as Nambu-Goldstone boson is a compelling possibility for stabilizing the electro-weak scale.

SUMMARY

+ The Higgs as Nambu-Goldstone boson is a compelling possibility for stabilizing the electro-weak scale.
+ Realistic scenarios can be build
- Unclear UV completion

SUMMARY

+ The Higgs as Nambu-Goldstone boson is a compelling possibility for stabilizing the electro-weak scale.
+ Realistic scenarios can be build
- Unclear UV completion
\pm Many smart mechanisms have been proposed
+ Models are predictive.
New resonances must be present nearby with a specific pattern. New effects expected in flavor and Higgs physics.
+ Models are predictive.
New resonances must be present nearby with a specific pattern. New effects expected in flavor and Higgs physics.
- No deviations from the SM have been seen where they could be expected.
+ Models are predictive.
New resonances must be present nearby with a specific pattern. New effects expected in flavor and Higgs physics.
- No deviations from the SM have been seen where they could be expected.
++ LHC will tell if the electro-weak scale is natural. Very exciting experimentally.
$\mathrm{SO}(6) / \mathrm{SO}(5):$

5 GBs:

$$
5=(2,2)+1
$$

Fermions can be coupled to the $6=(2,2)+2 \times 1$

$$
q_{L} \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{c}
b_{L} \\
-i b_{L} \\
t_{L} \\
i t_{L} \\
0 \\
0
\end{array}\right)
$$

$$
t_{R} \rightarrow\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
i \cos \theta t_{R} \\
\sin \theta t_{R}
\end{array}\right)
$$

For $\theta=\frac{\pi}{4}$ singlet becomes exact GB.

$$
f=800 \mathrm{GeV}
$$

$$
f=800 \mathrm{GeV}
$$

Same correlation Higgs-fermions.
Singlet typically heavier than Higgs unless $\theta \approx \frac{\pi}{4}$

ESTIMATES

$$
\begin{aligned}
\mathcal{L} & =\left(1+\epsilon_{L}^{2} \sum_{i} I_{L}^{(i)}\left(s_{h}\right)\right) \bar{q}_{L} \partial q_{L}+\left(1+\epsilon_{R}^{2} \sum_{i} I_{R}^{(i)}\left(s_{h}\right)\right) \bar{t}_{R} \partial t_{R} \\
& +y_{t} f M\left(s_{h}\right) \bar{t}_{L} t_{R}+h . c .
\end{aligned}
$$

Loops of SM fields generate:

$$
\begin{aligned}
& V_{\text {leading }} \sim \frac{N_{c}}{16 \pi^{2}} m_{\psi}^{4} \sum_{i}\left[\epsilon_{L}^{2} I_{L}^{(i)}\left(s_{h}\right)+\epsilon_{R}^{2} I_{R}^{(i)}\left(s_{h}\right)\right] \\
& V_{\text {sub-leading }} \sim \frac{N_{c}}{16 \pi^{2}} m_{\psi}^{2} f^{2}\left[y_{t}^{2} M^{2}\left(s_{h}\right)+\ldots\right] \quad\left(y_{t} \sim \epsilon_{L} \epsilon_{R} \frac{m_{\psi}}{f}\right) \\
& s_{h} \equiv \sin \frac{h}{f}=\frac{v}{f}
\end{aligned}
$$

Two different trigonometric structures needed to tune.

- Tuning at leading order

$$
m_{h}^{2} \sim \frac{N_{c}}{2 \pi^{2}} y_{t} \frac{m_{\psi}^{3}}{f^{3}} v^{2} \quad \longrightarrow \quad \Delta=\frac{\delta m_{h}^{2}}{m_{h}^{2}} \sim \frac{f^{2}}{v^{2}}
$$

- Tuning with sub-leading terms (CHM5, CHMIO...)

$$
m_{h}^{2} \sim \frac{N_{c}}{2 \pi^{2}} y_{t}^{2} \frac{m_{\psi}^{2}}{f^{2}} v^{2} \quad \Delta \quad \Delta=\frac{\delta m_{h}^{2}}{m_{h}^{2}} \sim \frac{m_{\psi}}{y_{t} f} \times \frac{f^{2}}{v^{2}}
$$

- Composite tR (CHMI4)

$$
m_{h}^{2} \sim \frac{N_{c}}{2 \pi^{2}} y_{t}^{2} \frac{m_{\psi}^{2}}{f^{2}} v^{2} \quad \longrightarrow \quad \Delta=\frac{\delta m_{h}^{2}}{m_{h}^{2}} \sim \frac{f^{2}}{v^{2}}
$$

