SEARCHES FOR SUPERSYMMETRY WITH JETS + MET + X WITH THE ATLAS DETECTOR AT THE LHC

Higgs and BSM Physics Workshop, ICTP, Trieste

24-28th June, 2013

Emma Siân Kuwertz On behalf of the ATLAS Collaboration

Overview

General overview of Supersymmetry (SUSY) searches at ATLAS targeting final states with jets and missing transverse momentum (MET).

DIRECT STOP/SBOTTOM PRODUCTION

Direct stop/sbottom overview

Wide range of ATLAS analyses targeting direct stop / sbottom production

 $\begin{array}{l} - 0L + 2b + MET (\tilde{b} \rightarrow b \tilde{\chi}_{1}^{0} \ \text{and} \ \tilde{t} \rightarrow b \tilde{\chi}_{1}^{\pm}) \ [ATLAS-CONF-2013-053] \\ - 0L + 6 (2 \ b)jets + MET (\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0} \ \text{with fully hadronic final state}) \ [ATLAS-CONF-2013-024] \\ - 1L + 4(1 \ b)jets + MET \ [ATLAS-CONF-2013-037] \\ - 2L (+ jets) + MET (\tilde{t} \rightarrow b \tilde{\chi}_{1}^{\pm} \ \text{for large N1-C1 hierarchy}) \ [ATLAS-CONF-2013-048] \\ - Z + b-jets + MET \ (stop in GMSB, stop2 \ pair production) \ [ATLAS-CONF-2013-025] \end{array}$

1 lepton + 4 jets (≥ 1 b-	jet) + MET				
Six signal regions catered • Direct stop: $\tilde{t} \rightarrow b \tilde{\chi}_1^2$ • Direct stop: $\tilde{t} \rightarrow t \tilde{\chi}_1^0$	towards: [±] (SRbC1-3) (SRtN1-3)	 SRbC2/3 high p_T b-jets → enhances sensitivity to high stop masses. SRtN1 shape fit in MET / m_T → models with a ~mass degenerate stop. 			
$m_{\tilde{t}_1}\gtrsim m_t+m_{\tilde{\chi}_1^0}$	large $m_{\tilde{\chi}^0_1}$	large $m_{\tilde{t}}$			
SRtN1 Loose \rightarrow	SRtN2 →	Tight SRtN3	Dominant background:		
MET>100 GeV M _T >60 GeV	MET>200 GeV M _T >140 GeV	MET>275 GeV M _T >200 GeV	(1-lepton out of acceptance) SRbC – dileptonic ttbar ($W \rightarrow \tau \nu$)		
$m_T = \sqrt{2p_T^\ell \text{MET}(1 - cos[\Delta\phi(\ell, \text{MET})])}$	$W_{\text{SPED}} = 0$	Data 2012 Standard Model (SM) it V-Jets, VV it+V, single top, multijets e+μ channel 450 500 550 600 650 E _T ^{miss} [GeV] tN2	 SRtN - Requirement on 3-jet mass 130<(m_{jjj})<205 GeV → Reconstruct hadronically decaying top quark → Reject dileptonic ttbar background with WW→1 ν 1ν SRbC - Veto events with isolated tracks (tau) 		

HBSM Workshop 24-28th June 2013

E. S. Kuwertz - Searches for SUSY with jets + X + MET

<u>bexperiment</u> http://atlas.ch

1 lepton + 4 jets (\geq 1 b-jet) + MET - Results

Set limits at 95% C.L.

Model:

[qd] م

10

10

10

10

 10^{-3}

300

- stop pair production with BR($\tilde{t} \to t \tilde{\chi}_1^0$) = 100 %
- \tilde{t}_1 mostly \tilde{t}_R (~70%)

 $\widetilde{t_1}\widetilde{t_1}$ production, $\widetilde{t_1} \rightarrow t \ \widetilde{\chi}_1^0$, m₂₀ = 50 GeV

L dt = 20.7 fb⁻¹, **/**s=8 TeV

1-lepton + jets + E_{τ}^{miss}

ATLAS Preliminary *m*t₁ pair prod. cross section

All limits at 95% CL

600

⁷⁰⁰ m_ŕ [GeV]

~70% right-handed stops

Exclusion reach in stop mass suffers by ~75 GeV for a given LSP mass

500

400

1 lepton + 4 jets (\geq 1 b-jet) + MET - Results

GLUINO MEDIATED STOP/ SBOTTOM PRODUCTION

GLUINO MEDIATED STOP/SBOTTOM PRODUCTION

Gluino mediated stop/sbottom production - overview

Limits set on simplified topologies with gluinos decaying via thrid generation squarks (Assume 100% BR)

LUINO MEDIATED STOP/SBOTTOM PRODUCTION

2 Same-sign (SS) leptons + (b-)jets + MET

<u> </u>
\frown
\smile
<
<u> </u>
<u></u>
<u> </u>
T - 1
\smile
$r \cap$
\mathbf{U}
\frown
\smile
$\overline{}$
$\overline{}$
\sum
$\sum_{i=1}^{n}$
S
JS/
°∕SB
°∕SB(
°∕SBC
°∕SBO
SBO
SBOT/
SBOT
SBOTT/
SBOTT
SBOTT(
SBOTTC
SBOTTO
SBOTTO
SBOTTON
SBOTTOM
SBOTTOM
SBOTTOM
SBOTTOM I
Sbottom p
SBOTTOM PI
SBOTTOM PR
SBOTTOM PR
SBOTTOM PRO
SBOTTOM PRC
SBOTTOM PRO
SBOTTOM PROI
SBOTTOM PROL
SBOTTOM PROD
SBOTTOM PRODU
SBOTTOM PRODU
SBOTTOM PRODU
SBOTTOM PRODUC
SBOTTOM PRODUC
SBOTTOM PRODUC
SBOTTOM PRODUC
SBOTTOM PRODUCT
SBOTTOM PRODUCT
SBOTTOM PRODUCTI
SBOTTOM PRODUCTIO
SBOTTOM PRODUCTIC
SBOTTOM PRODUCTIO
SBOTTOM PRODUCTION

sections [fb]

model cross

bers give 95% CL excluded

1200 1300 m_g [GeV]

11

	A) Discovery case	SR0b	SR1b	SR3b	nc _	raci		
	Observed events	5	8	4 J	113 -			
2 SS	Expected background events	7.5 ± 3.3	3.7 ± 1.6	3.1 ± 1.6				
	Expected $t\bar{t} + V$ events	0.5 ± 0.4	2.2 ± 1.0	1.7 ± 0.8		<u>n</u> :	<u> </u>	
	Expected diboson events	3.4 ± 1.0	0.7 ± 0.4	0.1 ± 0.1				
	Expected fake lepton events	3.4 ± 3.1	$0.3^{+1.1}_{-0.3}$	$0.9^{+1.4}_{-0.9}$				
	Expected charge mis-measurement events	0.1 ± 0.1	0.5 ± 0.2	0.4 ± 0.1				
	p_0	0.50	0.11	0.36				
N T	1 1 0 1	1				SR0b	SR1b	SR3b
No exces	sboelasserved over Standa	rd srob	SR1b	SR3b —			~~~~~	
Model (S	Myexpectation	5	11	1		5	11	1
× ×	Expected background events	7.5 ± 3.2	10.1 ± 3.9	1.8 ± 1.3		7.5 ± 3.2	10.1 ± 3.9	1.8 ± 1.3
	Expected $t\bar{t} + V$ events	0.5 ± 0.4	3.4 ± 1.5	0.6 ± 0.4				
Limits se	t ^E orreseveral simplified	3.4 ± 1.1	1.4 ± 0.7	< 0.1		0.5 ± 0.4	3.4 ± 1.5	0.6 ± 0.4
1 1	Expected fake lepton events	3.4 ± 2.9	4.4 ± 3.1	1.0 ± 1.1		34 ± 11	14 ± 07	< 0.1
models w	VERFECTION ASSUMPTION	$10^{10} \pm 0.1$	0.8 ± 0.3	0.1 ± 0.1		5.4 ± 1.1	1.4 ± 0.7	5 0.1
mada an		0.5	0.39	0.5		3.4 ± 2.9	4.4 ± 3.1	1.0 ± 1.1
made on	the chargino mass.		Expected charge mis-measurement events			0.2 ± 0.1	0.8 ± 0.3	0.1 ± 0.1
			p 0			0.5	0.39	0.5
	$\tilde{g} \to t\tilde{t} \to tt\tilde{\chi}_1^0$				$ ilde{g}$ –	$\rightarrow t\tilde{t} \rightarrow tb\tilde{\chi}_1^{\pm}$		
ğ-ğ produ	uction, \tilde{g} → tī $\tilde{\chi}^0_{\lambda}$, m(t̃) < m(\tilde{g}), m($\tilde{\chi}^0_{\lambda}$) = 60 GeV		g-g̃ production, g̃→	> tb+χ̃¹, m(ť) >> m(g̃), m($\tilde{\chi}_{1}^{0}$) ≈ m($\tilde{\chi}_{1}^{\pm}$)	$\widetilde{g} ightarrow \widetilde{t}, \widetilde{t} ightarrow$	$\cdot b \widetilde{\chi}_{1}^{\pm}, m(\widetilde{t}) < m(\widetilde{g}), m(\widetilde{\chi}_{1}^{0}) = 60 \text{ G}$	eV, $\widetilde{\chi}_1^{\pm}$ = 118 GeV

Best sensitivity for gluino mediated stop/sbottom production over range of gluino masses

0/1-lepton, \geq 3 b-jets + MET

Exclusion limits at 95% C.L.:

- gluino pair production with BR($\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0$) = 100%
- gluino pair production with BR($\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$) = 100%
- gluino pair production with BR($\tilde{g} \rightarrow b\bar{t}\tilde{\chi}_1^0$) = 100%

E. S. Kuwertz - Searches for SUSY with jets + X + MET

13 <u>Rezper</u> http://a

INCLUSIVE STRONG PRODUCTION

Inclusive strong production - overview

Analyses targeting models with direct production of gluinos/squarks

INCLUSIVE STRONG PRODUCTION

0-lepton, 2-6 jets + MET

16

HBSM Workshop 24-28th June 2013

0-lepton, 2-6 Jets + MET - results

Good agreement between SM expectation and data in the signal regions

→ Exclusion limits set on a variety of simplified model grids.

E. S. Kuwertz - Searches for SUSY with jets + X + MET

Conclusions

- Many SUSY searches completed and ongoing within ATLAS
- Searches targeting final states with MET and jets constitute a large portion of these analyses (though there are many more!)
- More results expected for the Summer
- Many results are interpreted for simplified models with BR(specific decay) = 100% (upper limit on σ_{vis} available for all points)
 - Input from wider community most welcome!
- Scope for further R&D, combinations and reinterpretations of analyses this year, and in preparation for 2015

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: LP 2013

Sta	atus: LP 2013					$\int \mathcal{L} dt = (4.4 - 22.9) \text{ ft}$	$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb]	1] Mass limit	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM\\ MSUGRA/CMSSM\\ \bar{q}\bar{q}, \bar{q} \rightarrow q \Gamma_1^0\\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q}_1^{\Gamma_1^0}\\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q}\bar{q}^{\Gamma_1^0}\\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q}\bar{q}\bar{q}^{\Gamma_1^0}\\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q}\bar{q}\bar{q}\ell\ell(\ell') \Gamma_1^0 \Gamma_1^0\\ GMSB (\ell'NLSP)\\ GGM (bino NLSP)\\ GGM (vino NLSP)\\ GGM (vino NLSP)\\ GGM (vingsino-bino NLSP)\\ GGM (higgsino NLSP)\\ GGM (higgsino NLSP)\\ Gravitino LSP\\ \end{array}$	$\begin{array}{c} 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 3-6 jets 2-4 jets 0-2 jets 0 0 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.8 4.8 4.8 5.8 5.8 10.5	i 1.2 TeV ary m(ā) i 1.1 TeV ary m(ā) i 1.1 TeV ary m(ā) i 740 GeV m(t) i 740 GeV m(t) i 1.3 TeV m(t) i 1.3 TeV m(t) i 1.1 TeV m(t) i 0	ATLAS-CONF-2013-052 ATLAS-CONF-2013-054 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3" ^d gen. Ë med.	$\begin{array}{c} \bar{s} \rightarrow b \bar{b} \bar{k}_{1}^{0} \\ \bar{s} \rightarrow t \bar{t} \bar{k}_{1}^{0} \\ \bar{s} \rightarrow t \bar{t} \bar{k}_{1}^{0} \\ \bar{s} \rightarrow b \bar{t} \bar{k}_{1}^{+} \end{array}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	8 1.2 TeV m(t ^R) 600 GeV 8 1.14 TeV m(t ^R) 600 GeV 8 1.34 TeV m(t ^R) 600 GeV 1.34 TeV m(t ^R) 600 GeV 1.34 TeV	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{\underline{b}}_{1}\tilde{\underline{b}}_{1}, \tilde{\underline{b}}_{1}, - \tilde{b}\tilde{b}_{1}^{0}\\ \bar{b}_{1}\tilde{b}_{2}, \bar{b}_{3}, - \tilde{b}\tilde{c}\tilde{t}_{1}^{0}\\ \bar{b}_{1}\tilde{b}_{2}, \bar{b}_{3}, - \tilde{c}\tilde{t}\tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow \tilde{b}\tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow \tilde{b}\tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow \tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow \tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1}^{0} \rightarrow \tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1}^{0} \rightarrow \tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1}^{0} \rightarrow \tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1}^{0} \rightarrow \tilde{t}_{1}^{0} \rightarrow \tilde{t}_{1}^{0}\\ \bar{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1}^{0} \rightarrow \tilde{t}_{1}^{0} \rightarrow \tilde{t}_{1}^{0}\\ \bar$	0 $2 e, \mu$ (SS) $1-2 e, \mu$ $2 e, \mu$ $2 e, \mu$ 0 $1 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z)	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7 20.7	μ 100-630 GeV m(t1) clobe μ 430 GeV m(t1) m(t1) clobe μ 430 GeV m(t1) m(t1) <thm(t1)< th=""> <thm(t1)< th=""> m(t1)</thm(t1)<></thm(t1)<>	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208.4305, 1209.2102 (F ²) ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-053 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{1,\mathbf{F}}\tilde{\ell}_{L,\mathbf{F}},\tilde{\ell}\rightarrow\ell\tilde{\chi}_{1}^{0}\\ \tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{-}\rightarrow\tilde{\ell}\nu(\ell\tilde{\nu})\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+}\rightarrow\tilde{\nu}\nu(\tau\tilde{\nu})\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\rightarrow\tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu),\ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu)\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\rightarrow W^{+}\tilde{\chi}_{1}^{0}Z^{+}\tilde{\chi}_{1}^{0}\end{array}$	2 e, µ 2 e, µ 2 t 3 e, µ 3 e, µ	0 0 0 0	Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	7 85-315 GeV m(t ²)=0 GeV \tilde{t}_1^a 125-450 GeV m(t ²)=0 GeV, m(t, 7)=0.5(m(t ²)+m(t ²) \tilde{t}_1^a 180-330 GeV m(t ²)=0 GeV, m(t, 7)=0.5(m(t ²)+m(t ²) \tilde{t}_1^a 180-330 GeV m(t ²)=0 (t ²), m(t ²)=0, t ²) \tilde{t}_1^a 600 GeV m(t ²)=m(t ²), m(t ²)=0, t ²), m(t ²)=0, texpton docou \tilde{t}_1^a 315 GeV m(t ²)=m(t ²), m(t ²)=0, texpton docou	ATLAS-CONF-2013-049) ATLAS-CONF-2013-049) ATLAS-CONF-2013-049) ATLAS-CONF-2013-035 pled ATLAS-CONF-2013-035
Long-lived particles	Direct $\hat{\chi}_1^+ \hat{\chi}_1^-$ prod., long-lived $\hat{\chi}_1^+$ Stable, stopped \hat{g} R-hadron GMSB, stable $\hat{\tau}$ Direct $\hat{\tau}$ prod., stable $\hat{\tau}$ or $\hat{\ell}$ GMSB, $\hat{\chi}_1^0 \rightarrow y\hat{g}$, long-lived $\hat{\chi}_1^0$ $\hat{\chi}_1^0 \rightarrow qq\mu$ (RPV)	0 1-2 μ 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0 0	Yes Yes Yes Yes	4.7 22.9 15.9 15.9 4.7 4.4	31 220 GeV 1 <r(ξ1)<10 ns<="" th=""> 8 857 GeV m(T1)=100 GeV, 10 μs<r(ξ)<100 s<="" td=""> 7 385 GeV Sclarβ<50</r(ξ)<100></r(ξ1)<10>	1210.2852 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 ATLAS-CONF-2013-058 1304.6310 1210.7451
RPV	$ \begin{array}{l} LFV\;\rho\rho\!\rightarrow\!\!\bar{\mathfrak{v}}_r+X,\;\!\bar{\mathfrak{v}}_r\!\rightarrow\!e+\mu\\ LFV\;\rho\rho\!\rightarrow\!\!\bar{\mathfrak{v}}_r+X,\;\!\bar{\mathfrak{v}}_r\!\rightarrow\!e(\mu)+\tau\\ Bilinear\;RPV\;CMSSM\\ \bar{\mathfrak{K}}_1^+\bar{\mathfrak{K}}_1,\;\!\bar{\mathfrak{K}}_1^+\!\rightarrow\!\!W\tilde{\mathfrak{K}}_1^0,\;\!\tilde{\mathfrak{K}}_1^\circ\!\rightarrow\!\!e\tilde{\mathfrak{v}}_\mu,e\mu\bar{\mathfrak{v}}\\ \bar{\mathfrak{K}}_1^+\bar{\mathfrak{K}}_1,\;\!\bar{\mathfrak{K}}_1^+\!\rightarrow\!\!W\tilde{\mathfrak{K}}_1^0,\;\!\tilde{\mathfrak{K}}_1^\circ\!\rightarrow\!\!e\tilde{\mathfrak{v}}_\mu,e\mu\bar{\mathfrak{v}}\\ \bar{\mathfrak{K}}_1^+\bar{\mathfrak{K}}_1,\;\!\bar{\mathfrak{K}}_1^+\!\rightarrow\!\!W\tilde{\mathfrak{K}}_1^0,\;\!\tilde{\mathfrak{K}}_1^\circ\!\rightarrow\!\!e\tilde{\mathfrak{v}}_\mu,e\mu\bar{\mathfrak{v}}\\ \bar{\mathfrak{K}}_2^\circ\!\rightarrow\!\!\mathfrak{q}_\mu\\ \bar{\mathfrak{K}}_2^\circ\!\rightarrow\!\!\mathfrak{q}_\mu\\ \bar{\mathfrak{K}}_1^\circ\!\rightarrow\!\!\mathfrak{q}_1,\;\!\bar{\mathfrak{K}}_1^\circ\!\rightarrow\!\!Ds \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \left(\mathrm{SS} \right) \end{array}$	0 7 jets 0 0 6 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	F. 1.61 TeV J_11 = 0.10, J_{122}=0.05 F. 1.1 TeV J_21=0.10, J_22=0.05 A.S 1.2 TeV J_21=0.10, J_22=0.05 A.S 1.2 TeV m(3)=m(3), cr_{LSP}<1 mm	1212.1272 1212.1272 ATLAS-CONF-2013-04 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0	4 jets mono-jet	Yes	4.6 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 M* scale 704 GeV m(χ)<50 GeV, limit of <567 GeV for D8	1210.4826 ATLAS-CONF-2012-147
	√s = 7 TeV	√s = 8 TeV articl.deta	√s =	8 TeV		10 ⁻¹ 1 Mass scale (Te	v]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATLAS Preliminary

HBSM Workshop 24-28th June 2013

full data

partial data

full data