

SEARCHES FOR SUSY LONG-LIVED PARTICLES WITH THE ATLAS DETECTOR

HBSM2013

R. Kopeliansky, Technion, on behalf of the ATLAS collaboration

OUTLINE

<u>Searches for SUSY long-lived particles:</u>

- Sleptons
- Stopped gluinos
- Non-pointing photons

Performed with 15.9 $\rm FB^{\text{-}1}$

ATLAS-CONF-2013-058

OUTLINE

- Long-Lived sleptons possible scenarios
- Expected signature & Analysis Strategy
- \circ β estimation
- On-line selection
- Off-line selection
- Background estimation
- Results

POSSIBLE SCENARIOS

LLP within the GMSB models

- The gravitino is the LSP
- Either the $\tilde{\tau}$ or the $\tilde{\chi}_1^0$ is the NLSP we will consider the case of <u>NLSP</u> $\tilde{\tau}$
- In case of small coupling to the gravitino the NLSP is long- lived
- Two LLPs per event are expected

Strong:

• However, significant strong production is already excluded

EXPECTED SIGNATURE & ANALYSIS STRATEGY

- Charged LLP expected to leave a signal throughout the detector
- Use track information to calculate the <u>candidate mass</u>: $\mathbf{m} = \frac{p}{\beta \gamma}$
 - p derived from the candidate track
 - β calculated from the measured ToF
- Collision data from 2012 run, $\int Ldt = 15.9 fb^{-1}$
- <u>Simulated samples</u>:
 - $Z \rightarrow \mu\mu$ for smearing the generated hit times according to data
 - GMSB simulated samples, with SUSY breaking scale: 80 \rightarrow 6 160 *TeV*, tan β : 5 \rightarrow 50

B ESTIMATION

 $\boldsymbol{\beta}$ is estimated from the Calo, MDT and RPC

For each tech: β is measured and weighted by it measurement errors:

ON-LINE SELECTION

Event selection - Trigger:

- Single muon un-prescaled trigger chains with $p_T \ge 24 GeV$
- Triggers only particles within collision BC low β particles might miss the collision BC
- Lower β particles in the event are found when higher β particle triggers
- Trigger efficiency is obtained from simulated events passing the trigger simulation (65% 85% efficiency production dependent)
- Systematic check with smeared hit times as in data

OFF-LINE SELECTION

- Off-line selection of the events that passed the trigger chain Good PV and Num $\mu's \ge 2$
- <u>Candidates</u> within each event are required to pass set of selection cuts:
 - eliminating cosmic, Z & beam halo
 - p consistency, p_T cut
 - $|\eta| \le 2.5$
 - minimum DoF
 - β consistencies
 - в-вү consistency

OFF-LINE SELECTION

- Two sets of selection criteria are applied:
 - <u>Loose</u> select events where there are two LLP candidates Signal Region.
 - <u>Tight</u> events that passed the loose selection, however with only one candidate are required to pass tighter set of cuts Control Region
- Final cut for slow-massive LLP: $0.2 \le \beta \le 0.95$
- Mass estimation $\mathbf{m} = \frac{p}{\beta \gamma}$
- Count all events above a mass cut (dependent on the stau mass in a model)

2 CANDIDATE AS SIGNAL-REGION

- Each signal event has two staus, with high efficiency of being selected.
- Very rarely would a non-GMSB event have two high p_T muons, both with β from the tail of the distribution and a large reconstruction mass.
- For the 2 candidate signal region No evidence for new physics observed.

BACKGROUND ESTIMATION

- SM relativistic particles have
 β~1
- LLP are massive and have β<1
- Mainly μ 's with β from the tails of the distribution and high p_T
- β pdf (applying the same selection)
- Candidate with p is matched with random β from pdf
- Pass selection with random β

Repeated many times and weighted by the number of repetitions

RESULTS

<u>LL $\tilde{\tau}$ in GMSB</u> models with:

 $N_5 = 4 M_{mess} = 250 GeV$ and $sign(\mu) = 1$, are excluded at 95% CL up to $m_{\tilde{\tau}} = 420,425,422,410,400,385 GeV$ for tan $\beta = 5,10,20,30,40,50$ respectively

RESULTS

<u>Direct $\tilde{\tau}$ production</u>, (when the mass splitting to the other sleptons is very large), $m_{\tilde{\tau}} < 327 \ GeV$ are excluded if only $\tilde{\tau}_1$ is produced.

<u>Slepton direct production</u> is excluded at 95% CL up to $m_{\tilde{\tau}} = 365 \rightarrow 395$ GeV for models with $\Delta m_{slepton} = 0.75 \leftarrow 90 GeV$

RESULTS

<u>EW production of $\tilde{\chi}$ decaying into $\tilde{\tau}$ </u> - an in-direct exclusion at 95% CL on $m_{\tilde{\chi}^0} < 475 - 490 \ GeV$ and $m_{\tilde{\chi}^\pm} - m_{\tilde{\chi}^0} < 210 - 260 \ GeV$

15

Stopped Gluinos

Searches for long-lived Stopped gluino $R\mbox{-}{\rm Hadrons}$

Performed based with $5.3 + 22.9 fb^{-1}$

ATLAS-CONF-2013-057

Split SUSY:

- The squarks are much heavier than the gluinos.
- Due to R-Parity conservation and color charge constraints \tilde{g} is long lived.
- The heavy \tilde{g} will bound with colored SM particles to form R-hadron state.
- For very low β the R-hadrons will stop at the calorimeter (due to ionization energy loss).
- Later will decay to either g, $q\bar{q}$ and $\tilde{\chi}^0$.
- Candidate decay events are triggered in the empty bunch-crossing of the LHC.

SEARCHES FOR LONG-LIVED STOPPED GLUINO R-HADRONS

Performed based with $5.3 + 22.9 fb^{-1}$

ATLAS-CONF-2013-057

• Selection is based on jet shape and MS activity – discriminate from bkg.

- Good agreement between number of bkg. Events and observed number of events.
- No evidence for new physics.

SEARCHES FOR LONG-LIVED STOPPED GLUINO R-HADRONS

PERFORMED BASED WITH 5.3 + 22.9 fb^{-1}

ATLAS-CONF-2013-057

• Limits were set on the \tilde{g} mass for different \tilde{g} decay life-times and $\tilde{\chi}^0$ masses

• For $m_{\tilde{\chi}^0} = 100 \text{ GeV}$, an exclusion at 95% CL of $m_{\tilde{g}} < 840 \text{ GeV}$ for gluino 19 life-time between 10µs and 1000 seconds.

Non-pointing photons

Performed with 4.8 fb^{-1} from PP collisions at $\sqrt{S} = 7 TeV$

ARXIV:1304.6310

- GMSB with $\tilde{\chi}_1^0$ as NLSP and \tilde{G} as LSP.
- Dominant EW production of $\tilde{\chi}$'s.
- Dominant decay mode of $\tilde{\chi}_1^0 \to \gamma \tilde{G}$.
- If produced, the $\tilde{\chi}_1^0$ has a finite life-time and can travel some distance from its production point before decaying.
- When decaying, the final state will include a photon that does not point back to the PV and large MET from the \tilde{G} .
- This analysis relies on information from the Ecalo clusters (ToF and flight direction).

PERFORMED WITH 4.8 fb^{-1} FROM PP COLLISIONS AT $\sqrt{S} = 7 TeV$

ARXIV:1304.6310

• Measure degree of non-pointing of the photon: $\Delta Z = Z_{DCA} - Z_{PV}$

- The Z_{DCA} distribution for the events in the signal-region, background-only fit and background+signal fit for the case of Λ =120 TeV and τ = 6 nsec.
- No significant evidence for non-pointing photons is observed .

PERFORMED WITH 4.8 fb^{-1} FROM PP COLLISIONS AT $\sqrt{S} = 7 TeV$

ARXIV:1304.6310

• The expected and observed limits in the plane of NLSP lifetime vs. Λ , and $\tilde{\chi}$

• 95% CL exclusion limits, on Λ = 70 TeV (160 TeV), for life-times τ = 0.25 (2.7 ns).

SUMMARY

SEARCHES FOR SUSY LONG-LIVED PARTICLES

SUMMARY

- Studies of LLP were done based on 2011 and 2012 data.
- No evidence for new physics was found so far.
- Exclusion limits were set on different parameters, for several scenarios, at 95% CL:
 - <u>LL stau in GMSB</u>: $m_{\tilde{\tau}} < 425 385$ GeV as tanß: 5-50
 - <u>LL directly produced sleptons</u>: $m_{\tilde{\tau}} < 395 \text{ GeV}$ for small $\Delta m_{slepton}$, and $m_{\tilde{\tau}} < 365 \text{ GeV}$ for $\Delta m_{slepton} = 90 \text{ GeV}$
 - <u>LL direct stau</u>: $m_{\tilde{\tau}} < 327 \text{ GeV}$
 - · Indirect limit on chargino and neutralino mass if they decay to LLP
 - <u>LL Gluino</u> Exclude at 95% CL $m_{\tilde{g}} < 840 \text{ GeV}$ (for gluino life-time between 10µs and 1000 seconds, $m_{\tilde{\chi}^0} = 100 \text{ GeV}$)
 - <u>LL Neutralino (Non-pointing photons)</u>: exclusion at 95% CL on $\Lambda = 70$ TeV (160 TeV), for life-times $\tau = 0.25$ (2.7 ns) of the NLSP.

BACK-UP

26

PERFORMED WITH 4.8 fb^{-1} FROM PP COLLISIONS AT $\sqrt{S} = 7 TeV$

ARXIV:1304.6310

