# Searches for Supersymmetry at ATLAS

### Andreas Redelbach, University of Würzburg

### **On behalf of the ATLAS Collaboration**

### HBSM Workshop Trieste 24 – 28. June, 2013





# Outline

- SUSY phenomenology
- Strategies to search for SUSY
- Results based on sparticle production:
  - Strong production
  - Stop / sbottom production
  - Electroweak production
  - R-parity Violation
  - Summary plots
- Conclusions

## **SUSY** Particles



# (Phenomenological) MSSM

| Parameter                                                               | Description                        |
|-------------------------------------------------------------------------|------------------------------------|
| $M_1$                                                                   | Bino mass                          |
| $M_2$                                                                   | Wino mass                          |
| $M_3$                                                                   | Gluino mass                        |
| $m_{\tilde{e}_L} = m_{\tilde{\mu}_L}$                                   | 1st / 2nd gen. $L_L$ slepton       |
| $m_{	ilde{	au}_L}$                                                      | 3rd gen. $L_L$ slepton             |
| $m_{\tilde{e}_R} = m_{\tilde{\mu}_R}$                                   | 1st / 2nd gen. $E_R$ slepton       |
| $m_{	ilde{	au}_R}$                                                      | 3rd gen. $E_R$ slepton             |
| $m_{\tilde{u}_L} = m_{\tilde{d}_L} = m_{\tilde{c}_L} = m_{\tilde{s}_L}$ | 1st / 2nd gen. $Q_L$ squark        |
| $m_{\tilde{t}_L} = m_{\tilde{b}_L}$                                     | 3rd gen. $Q_L$ squark              |
| $m_{\tilde{u}_R} = m_{\tilde{c}_R}$                                     | 1st / 2nd gen. $U_R$ squark        |
| $m_{	ilde{t}_R}$                                                        | 3rd gen. $U_R$ squark              |
| $m_{\tilde{d}_R} = m_{\tilde{s}_R}$                                     | 1st / 2nd gen. $D_R$ squark        |
| $m_{\tilde{b}_R}$                                                       | 3rd gen. $D_R$ squark              |
| $A_t$                                                                   | Trilinear coupling $t$ -quark      |
| $A_b$                                                                   | Trilinear coupling <i>b</i> -quark |
| $A_{	au}$                                                               | Trilinear coupling $\tau$ -lepton  |
| $m_{H_1}$                                                               | <i>u</i> -type Higgs doublet mass  |
| $m_{H_2}$                                                               | <i>d</i> -type Higgs doublet mass  |
| aneta                                                                   | Ratio scalar doublet VEVs          |

General structure of superpotential  $W_{gen} = \frac{1}{2}M_{ij}\Phi_i\Phi_j + \frac{1}{6}y_{ijk}\Phi_i\Phi_j\Phi_k$ 

Structure of soft-SUSY breaking Lagrangian

$$\mathcal{C}_{soft}^{gen} = -\frac{1}{2} \left( \tilde{M}_{\lambda_a} \lambda_a \lambda_a + h.c. \right) - m_{ij}^2 \phi_i^* \phi_j - \left( \frac{1}{2} b_{ij} \phi_i \phi_j + \frac{1}{6} a_{ijk} \phi_i \phi_j \phi_k + h.c. \right)$$

e.g. Phys.Rev.D81:095012,2010

# **SUSY Phenomenology**

- SUSY theory includes > 100 parameters
- Additional sets of parameters for RPV or extended Higgs sector
- *R*-parity conserving signatures

$$R = (-1)^{3(B-L)+2S}$$

- Production of sparticles in pairs, decays to LSP
- Mass of WIMP-LSP sets scale for minimal  $E_t^{\text{miss}}$
- Signatures from prompt RPV
  - Enhanced lepton and/or jet multiplicities from LSP decays
  - More candidates for LSP
  - Resonances from single sparticle production / subsequent 2-body decay
- Long-lived particles
  - Displaced vertices due to small RPV-couplings
  - Mass-degeneracy
  - Hadronic states from heavy mediator sparticles (squarks)

## **RPV SUSY Parameters**

*R*-Parity:  $R = (-1)^{3(B-L)+2S}$ (Non-)conservation of *B* and *L* 

Superpot.  $W_{RPV} = \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \lambda_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k + \kappa_j L_i H_2$ 

- Most constraints only assume one (or product of two) coupling(s)
  - Neutrino masses
  - Charged current universality
  - Proton decay, di-nucleon decay, neutron oscillation
  - Flavor violating decays
  - Collider limits
- Number of parameters
  - 9  $\lambda_{ijk}$  ( $\lambda_{ijk} = -\lambda_{jik}$ )
  - 27 λ`<sub>ijk</sub>
  - 9 $\lambda^{i}_{ijk}$  ( $\lambda^{i}_{ijk} = -\lambda^{i}_{ikj}$ )
  - 3 dimensionful  $\kappa_i$

## Pre-LHC experimental constraints

- Low-energy constraints
  - $b \rightarrow s \gamma$
  - g<sub>µ</sub>-2
- Astrophysical results
  - Cold Dark Matter
  - WIMP production
- High-energy colliders
  - LEP
  - Tevatron

Jets + MET searches for squarks and gluinos at D0



**D0 0712.3805** 

## **ATLAS Detector**



## Luminosity and Pileup



- Luminosity recorded at 8 TeV in 2012
  Total efficiency (delivered → physics analysis): ~89%
- No significant impact on tracking, muons, electrons, photons expected
- Sizeable impact on jets,  $E_T^{\text{miss}}$ , tau reconstruction and trigger rates

# Strategies to search for SUSY

#### Inclusive searches

- Based on generic signatures and models
- Coverage of large parameter space
- Dedicated searches for studies of more model-specific features
- Complex sparticle production and decay chains
  - Requirements on final state jets, leptons, taus, photons,  $E_t^{\text{miss}}$
  - Optimization of Signal Regions
- Control of reducible and irreducible backgrounds
  - Data-driven methods
  - Normalization of MC in Control Regions
- Estimation of systematic uncertainties
- Statistical analysis
  - Combined binned profile likelihood fit using  $CL_s$  prescription for limits
  - Systematic uncertainties as nuisance parameters in fit, correlated among regions

# SUSY Models

- High-energy models of SUSY-breaking
  - mSUGRA / CMSSM
  - GMSB / general Gauge Mediation
  - AMSB
- pMSSM
- Simplified models
  - Decoupling limit of most sparticles
  - Electroweak production
  - Exclusive pair-production of
    - Gluinos
    - Stops / sbottoms
    - Charginos / neutralinos
    - Sleptons ...
  - Fixed (maximal) Branching Ratios

Constraints from Higgs mass around 125 GeV

## **SM Background Processes**



top quark pair production at 7 TeV: combination of single-lepton, dilepton and all-hadronic channels, 8-TeV measurement from single-lepton channel

ZZ cross section at 7 TeV includes combination of several measurements, 8-TeV only uses on-shell Z boson decays

Dark-color (lighter-color) error bar for stat. uncertainly (full uncertainty)

## Production processes and searches

#### Strong (gluino / squark) production

0 lepton + 2-6 jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-047)

0 lepton + 7-10 jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-054)

1-2 taus + jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-026)

2 SS leptons + 0-3 b-jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-007)

### Stop and/or sbottom production

Z + b-jet + jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-025) 2 leptons (+ jets) +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-048) 0 lepton + 2 b-jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-053) 0 lept. + 6(2 b-)jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-024) 1 lept. + (1 b-)jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-037)

### **Electroweak production**

2 leptons +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-049)

- 2 taus +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-028)
- 3 leptons +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-035)

4 leptons +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-036)





## **Recent results**

### Strong (gluino / squark) production

- •1 lepton+jets+  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-062)
  - 1-step, 2-step simplified models (with sleptons)
  - mSUGRA /CMSSM
  - minimal Universal Extra Dimension model



### Stop / sbottom production

•0-1leptons+3b-jets+jets+  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-069)

- Gluino decaying via sbottom-b, stop-top
- mSUGRA / CMSSM

#### Long-lived sparticle production

•Stopped gluino R-hadrons (ATLAS-CONF-2013-057)

- •Long-lived sleptons (ATLAS-CONF-2013-058)
  - Stau in GMSB
  - Direct stau production
  - Electroweak production of charginos decaying to stau

## 0 leptons + 7-10 jets + Etmiss- Overview

- Large jet multiplicities from various decays
- Selection of at least 7 10 jets
- Significant  $E_T^{\text{miss}}$
- Multi-jet + flavour stream
  - Reconstruction with jet dist. parameter R=0.4
  - Selection of number of *b*-jets
- Multi-jet +  $M_J^{\Sigma}$  stream (complementary)
  - Re-clustering of R=0.4 jets into large (R=1.0) composite jets
  - Sum of masses of composite jets as event variable
- Main backgrounds: Multi-jet, t-tbar, W+jets
  - Distribution of  $E_t^{\text{miss}}/\sqrt{H_T}$  in CR / SR
  - $E_t^{\text{miss}}$  resolution prop. to  $\sqrt{H_T}$  (in events dominated by jet activity)

#### Main processes:

$$\begin{array}{rcccc} q+q' & \to & \tilde{g}\tilde{g} \\ & \tilde{g} & \to & q+\tilde{q} \\ & \tilde{g} & \to & t+\bar{t}+\tilde{\chi}_1^0 \\ & \tilde{q} & \to & q+\tilde{\chi}_1^0 \\ & \tilde{q} & \to & q'+W+\tilde{\chi}_1^0 \end{array}$$

$$M_J^{\Sigma} = \sum_j m_j^{R=1.0}$$

### 0 leptons + 7-10 jets + Etmiss- Backgrounds

ATLAS-CONF-2013-054

Events

10<sup>11</sup>

10<sup>10†</sup>

10<sup>9</sup>⊧

10<sup>8</sup>

 $10^{-1}$ 

 $10^{6}$ 

10<sup>5</sup>

10<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

10

 $10^{-1}$ 

10<sup>-2</sup>

1.5

0.5

0

3

5

6

Data/Prediction

AS Preliminary

 $|L dt = 20.3 \text{ fb}^{-1}$ 

1 lepton CR

No b-jets

Data 2012, √s=8 TeV Background prediction

Sherpa W  $\rightarrow$  (e,µ, $\tau$ )v

[ĝ, χ̃, ]:[900,150] [GeV]

10 11 12 13

Number of jets p<sub>-</sub>>50 GeV

Sherpa t $\overline{t} \rightarrow ql, ll$ 

Sherpa W+b

Sherpa Z

Single top

MadGraph tt+V



CR with exactly 7 jets, 0 *b*-jets multi-jet prediction determined from  $ME_T/\sqrt{H_T}$ template (based on exactly 6 jets) normalized to data in region  $ME_T/\sqrt{H_T} < 1.5 \sqrt{GeV}$ after subtraction of "leptonic" backgrounds

1-lepton *ttbar* and *W*+jets CR, 0 *b*-jets MC predictions before fitting to data. Band in ratio plot: Exp. uncertainties on MC prediction and also MC stat. uncert.

8

9

### 0 leptons + 7-10 jets + Etmiss- Results



simplified gluino-stop (off-shell) model

simplified gluino-stop (on-shell) model

gluino decays to stop and top stop to top and LSP m<sub>LSP</sub>=60 GeV

### 0 leptons + 7-10 jets + Etmiss- Results



#### simplified gluino-squark (via chargino) model

C1 to W + LSP, sleptons decoupled  $x = (m_{chargino} - m_{LSP})/(m_{gluino} - m_{LSP})=1/2$ varying LSP mass

#### simplified gluino-squark (via chargino) model

varying  $x = (m_{chargino} - m_{LSP})/(m_{gluino} - m_{LSP})$ LSP mass of 60 GeV

## 1 lepton + jets + Etmiss- Overview

- 1 isolated electron or muon, significant  $E_t^{\text{miss}}$ 
  - Soft-lepton channel ( $p_T < 25 \text{ GeV}$ )
  - Hard-lepton channel ( $p_T > 25$  GeV)
- Selection of at least 2 jets (add. b-jets)
- Main backgrounds: Multi-jet, t-tbar, W+jets
- Reduction of backgrounds:
  - Misidentified leptons ( $\Delta R_{min}$ )
  - Fake  $E_t^{\text{miss}}$  in events from multi-jets ( $\Delta \varphi_{min}$ )
  - Leptonic *W*-decays  $(m_T)$
  - Overall scale of hard scattering proc.( $m_{eff}^{inc}$ ,  $H_{T,2}$ )
  - $E_t^{\text{miss}}$  in soft single lepton + b-jets ( $m_{CT}$ )
- Interpretations:
  - Simplified Models: 1-step, 2-step (with sleptons)
  - mSUGRA/CMSSM
  - minimal Universal Extra Dimension model

#### Main processes:

$$\begin{array}{rcccc} q+q' & \rightarrow & \tilde{g}+\tilde{g} \\ & \tilde{g} & \rightarrow & q+\tilde{q} \\ q+q' & \rightarrow & \tilde{q}_{(L)}+\tilde{q}_{(L)} \\ & \tilde{q}_L & \rightarrow & q'+W+\tilde{\chi}_1^0 \\ & \tilde{q}_L & \rightarrow & q'+U+\bar{l}+\tilde{\chi}_1^0 \\ & \tilde{q}_L & \rightarrow & q'+l+\bar{l}+\tilde{\chi}_1^0 \\ & q+q' & \rightarrow & \tilde{t}_1+\tilde{t}_1 \\ & \tilde{t}_1 & \rightarrow & b+\tilde{\chi}_1^{\pm} \rightarrow W^{(*)}\tilde{\chi}_1^0 b \end{array}$$

### 1 lepton + jets + Etmiss- Backgrounds

ATLAS-CONF-2013-062



*t-tbar* (left) and *W+jets* (right) control regions Hard single-electron channels

Before cut on  $E_t^{\text{miss}}$ 

## 1 leptons + jets + Etmiss- Results

ATLAS-CONF-2013-062



#### **Gluino simplified model**

C1 to W + LSP, sleptons decoupled chargino mass fixed at x=1/2, where  $x = (m_{chargino} - m_{LSP})/(m_{gluino} - m_{LSP})$ 7 TeV data shown as grey area  $1^{st}$  /  $2^{nd}$  gen. squark simplified model C1 to W + LSP, sleptons decoupled

## Production processes and searches

#### Strong (gluino / squark) production

0 lepton + 2-6 jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-047) 0 lepton + 7-10 jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-054) 1-2 taus + jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-026) 2 SS leptons + 0-3 b-jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-007)



### Stop and/or sbottom production

Z + b-jet + jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-025) 2 leptons (+ jets) +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-048) 0 lepton + 2 b-jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-053) 0 lept. + 6(2 b-)jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-024) 1 lept. + (1 b-)jets +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-037)

#### **Electroweak production**

2 leptons +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-049) 2 taus +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-028) 3 leptons +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-035) 4 leptons +  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-036)



## Stop- / sbottom processes

- **Naturalness** arguments for "light" third generation squarks
- Pair-production of stops / sbottoms:
  - **Gluino-mediated**
  - **Direct production**
- Final state with high top / bottom multiplicities





b

 $P_2$ 

## 0-1 lepton + 3b-jets + jets + Etmiss- Overview

- Selection:
  - At least 3 *b*-jets
  - Up to 1 *e* or *µ*
  - At least 4 jets (non *b*-tagged)
- Main background: *t-tbar* 
  - Irreducible: at least 3 real b-jets
  - Reducible: at least 1 b-jet misidentified
- Discrimination of backgrounds with variables
  - $E_t^{\rm miss}/\sqrt{H_{\rm T}},\,m_T^{\rm},\,m_{eff}^{\rm inc},\,\Delta \varphi_{min}^{\rm 4j}$
- Interpretation of results: Various mass hierarchies among gluinos, stops, sbottoms, neutralinos and charginos
  - Direct production of stops / sbottoms
  - Gluino-med. production (off-shell 3<sup>rd</sup> gen. squark)

$$\begin{array}{rccc} q+q' & \to & \tilde{g}+\tilde{g} \\ & \tilde{g} & \to & \tilde{b}_1+b \\ & \tilde{g} & \to & \tilde{t}_1+t \\ q+q' & \to & \tilde{t}_1+\tilde{t}_1 \\ q+q' & \to & \tilde{b}_1+\tilde{b}_1 \end{array}$$

### 0-1 lepton + 3b-jets + jets + Etmiss- Backgrounds



Matrix method for reducible background MC for irreducible background

0-lepton channel after requiring at least 7 jets with  $p_T > 30$  GeV

### 0-1 lepton + 3b-jets + jets + Etmiss- Results

ATLAS-CONF-2013-061



**Gtt simplified model** 

**Gbb simplified model** 

HBSM Workshop, 24-28 June, 2013

A. Redelbach-ATLAS SUSY Searches

## Summary of gluino-mediated stop results



## mSUGRA/CMSSM summary plot



HBSM Workshop, 24-28 June, 2013

A. Redelbach-ATLAS SUSY Searches

# 2 leptons (+ jets) + Etmiss- Overview

- Direct pair-production of stop squarks
- Top decays:
  - 2 isolated leptons in final state
  - *b*-jets
- Significant  $E_t^{\text{miss}}$
- Investigation also of 3-body decay mode
- Various assumptions on mass hierarchy between C1 and N1
- Discrimination of backgrounds also with "stransverse" mass  $m_{T2}$

$$m_{\text{T2}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{p}_{\text{T}}^{\text{miss}}) = \min_{\mathbf{q}_{\text{T}} + \mathbf{r}_{\text{T}} = \mathbf{p}_{\text{T}}^{\text{miss}}} \left\{ \max[m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{q}_{\text{T}}), m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{r}_{\text{T}})] \right\}$$

Main processes:

 $\begin{array}{rccc} q+q' & \to & \tilde{t}_1+\tilde{t}_1 \\ & \tilde{t}_1 & \to & b+\tilde{\chi}_1^{\pm} \\ & \tilde{t}_1 & \to & b+\tilde{\chi}_1^{\pm} \to W^{(*)}+\tilde{\chi}_1^0+b \end{array}$ 

# 2 leptons (+ jets) + Etmiss- Backgrounds



Same Flavor / Different Flavor events passing all signal selections requirements, except of  $m_{T2}$  and M100 "fake lepton" estimated from data other backgrounds estimated from MC simulation with normalizations measured in CRs for ttbar and diboson backgrounds.

#### Signal models:

full line corresponds to  $m(\sim t1) = 150$  GeV, m(C1) = 120 GeV and m(N1) = 1 GeV;

dashed line to  $m(\sim t1) = 400$  GeV, m(C1) = 250 GeV and m(N1) = 1 GeV

ATLAS-CONF-2013-048

## 2 leptons (+ jets) + Etmiss- Results



fixed  $m(\sim t1)-m(C1) = 10$  GeV assuming BR( $\sim t1 \rightarrow C1 b$ ) = 1

m(C1) = 2 m(N1) assuming BR(~t1  $\rightarrow$  C1 b) = 1

## 2 leptons (+ jets) + Etmiss- Results



assuming  $BR(\sim t1 \rightarrow N1 W b) = 1$ 

neutralino with mass of 1 GeV assuming  $BR(\sim t1 \rightarrow C1 b) = 1$ 

## Summary of stop-based results



#### Decay modes with 100% BR:

 $t_1 \rightarrow t + \chi_1^0 (7 \text{ TeV}, 8 \text{ TeV}, \text{ where the } t_1 \text{ is mostly } t_R),$   $t_1 \rightarrow W + b + \chi_1^0 (3 \text{-body decay for } m(t_1) < m(t) + m(\chi_1^0), 8 \text{ TeV}),$  $t_1 \rightarrow b + \chi_1^{\pm}, \chi_1^{\pm} \rightarrow W^{(*)} + \chi_1^0 (\text{several hypotheses on } t_1, \chi_1^{\pm}, \chi_1^0), \text{ mass hierarchy})$ 

# **Electroweak SUSY production**

- Production of charginos, neutralinos or sleptons
- Searches for at least 2 light leptons or taus



# 2 leptons + Etmiss [EW]- Overview

- Pair-production of charged sleptons or charginos
- 2 OS (SF or DF) leptons in final state
- Significant  $E_t^{\text{miss}}$
- Smaller backgrounds for e-µ based signatures
- Discrimination of backgrounds with  $m_{T2}$  and  $E_t^{miss,rel}$  variables
- Scenarios for interpretations:
  - Direct slepton
  - Chargino-to-slepton
  - Chargino-to-W
  - GMSB with charginos NLSP



$$E_{\rm T}^{\rm miss, rel.} = \begin{cases} E_{\rm T}^{\rm miss} & \text{if } \Delta \phi_{\ell,j} \ge \pi/2\\ E_{\rm T}^{\rm miss} \times \sin \Delta \phi_{\ell,j} & \text{if } \Delta \phi_{\ell,j} < \pi/2 \end{cases}$$

# 2 leptons + Etmiss [EW]- Backgrounds



eμ nJets=0,p<sup>1</sup><sub>+</sub>>35GeV,p<sup>1</sup><sub>+</sub>>20GeV,E<sup>miss,rel</sup>>70GeV,p<sup>1</sup><sub>+</sub>>70GeV,m<sub>\*</sub><80GeV,dφ<sub>\*</sub><1.8 Events / 5 GeV AS Preliminarv Data 2012  $10^{3}$ ww Ldt = 20.3 fb<sup>-1</sup>  $\sqrt{s}$  = 8 TeV tī + Wt eµ channel (SR-WWa) Z+jets 10<sup>2</sup> ZV **Fake leptons** Higgs MC Stat+Syst Uncert 10  $(m\tilde{\chi}_{,}^{\pm},m\tilde{\chi}_{,}^{0})=(100,0)GeV$ 1 10 Data/SM 3.1 SM 0나 70 130 80 90 100 110 120 140 150 160 170 E<sup>miss,rel</sup>[GeV]

*pT(l1)* > 35 GeV and *pT(l2)* > 20 GeV *WW* and *ttbar:* corrected with data-driven scale factors hashed regions: total uncertainties on background estimates

#### SR-WWa

Effect of limited data events in CR included in systematic uncertainty.

ZV includes WZ and ZZ events

# 2 leptons + Etmiss [EW]- Results



C1C1 pair production in simplified model with sleptons and sneutrinos with m(slepton) = m(neutrino) = (m(C1)+m(N1))/2LEP limit on mass of the chargino

C1C1 pair production in simplified model with sleptons and sneutrinos with m(slepton) = m(neutrino) = (m(C1)+m(N1))/2LEP limit on mass of the chargino

# 3 leptons + Etmiss - Overview

- Associate production of N2-C1
- *N2* and *C1* mainly wino, *N1* predominantly bino
- Masses of N1,N2, C1, sneutrinos and left-handed sleptons as free parameters
- Signal with 3 leptons including 1 OSSF lepton pair (no decays via Higgs bosons)
- Main backgrounds:
  - Reducible: t-tbar, Z+ jets (estimated with matrix methods)
  - Irred.: Diboson, triboson and ttbarWZ (MC samples)
- Discrimination of backgrounds with m<sub>τ</sub>, b-veto, partly Z-veto
- Simplified models for interpretations:
  - Light sleptons with equal masses
  - Heavy sleptons, signal decays via W(\*)/Z(\*)

 $\tilde{\chi}_2^0$  $\tilde{\chi}_1^{\pm}$  $\tilde{\ell}^{\pm}(\tilde{\nu})$  $\tilde{\chi}_1^0$  $\tilde{\chi}_2^0$  $\tilde{\chi}_1^{\pm}$  $W^{\pm(*)}$ 

 $\tilde{\chi}_1^0$ 

 $\ell^{\pm}(\nu)$ 

## 3 leptons + Etmiss - Backgrounds

ATLAS-CONF-2013-035





#### VRZb

uncertainty band includes statistical and systematic uncertainties on SM prediction

| Selection                               | SRZb       |
|-----------------------------------------|------------|
| m <sub>SFOS</sub> [GeV]                 | 81.2-101.2 |
| $E_{\rm T}^{\rm miss}$ [GeV]            | 75-120     |
| $m_{\rm T}$ [GeV]                       | >110       |
| $p_{\rm T} 3^{\rm rd} \ell [{\rm GeV}]$ | >10        |

#### SRZb

uncertainties on data points statistical only. simplified model scenarios, where `` $\chi_1^{\pm} \chi_2^0$  via slep x,y" (`` $\chi_1^{\pm} \chi_2^0$  via WZ x,y") with decays via sleptons (via gauge bosons), and x is the  $\chi_2^0$ ,  $\chi_1^{\pm}$  mass and y is the  $\chi_1^0$  mass in GeV.

## 3 leptons + Etmiss - Results



chargino and neutralino production in simplified model with **decay via sleptons** 

chargino and neutralino production in simplified model with **decay via gauge bosons** 

## 4 leptons + Etmiss - Overview

- Single coupling dominance  $\lambda_{121}$  or  $\lambda_{133}$
- RPC pair production
- Prompt Neutralino-LSP decays -> Large lepton multiplicities
- NLSP: Wino-chargino or gluino
- Decoupling limit of other sparticles (masses at 4.5 TeV)
- Lambda >  $(0.3-1)*10^{-4}$  depending on masses
- Discrimination of backgrounds with  $m_{eff}$  ,  $E_t^{\text{miss}}$ , veto on Z
- Wino-NLSP:
- $\tilde{\chi}_1^+ \tilde{\chi}_1^-$  production
- decay  $\tilde{\chi}_1^{\pm} \to W^{\pm(*)} \tilde{\chi}_1^0$

Gluino-NLSP:

- $\tilde{g}\tilde{g}$  production
- decay  $\tilde{g} \to q\bar{q}'\tilde{\chi}_1^0 \quad (q,q' \in u,d,s,c)$

## 4 leptons + Etmiss - Backgrounds



events with =3ℓ≥17 and a Z veto uncertainty band includes statistical and systematic uncertainties.

## 4 leptons + Etmiss - Results



# **Recent results on Long-Lived Sparticles**

#### Strong (gluino / squark) production

- •1 lepton+jets+  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-062)
  - 1-step, 2-step simplified models (with sleptons)
  - mSUGRA /CMSSM
  - minimal Universal Extra Dimension model

#### Stop / sbottom production

- •0-1leptons+3b-jets+jets+  $E_t^{\text{miss}}$  (ATLAS-CONF-2013-069)
  - Gluino decaying via sbottom-b, stop-top
  - mSUGRA / CMSSM



### Long-lived sparticle production

- •Stopped gluino R-hadrons (ATLAS-CONF-2013-057)
- •Long-lived sleptons (ATLAS-CONF-2013-058)
  - Stau in GMSB
  - Direct stau production
  - Electroweak production of charginos decaying to stau

# Stopped gluinos - Overview

- Gluino *R*-hadrons stopped within ATLAS calorimeter due to ionization energy loss
- Split SUSY with suppressed gluino decays
- triggered in empty bunch crossings of LHC, elimination of collision background
- Backgrounds: cosmic ray events and beam-halo muon backgrounds

$$\begin{array}{rccc} q+q' & \to & \tilde{g}+\tilde{g} \\ & \tilde{g} & \to & g+\tilde{\chi}_1^0 \\ & \tilde{g} & \to & q+\bar{q}+\tilde{\chi}_1^0 \end{array}$$

- Discrimination via jet shape and muon-system activity
- *R***-hadron model:** Gluino as heavy, non-interacting spectator, surrounded by a cloud of interacting quarks
  - Hadronization into color-singlet *R*-hadrons
  - Generic: Many allowed stable states, also doubly charged R-hadrons
  - **Regge:** Only 1 electrically neutral baryonic state allowed
  - Intermediate: Charged baryons, more restriced than Generic model

## Stopped gluinos - Backgrounds



#### ATLAS-CONF-2013-057

#### Leading jet energy for the **empty bunch signal triggers**

Signal region with **all selections** muon segment veto (no segments reconstructed in the muon system) excluding jet energy > 100 GeV

## Stopped gluinos - Results



(Bayesian) lower limits on **gluino mass versus gluino lifetime** Leading jet energy > 100 GeV 800 GeV gluino in Generic R-hadron model

HBSM Workshop, 24-28 June, 2013

A. Redelbach-ATLAS SUSY Searches

ATLAS-CONF-2013-057

## Summary plots

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: LP 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$   $\sqrt{s} = 7, 8 \text{ TeV}$ 

|                                       | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e,μ,τ,γ                                                                                                                                                                                     | Jets                                                                                                                       | E <sup>miss</sup>                             | ∫£dt[ft                                                                                 | b <sup>-1</sup> ]                                                                                | Mass limit                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference                                                                                                                                                                                                                                                                 |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ (SS) \\ 2 \ e, \mu \\ 1 \ 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$ | 3-6 jets<br>7-10 jets<br>2-6 jets<br>3-6 jets<br>3-6 jets<br>3-jets<br>0-2 jets<br>0<br>1 <i>b</i><br>0-3 jets<br>mono-jet | କୁକୁ କୁକୁ କୁକୁ କୁକୁ କୁକୁ<br>ଜୁକୁ କୁକୁ କୁକୁ    | 20.3<br>20.3<br>20.3<br>20.3<br>20.7<br>4.7<br>20.7<br>4.8<br>4.8<br>5.8<br>5.8<br>10.5 | 8<br>8<br>9<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                               | TeV         any m(ξ)           eV         any m(ξ)           m(ξ <sup>0</sup> <sub>1</sub> )=0 GeV          3 TeV         m(ξ <sup>0</sup> <sub>1</sub> )=0 GeV           TeV         m(ξ <sup>0</sup> <sub>1</sub> )=0 GeV           #V         m(ξ <sup>0</sup> <sub>1</sub> )=0 GeV           eV         m(ξ <sup>0</sup> <sub>1</sub> )=0 GeV           eV         m(ξ <sup>0</sup> <sub>1</sub> )=0 GeV           eV         m(ξ <sup>0</sup> <sub>1</sub> )           eV         m(ξ <sup>0</sup> <sub>1</sub> )           1.4 TeV         tan% > 18           tV         m(ξ <sup>0</sup> <sub>1</sub> )>50 GeV           m(ξ <sup>0</sup> <sub>1</sub> )>50 GeV         m(ξ <sup>0</sup> <sub>1</sub> )>200 GeV           m(ξ <sup>1</sup> <sub>1</sub> )>200 GeV         m(ξ <sup>1</sup> <sub>1</sub> )>200 GeV           m(ξ)> 10 <sup>-4</sup> eV         m(ξ)> 10 <sup>-4</sup> eV | ATLAS-CONF-2013-062<br>ATLAS-CONF-2013-054<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-062<br>ATLAS-CONF-2013-026<br>1208-4688<br>ATLAS-CONF-2013-026<br>1209.0753<br>ATLAS-CONF-2012-144<br>1211.1167<br>ATLAS-CONF-2012-152<br>ATLAS-CONF-2012-152 |
| 3 <sup>rd</sup> gen.<br>'§ med.       | $\begin{array}{c} g \rightarrow b \overline{b} \overline{b}_{1}^{0} \\ g \rightarrow t \overline{b} \overline{b}_{1}^{0} \\ g \rightarrow t \overline{b} \overline{b}_{1}^{0} \\ g \rightarrow b \overline{b} \overline{b}_{1}^{0} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0 - 1 e, µ<br>0 - 1 e, µ                                                                                                                                                          | 3 b<br>7-10 jets<br>3 b<br>3 b                                                                                             | Yes<br>Yes<br>Yes<br>Yes                      | 20.1<br>20.3<br>20.1<br>20.1                                                            | 8<br>8<br>8<br>8                                                                                 | 1.2<br>1.14<br>1<br>1                                                                                               | 2 TeV m(ξ <sup>2</sup> )<600 GeV<br>TeV m(ξ <sup>2</sup> )<200 GeV<br>.34 TeV m(ξ <sup>2</sup> )<400 GeV<br>I.3 TeV m(ξ <sup>2</sup> )<300 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATLAS-CONF-2013-061<br>ATLAS-CONF-2013-054<br>ATLAS-CONF-2013-061<br>ATLAS-CONF-2013-061                                                                                                                                                                                  |
| 3rd gen. squarks<br>direct production | $\begin{array}{l} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\xi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow c \tilde{\xi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow c \tilde{\xi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\xi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow c \tilde{b}_1^0 \\ \tilde{b}_1 \rightarrow c \tilde{b}_1 \rightarrow c \tilde{b}_1^0 \\ \tilde{b}_1 \rightarrow c \tilde{b}_1^0 \\ \tilde{b}_1 \rightarrow c \tilde{b}_1 \rightarrow c \tilde{b}_1^0 \\ \tilde{b}_1 \rightarrow c \tilde{b}_1^0 \\ \tilde{b}_1 \rightarrow c \tilde{b}_1 \rightarrow c \tilde{b}_1^0 \\ \tilde{b}_1 \rightarrow c \tilde{b}_1 \rightarrow c \tilde{b}_1^0 \\ \tilde{b}_1 \rightarrow c $ | 0<br>2 e, µ (SS)<br>1-2 e, µ<br>2 e, µ<br>2 e, µ<br>0<br>1 e, µ<br>0<br>2 e, µ(Z)<br>3 e, µ(Z)                                                                                              | 2 b<br>0-3 b<br>1-2 b<br>0-2 jets<br>0-2 jets<br>2 b<br>1 b<br>2 b<br>1 b<br>1 b<br>1 b                                    | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.1<br>20.7<br>4.7<br>20.3<br>20.3<br>20.1<br>20.7<br>20.5<br>20.7<br>20.7             | ត្                                                                                               | 100-630 GeV<br>430 GeV<br>220 GeV<br>150-440 GeV<br>150-580 GeV<br>200-610 GeV<br>320-660 GeV<br>500 GeV<br>520 GeV | $\begin{split} &m(\tilde{t}_{1}^{0}) < 100  \text{GeV} \\ &m(\tilde{t}_{1}^{0}) = 2  m(\tilde{t}_{1}^{0}) \\ &m(\tilde{t}_{1}^{0}) = 56  \text{GeV} \\ &m(\tilde{t}_{1}^{0}) = m(\tilde{t}_{1}) - m(W) - 50  \text{GeV},  m(\tilde{t}_{1}) < < m(\tilde{t}_{1}^{0}) \\ &m(\tilde{t}_{1}^{0}) = 06  \text{GeV},  m(\tilde{t}_{1}) - m(\tilde{t}_{1}^{0}) = 10  \text{GeV} \\ &m(\tilde{t}_{1}^{0}) < 200  \text{GeV},  m(\tilde{t}_{1}^{0}) - m(\tilde{t}_{1}^{0}) = 5  \text{GeV} \\ &m(\tilde{t}_{1}^{0}) = 0  \text{GeV} \\ &m(\tilde{t}_{1}^{0}) = 0  \text{GeV} \\ &m(\tilde{t}_{1}^{0}) = 10  \text{GeV} \\ &m(\tilde{t}_{1}^{0}) = 10  \text{GeV} \end{split}$                                                                                                                                                                                                                            | ATLAS-CONF-2013-053<br>ATLAS-CONF-2013-007<br>1208.4305, 1200.2102<br>ATLAS-CONF-2013-048<br>ATLAS-CONF-2013-053<br>ATLAS-CONF-2013-053<br>ATLAS-CONF-2013-025<br>ATLAS-CONF-2013-025<br>ATLAS-CONF-2013-025                                                              |
| EW<br>direct                          | $\begin{array}{l} \tilde{\mathcal{U}}_{L,R}\tilde{\mathcal{E}}_{L,R}, \tilde{\ell} \rightarrow \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{1}^{-}, \tilde{\mathcal{K}}_{1}^{+} \rightarrow \tilde{\ell}r(\ell P) \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{1}^{-}, \tilde{\mathcal{K}}_{1}^{+} \rightarrow \ell r(\ell P) \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{2}^{0} \rightarrow \tilde{\ell}_{1}r\tilde{\ell}_{1}\ell(\ell (P), \ell r\tilde{\ell}_{1}\ell(\ell P)) \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{2}^{0} \rightarrow W \cdot \tilde{\mathcal{K}}_{1}^{0}Z'\tilde{\mathcal{K}}_{1}^{0} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 e,μ<br>2 e,μ<br>2 τ<br>3 e,μ<br>3 e,μ                                                                                                                                                     | 0<br>0<br>0<br>0                                                                                                           | Yes<br>Yes<br>Yes<br>Yes<br>Yes               | 20.3<br>20.3<br>20.7<br>20.7<br>20.7                                                    | $\bar{t}$<br>$\bar{x}_{1}$<br>$\bar{x}_{1}$<br>$\bar{x}_{1}$<br>$\bar{x}_{1}$<br>$\bar{x}_{1}$   | 85-315 GeV<br>125-450 GeV<br>190-330 GeV<br>600 GeV<br>315 GeV                                                      | $\begin{array}{l} m(\tilde{\epsilon}_1^2){=}0\text{GeV} \\ m(\tilde{\epsilon}_1^2){=}0\text{GeV}, m(\tilde{\epsilon},\tilde{\nu}{=}0.5(m(\tilde{\epsilon}_1^2){*}m(\tilde{\epsilon}_1^2)) \\ m(\tilde{\epsilon}_1^2){=}0\text{GeV}, m(\tilde{\epsilon},\tilde{\nu}{=}0.5(m(\tilde{\epsilon}_1^2){*}m(\tilde{\epsilon}_1^2)) \\ m(\tilde{\epsilon}_1^2){=}m(\tilde{\epsilon}_2^2), m(\tilde{\epsilon}_1^2){=}0, m(\tilde{\epsilon},\tilde{\nu}{=}0.5(m(\tilde{\epsilon}_1^2){*}m(\tilde{\epsilon}_1^2)) \\ m(\tilde{\epsilon}_1^2){=}m(\tilde{\epsilon}_2^2), m(\tilde{\epsilon}_1^2){=}0, m(\tilde{\epsilon}_1^2){=}0, \text{slaptons decoupled} \end{array}$                                                                                                                                                                                                                                   | ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-028<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-035                                                                                                                                                           |
| Long-lived<br>particles               | $\begin{array}{l} \operatorname{Direct} \bar{x}_1^+ \bar{x}_1^- \operatorname{prod.}, \operatorname{long-lived} \bar{x}_1^+ \\ \operatorname{Stable}, \operatorname{stopped} \tilde{x} \ \operatorname{R-hadron} \\ \operatorname{GMSB}, \operatorname{stable} \ \tau \\ \operatorname{Direct} \ \mathrm{tr} \ \operatorname{prod.}, \operatorname{stable} \ \tau \ o \ \tilde{\ell} \\ \operatorname{GMSB}, \bar{x}_1^0 \to \gamma g, \ \operatorname{long-lived} \bar{x}_1^0 \\ \bar{x}_1^0 \to qqu \ (\operatorname{RPV}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>1-2 μ<br>1-2 μ<br>2 γ<br>1 μ                                                                                                                                                      | 1 jet<br>1-5 jets<br>0<br>0<br>0<br>0                                                                                      | Yes<br>Yes<br>·<br>Yes<br>Yes                 | 4.7<br>22.9<br>15.9<br>15.9<br>4.7<br>4.4                                               | X1<br>8<br>7<br>X1<br>9                                                                          | 220 GeV 857 GeV<br>385 GeV<br>395 GeV<br>230 GeV<br>700 GeV                                                         | 1<τ(ℓ <sup>2</sup> )<10 ns<br>m(ℓ <sup>2</sup> )=100 GeV, 10 μs<τ(ĝ)<100 s<br>5 <tanβ<50<br>m(?)=m(ℓ)<br/>0.4&lt;τ(ℓ<sup>2</sup>)&lt;2 ns<br/>1 mm<cτ<1 decoupled<="" m,="" td="" ĝ=""><td>1210.2852<br/>ATLAS-CONF-2013-057<br/>ATLAS-CONF-2013-058<br/>ATLAS-CONF-2013-058<br/>1304.6310<br/>1210.7451</td></cτ<1></tanβ<50<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1210.2852<br>ATLAS-CONF-2013-057<br>ATLAS-CONF-2013-058<br>ATLAS-CONF-2013-058<br>1304.6310<br>1210.7451                                                                                                                                                                  |
| RPV                                   | $ \begin{array}{l} LFV \ pp \rightarrow \tilde{r}_\tau + X, \ \tilde{r}_\tau \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{r}_\tau + X, \ \tilde{r}_\tau \rightarrow e(\mu) + \tau \\ Diffueur RPV \ CMSSM \\ \tilde{x}_1^+ \tilde{x}_1^- \tilde{x}_1^+ \rightarrow \mathcal{W} \tilde{x}_1^0 \ \tilde{x}_1^0 \rightarrow e e \tilde{r}_\mu, e \mu \tilde{r}, \\ \tilde{x}_1^+ \tilde{x}_1^- \tilde{x}_1^+ \rightarrow \mathcal{W} \tilde{x}_1^0 \ \tilde{x}_1^0 \rightarrow \pi r \tilde{r}_s, e r \tilde{r}, \\ \tilde{s}^+ q q \\ \tilde{s} \rightarrow \tilde{s}_1 t, \ \tilde{s}_1 \rightarrow b s \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 e,μ<br>1 e,μ + τ<br>1 e,μ<br>4 e,μ<br>3 e,μ + τ<br>0<br>2 e,μ (SS)                                                                                                                        | 0<br>7 jets<br>0<br>6 jets<br>0-3 <i>b</i>                                                                                 | Yes<br>Yes<br>Yes<br>Yes                      | 4.6<br>4.6<br>20.7<br>20.7<br>4.6<br>20.7                                               | 7.<br>7.<br>9.8<br>X1<br>X1<br>8<br>8                                                            | 1.1 T<br>1.2<br>760 GeV<br>350 GeV<br>666 GeV<br>880 GeV                                                            | <b>1.61 TeV</b> $\lambda_{241} = 0.10, \lambda_{422} = 0.05$<br><b>eV</b> $\lambda_{241} = 0.10, \lambda_{412} = 0.05$<br><b>teV</b> $m(\xi) = m(\xi), c_{7,25} = 0.05$<br><b>teV</b> $m(\xi) = m(\xi), c_{7,25} = 0$<br>$m(\xi_1^2) = 300 \text{ GeV}, \lambda_{123} > 0$<br>$m(\xi_1^2) = 80 \text{ GeV}, \lambda_{123} > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1212.1272<br>1212.1272<br>ATLAS-CONF-2012-140<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-036<br>1210.4813<br>ATLAS-CONF-2013-007                                                                                                                                           |
| Other                                 | Scalar gluon W MP interaction (D5, Dirac $\chi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0                                                                                                                                                                                      | 4 jets<br>mono-jet                                                                                                         | -<br>Yes                                      | 4.6<br>10.5                                                                             | sgluon<br>M' scale                                                                               | 100-287 GeV                                                                                                         | incl. limit from 1110.2593 $m(\chi)\!<\!80{\rm GeV}, \mbox{ limit of}\!<\!687{\rm GeV} \mbox{ for D8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1210.4826<br>ATLAS-CONF-2012-147                                                                                                                                                                                                                                          |
|                                       | √s = 7 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s=8 TeV                                                                                                                                                                                     | <u>√s</u> =                                                                                                                | 8 TeV                                         |                                                                                         |                                                                                                  | 10 <sup>-1</sup>                                                                                                    | 1 Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                           |

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 10r theoretical signal cross section uncertainty.

partial data

#### A. Redelbach-ATLAS SUSY Searches

## Conclusions

- Large amount of results based on 2012 8 TeV data
- No evidence for SUSY found
- Several analyses to be finished, including combinations
- Search for Natural SUSY in large areas of parameter space
- Further R&D during LS1:
  - Improving MC generator predictions for SM backgrounds
  - Measurements in rare background channels
  - Extend techniques for soft, boosted or displaced objects
- Prospects for natural SUSY to be discussed with colleagues from various SUSY communities

## Extra material

# 2012 Triggers

- Trigger menu:
  - Baseline designed for  $L = 8 \oslash 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
  - Mostly unchanged during 2012 run
- Average trigger rate during stable beam operation:



## Systematic uncertainties

- Experimental
  - Luminosity
  - Jet Energy Scale
  - Jet Energy Resolution
  - Pileup
  - B-tagging
  - Lepton energy scale
  - Lepton efficiency
  - Trigger efficiency
- Theoretical
  - MC statistics
  - Factorization / renormalization scale
  - ISR / FSR uncertainty
  - Parton shower
  - PDF uncertainties

### 0 leptons + 7-10 jets + Etmiss- Results



95% CL exclusion curve for the **mSUGRA/CMSSM model**, generated with parameters tan  $\beta$  = 30, A<sub>0</sub> = -2 m<sub>0</sub> and  $\mu$  > 0 (Higgs-aware)

HBSM Workshop, 24-28 June, 2013

ATLAS-CONF-2013-054

A. Redelbach-ATLAS SUSY Searches

### 1 leptons + jets + Etmiss- Variables

$$\Delta R_{\min} = \min\left(\Delta R(j_1, \ell), \Delta R(j_2, \ell), ..., \Delta R(j_n, \ell)\right)$$

$$\Delta \phi_{\min} = \min \left( \Delta \phi(\boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{jet},1}), \Delta \phi(\boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{jet},2}) \right)$$

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}} (1 - \cos(\Delta \phi(\vec{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss})))$$

$$m_{\text{eff}}^{\text{inc}} = \sum_{i=1}^{N_{\ell}} p_{\text{T},i}^{\ell} + \sum_{j=1}^{N_{\text{jet}}} p_{\text{T},j} + E_{\text{T}}^{\text{miss}}$$

 $m_{\rm CT}^2(b\text{-jet}_1, b\text{-jet}_2) = [E_{\rm T}(b\text{-jet}_1) + E_{\rm T}(b\text{-jet}_2)]^2 - [p_{\rm T}(b\text{-jet}_1) - p_{\rm T}(b\text{-jet}_2)]^2$ 

## 4 leptons + Etmiss – LSP decays











