

Searches for Heavy Stable Charged Particles, Leptoquarks, W' and Dijet Resonance at CMS

Sushil S. Chauhan (University of California, Davis, USA)

For the CMS Collaboration

Workshop on "Higgs and BSM Physics at the LHC" 24-28 June 2013, ICTP, Italy

- ✓ Heavy Stable Charged Particles
- ✓ Leptoquarks Searches at CMS
- ✓ Dijet Resonance:
 - Untagged
 - b-tagged
- ✓ W' Search
- ✓ Summary

Results presented in this talk are also available as public results of CMS at the following link: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Motivation: Heavy Stable Charged Particles(HSCP) are predicted by many Beyond Standard Model(BSM) theories

- ✓ HSCP Phenomenology:
- Gauge Mediated SuperSymmetry Breaking(GMSB): stable *stau*
- Split SUSY: R-Hadron
- Hidden valley models, extra dimensions

✓ Two main classes:

- Lepton like : no strong interactions
- Hadron like : color-charged, strongly interacting particles form stable states

✓ Detector signatures:

- High momentum tracks
- Displaced tracks
- Large Time-Of-Flight (TOF)
- Highly ionizing tracks

Many benchmark signal model considered which could have non negligible cross section with small SM background CMS-EXO-12-026

- ✓ Lepton Like :
 - GMSB SPS7 model with *stau* as NLSP [100-494] GeV
- ✓ Hadron Like :
 - *stop* pair production
 - *gluino* pair production [300-1500] GeV (split SUSY with M_{squark} > 10 TeV)
 - Fraction of *gluinos* hadronizes into *gluino-gluon* bound states with unknown f (= 0.1, 0.5, 1.0)
- ✓ Modified DY production of lepton like fermion
 - [100 1000] GeV, |Q| = 1/3, 2/3, 1, 2, 3, 4, 5e

Strategy for discovery:

- ✓ Tracker Only: uses dE/dx
- ✓ Muon System: Time-Of-Flight
- ✓ Calculated mass from dE/dx estimator:
 - same as Bethe Block within few %
 - K and C are measured from proton line

Heavy Stable Charged Particles - III

- ✓ Muon Trigger: for particles which remain charged outside the tracker
- ✓ Missing-E_T Trigger: those particles which become neutral after interaction
- ✓ Selection on:
 - P_T
 - dE/dx incompatibility
 - T.O.F
- ✓ Background estimation:
- Independence of P_T and dE/dx selection provides way to get data-driven background
- ABCD method is used based on pair of uncorrelated selection variables

✓ Signal extraction:

25 June 2013, ICTP, Italy

- Count event in a mass window of $(M_{reco}-2\sigma)$ to 2 TeV

5

Main systematics:

- -Background prediction: ~20%
- -Signal efficiency: up to $\sim 30\%$ (tracker only)
- -Trigger: ~10%

-pile up: ~5%

CMS-EXO-12-026

- ✓ Possibility of a fundamental relationship between quarks and leptons through leptoquarks
 - they are colored and have fractional charge
 - couples to quarks and leptons with coupling λ
 - branching fractions are denoted as: $\beta(lq)$ and 1- $\beta(vq)$

✓ CMS has performed searches for all 3 generation of leptoquarks with following final states:

- *lljj* ($\beta = 1$) where $l = e, \mu$
- *lvjj* ($\beta = 0.5$)
- bbvv

 $\checkmark Limits$ are set on mass of leptoquarks (M_{LQ})

2nd Generation Scalar Leptoquarks

μµ+jj final state:

- $P_T(\mu) > 45 \text{ GeV}, |\eta| < 2.1$
- $M_{\mu\mu} > 50 \text{ GeV}$
- $P_T(j1) > 125 \text{ GeV}, P_T(j2) > 45 \text{ GeV}, |\eta| < 2.4$
- Well separated μ and jets, $\Delta R > 0.3$
- $S_T > 300 \text{ GeV}$ where: $S_T = P_T(l_1) + P_T(l_2) + P_T(j_1) + P_T(j_2)$

After preselection the S/ $\sqrt{S+B}$ is optimized for three variables:

- $M_{\mu\mu}$, S_T , and min($M_{\mu j}$)
- $min(M_{\mu j})$ is for that μ -j combination which minimizes the mass difference of the two LQ

Main Backgrounds:

Z/γ+jets, ttbar, VV+jets, W+jets and multijet
 QCD

CMS-EXO-12-042

μ +missing-E_T+jj final state:

- $P_{T}(\mu) > 45 \text{ GeV}, |\eta| < 2.1$
- $M_T > 50 \text{ GeV}$
- missing- $E_T > 55 \text{ GeV}$
- $P_T(j1) > 125 \text{ GeV}, P_T(j2) > 45 \text{ GeV}, |\eta| < 2.4$
- Well separated missing-ET and jet, $\Delta \phi > 0.5$
- Well separated missing-ET and μ , $\Delta \phi > 0.8$

 $M_{\mu\mu}$, S_T , and min($M_{\mu i}$)

Backgrounds:

W+jets, ttbar, single top, WW, ZZ, Z/+jets

CMS-EXO-12-042

- instrumental backgrounds
- Multijet QCD is negligible

9

Systematics:

- ✓ Luminosity : 4.4 %
- ✓ Jet Energy Scale (JES) dependent on P_T and η
- ✓ muon momentum uncertainty: $5\% P_T$ /TeV
- ✓ Data/ MC scale factor: 1-2%
- ✓ ttbar, W+Jet shape uncertainties are determined by varying the factorization, normalization scale by a factor of two
- ✓ PDF uncertainty:
 - μ+missing-E_T+jj: 2-21% (2%) for background (signal)
 - $\mu\mu$ +jj: 2-12% (2%) for background (signal)

Limits:

- $M_{LQ} > 1070 \text{ GeV} (\beta=1.0)$
- $M_{LQ} > 785$ GeV ($\beta=0.5$)

1st Generation Leptoquarks

Dijet Resonances

√Heavy narrow resonance production and decay into two jets

A generic search and could be applied to many models e.g.,

- ✓ Strong couplings:
 - -Excited quarks
 - -E6 diquark
 - -Axigluon
 - Coloron
 - -s8 Resonance
- ✓ Weak couplings :
 - -Heavy W
 - -Z' and
 - -RS Graviton

X = Z', RS Graviton, s8, q*, W'

✓ Search strategy:

- Measurement of inclusive dijet mass spectrum using two highest P_T jets
- Look for bump over the mass spectrum
- The presence of bump tested by fitting a smooth parameterization
- Set upper limits on production cross section and lower limit on mass

Dijet Resonances - II

✓ Background parameterization using a smooth fit function

✓ The fit function describe the data reasonably well with χ /NDF= 30.6/35

-Wide jets: Two leading AK5 PF jets are used as seed for wide jets. All other AK5 PF jets with P_T > 30 GeV and $|\eta|$ < 2.5 added to the closest leading jet if within ΔR < 1.1

– $|\Delta \eta| < 1.3$ (suppress QCD background)

-Fraction of muon energy inside the jet are required to be < 0.8

- MET/SumEt < 0.5 for noise rejection

- Mjj > 890 GeV

CMS-EXO-12-059

Limit Setting Procedure:

✓ Baysian formalism is used with uniform priors for background parameters to set upper limits of 95% CL on the qq, qg and gg resonance production cross section

✓ Upper limit is compared with theoretical predictions to set lower limit on the resonance mass

 \checkmark The background comes from the background component of *signal+background* fit to data

Systematics: are included as nuisance parameter in limit setting procedure and includes,

- -Background parameterization
- -Jet Energy Resolution: 10%
- -Jet Energy Scale : 1.25%
- -Luminosity : 4.4 %

The JER, JES and luminosity are used as log normal nuisance parameter in limit setting

25 June 2013, ICTP, Italy

CMS-EXO-12-023

- ✓ Similar analysis but with the requirement of two b-jets
 - Improved sensitivity due to b-tagging
- \checkmark bb and bg resonance shape differ from qq and gg shapes
- ✓ Reasonable agreement between data and MC
- \checkmark Good description of the data by the fit function for different b-tag multiplicities
- ✓ b*, RS Graviton and Z' resonance shapes are considered in this analysis

✓ Untagged inclusive search results:

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]
E_6 Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]
Axigluon (A)/Coloron (C)	qā	[1.20,3.60] + [3.90,4.08]	[1.20,3.87]
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]
W' Boson (W')	qā	[1.20,2.29]	[1.20,2.28]
Z' Boson (Z')	qā	[1.20,1.68]	[1.20,1.87]
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]

✓ b-tagged search results:

Model	Observed Mass Limits (TeV)	
Z'	[1.20-1.68]	
RS Graviton	[1.42-1.56]	
Excited b-quark	[1.36-1.53]	

✓ New heavy gauge bosons W' has been predicted in many extensions of SM like:

17

- Sequential SM (SSM): W' Jacobean peak
- Split UED : SM particles have KK partners
- Four fermion contact interactions: unstructured excess

Selection:

- $P_T > 45 \text{ GeV}(\mu), P_T > 100 \text{ GeV}(e)$
- $|\eta| < 2.1 \ (\mu), \ |\eta| < 2.5 (e)$
- 0.4 $< P_T / MET < 1.5$
- $\Delta \phi > 0.8\pi$
- K-factor were applied for multijet QCD and W production for background

Search in Lepton+MET Final State: W' - II

Systematics and Exclusion:

✓ Lepton energy and scale: By varying between 1% and 10 %, are applied to M_T distribution

- ✓ missing-E_T: Each energy deposition is assigned to its corresponding(tau, photon, muon...) object and then varied as per its type and then uncertainty on MET is estimated
- ✓ For each systematics uncertainty the M_T is shifted by ± 1 σ and difference with default is taken as uncertainty on the number of background events

Model	Channel	Observed limit	Expected limit
SSM	e	$m_{W'} < 3.20 \text{TeV}$	m _{W'} < 3.25TeV
SSM	μ	$m_{W'} < 3.15 \text{TeV}$	$m_{W'} < 3.10 \text{TeV}$
SSM	combined	$m_{W^\prime} < 3.35 TeV$	$m_{W^\prime} < 3.40 TeV$
SSMO	e	$m_{W^\prime} < 3.60 \text{TeV}$	$m_{W^\prime} < 3.60 TeV$
SSMO	μ	$m_{W'} < 3.05 TeV$	$m_{W^\prime} < 3.30 TeV$
SSMO	combined	$m_{W^\prime} < 3.60 TeV$	$m_{W^\prime} < 3.60 TeV$
SSMS	e	$m_{W^\prime} < 3.00 { m TeV}$	$m_{W^\prime} < 3.10 TeV$
SSMS	μ	$m_{W^\prime} < 2.80 TeV$	$m_{W^\prime} < 2.90 TeV$
SSMS	combined	$m_{W^\prime} < 3.10 \text{TeV}$	$m_{W^\prime} < 3.20 TeV$
W ² _{KK}	μ =0.05 TeV, combined	$m_{W_{KK}^2} < 1.7 \text{TeV}$	$m_{W_{KK}^2} < 1.7 \text{TeV}$
W^2_{KK}	μ =10.0 TeV, combined	$m_{W_{KK}^2} < 3.7 \text{TeV}$	$m_{W_{KK}^2} < 3.6 \text{TeV}$
HNC CI	e	$\Lambda < 13.0 \text{ TeV}$	$\Lambda < 13.3 \text{ TeV}$
HNC CI	μ	$\Lambda < 10.9 \text{ TeV}$	$\Lambda < 12.2 \text{ TeV}$

CMS-EXO-12-060

- ✓ 2011+2012 data taking at CMS was very successful, many new and updated analyses with different final states
- ✓ Many new stringent limits from these searches. In a nutshell:
 - For HSCP: Excluded <1322 GeV for *gluino*
 - For leptoquarks the lower limits on mass are set to $M_{LQ} > 1070(785)$ GeV for $\beta=1.0(0.5)$ from 2nd generation searches
 - The dijet resonance searches for various model have been extended up to 5 TeV for string resonances and 3.5 TeV for q^{*}
 - W' (SSM): $M_{w'} < 3.35$ TeV in lepton+MET channel
 - ✓ No evidence of new physics beyond SM

✓ Many more to come..... stay tuned !!!

back-up

- ✓ Muon Trigger: pT > 40 GeV
- ✓ MET Trigger: MET > 50 GeV

Tracker only: \checkmark pT> 45 GeV, sigma/pT < 0.25, dz and dxy < 0.5 cm \checkmark E/p < 0.3, l_h > 3 MeV/cm, Σ pT < 50 GeV

Muon System Only: \checkmark pT > 80 GeV, dz and dxy < 15 cm, 1/ β > 1

Tracker+Muon:

✓ Same as Tracker only + a reconstructed muon matched to track in inner detector

Fractionally Charged:

✓ Same as Tracker only + l_h < 2.8 MeV/cm

Multiple Charged:

✓ Same as combined + E/p is excluded

✓ Tracker Only:
 pT> 70 GeV , I_{as} > 0.4 MeV/cm

Muon System Only: \checkmark pT> 130 GeV, 1/ β > 1.4

Tracker Only + Muon System: \checkmark pT> 70 GeV, I_{as} > 0.125 MeV/cm, 1/ β > 1.255

Fractionally Charged:

✓ pT> 125 GeV, $I_{as} > 0.275$ MeV/cm

Multiple Charged:

✓ $I_{as} > 0.5$ MeV/cm, 1/β > 1.2

 $\mathbf{D} = \mathbf{B}\mathbf{C}/\mathbf{A}$

t	B Pre-Selected track failing the Pt cut but passing the I cut.	D Pre-Selected track passing the Pt and I cut.			
C	A Pre-Selected track failing the Pt and I cuts.	C Pre-Selected track failing the I cuts but passing the Pt cut.			
	PtCut				

25 June 2013, ICTP, Italy

HSCP: Results

25 June 2013, ICTP, Italy

The analysis is designed to kinematically discriminate the pair production of heavy particle from SM background with making strong assumption about missing- E_T

◆Force every event to *dijet-topology* by combining all jets in the event into two *mega jets* and defined Razor variable as

$$R \equiv \frac{M_T^R}{M_R}$$

Where,

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

Peaks at leptoquark mass

3rd Generation Scalar Leptoquarks

Final state: bbvv

• Used *razor* variable
$$R \equiv \frac{M_T^R}{M_R}$$

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

- Designed to search for a pair of "heavy particles"
- ♦ 2 b-tagged jets

S EXO-II

-030

- Main Bkg: 1) Heavy Flavor (HF) Multi-jet
 2) ttbar+jets and W/Z+HF jets
- Systematics: background shape and btagging efficiency

✦ Limit: M_{LQ} >350 @ 95%CL

CMS Search in 1.8 fb ⁻¹

Model Name	X	Color	J ^p	$\Gamma/(2M)$	Decay Channel
String	S	mixed	mixed	0.003 - 0.037	98,99,88
Strongly coupling models	-	05			\leq
Excited Quark	q*	Triplet	$1/2^{+}$	0.02	qg
E ₆ Diquark	D	Triplet	0+	0.004	qq
Axigluon	Α	Octet	1+ <	0.05	99
Coloron	С	Octet	1- \	0.05	99
s8 Resonance	s8	Octet	0?	??	88
Weakly coupling models		11	1	\backslash	
Heavy W	W'	Singlet	1	0.01	9 <u>9</u>
Heavy Z	Z	Singlet	15	0.01	99
RS Graviton	G	Singlet	2+	0.01	99, gg

\checkmark Baysian formalism is used

✓ For JES, JER, and luminosity nuisance parameters, lognormal priors are used, and these uncertainties affect only signal

 \checkmark For background nuisance parameters flat priors are used and marginalization is performed over a sufficiently large range around the best-fit value such that the final limits are found to be stable

- Evaluated by varying the fit parameters along the eigenvector of covariance matrix

b-tagging rates

- ✓ Because of sizable mistag rate and decreasing b-tagging rate with the increasing resonance mass, it is not possible to study the bb final state isolated from the rest of the jet-jet final state
- \checkmark 0-,1-, and 2-tagging rate for a generic narrow resonance X defined as:

$$\begin{split} \epsilon^{i} &= \epsilon^{i}_{h} f_{b\overline{b}} + \epsilon^{i}_{l} (1 - f_{b\overline{b}}) \\ \epsilon^{i}_{l} &= \epsilon^{i}_{q\overline{q}} \\ \epsilon^{i}_{h} &= \epsilon^{i}_{b\overline{b}'} \end{split} \qquad f_{b\overline{b}} = \frac{BR(X \to b\overline{b})}{BR(X \to jj)} \end{split}$$

 \checkmark Here it is assume that c quark has the same tagging rate as other light quark

UCDAVIS UNIVERSITY OF CALIFORNIA

✓ Background fit function for different b-tag multiplicities

Dijet Resonance: b-tagged

Z' Search

Dijet Resonance: b-tagged

RS Graviton Search

b* Search

W' Search: SSM

Electron

Muon

