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non-minimal Universal Extra Dimension

One extra spatial dimension, y , compactified on an S1/Z2
orbifold.
Two fixed points, y = 0 and y = πR, called boundaries of the
orbifold.
Orbifolding breaks the translational invariance in the fifth
direction, thus leading to non-conservation of KK-number,
leaving KK-parity intact.
No boundary localised terms (BLT) in the minimal case.
Relaxing the assumption of non-vanishing BLTs imply nmUED.
Here the BLTs of fermions and gauge bosons are taken and the
parameter space has been constrained from the dark matter relic
density and direct detection observations.



Mass spectrum in nmUED

For example, the 5D gauge boson action with boundary localised
kinetic terms(BLKTs),

S = −1
4

∫
d5x

[
FMNF MN + {raδ(y) + rbδ(y − πR)}FµνFµν

]
Expansion of the gauge field,

Aµ(x , y) =
∞∑

n=0

A(n)
µ (x)an(y), A5(x , y) =

∞∑
n=0

A(n)
5 (x)bn(y)

an(y) and bn(y) can be determined from the boundary
conditions.
For example, the function an(y) satisfy,

∂2
y an(y) +

[
1 + raδ(y) + rbδ(y − πR)

]
m2

nan(y) = 0



KK parity conservation

an(y) can be solved using appropriate boundary conditions,

an(y) = Nn

[
cos(mny)− rbmn

2
sin(mny)

]

The masses mn are solutions of,

tan [mnπR] =
2(ra + rb)mn

rarbm2
n − 4

Similar type of equations can be obtained for fermions, starting
from the fermion action.
It can be shown that non-zero KK-parity violating coupling exists
if ra 6= rb.
KK-parity is restored if ra = rb and then we recover LKP, i.e., γ(1),
which can safely be assumed to be B(1), as the dark matter
candidate.



Masses and couplings in nmUED

The mass spectrum in nmUED is determined by the BLKT
parameters, r ’s.

rm(n) =

 −2 tan
(

m(n)πR
2

)
for n even

2 cot
(

m(n)πR
2

)
for n odd

The couplings will also be modified from the minimal case due to
the presence of the BLKT parameters.
The modifications in the couplings are incorporated in terms of
overlap integrals of the mode functions, e.g.,

g(4)
Φ1Φ2...Φk

= g(5)
Φ1Φ2...Φk

×
∫ πR

0
[1 + r{δ(y) + δ(y − πR)}]φ1φ2 . . . φk dy



Boltzmann equation and relic density

The relic abundance of a particle species χ which was in thermal
equilibrium in the early universe and decoupled when it became
non-relativistic, is obtained by solving the Boltzmann equation for
the evolution of the χ number density n,

dn
dt

=−3Hn−〈σv〉(n2 − n2
eq)

At high temperature (T � m), neq ∼ T 3 and

at low temperature (T � m), neq = g
(mT

2π

)3/2
e−m/T .



Co-annihilation

If the relic particle χ1 is nearly degenerate with other particles
(χ2, χ3, . . . , χN ) in the spectrum, then its relic abundance gets
reasonable contributions from the annihilations of nearly
degenerate particles. [Griest and Seckel, PRD 43, 3191, ’91]

In this case, Boltzmann equation will be,

dn
dt

=−3Hn−〈σeff v〉(n2 − n2
eq)

where,

σeff (x) =
N∑
ij

σij
gigj

g2
eff

(1 + ∆i )
3/2(1 + ∆j )

3/2 exp (−x(∆i + ∆j )),

geff (x) =
N∑

i=1

gi (1 + ∆i )
3/2 exp (−x∆i ),

∆i =
mi −m1

m1



Co-annihilation

where x = m
T , σij ≡ σ(χiχj → SM,SM) and n =

∑N
i=1 ni , and gi is the

internal degrees of freedom (DoF) of the i-th particle.
From this consideration,

Ωχh2≈1.04× 109

MPl

xF√
g∗(xF )

1
Ia + 3Ib/xF

,

where,

Ia = xF

∫ ∞
xF

aeff (x)x−2dx ,

Ib = 2x2
F

∫ ∞
xF

beff (x)x−3dx ,

and g∗(xF ) is the total number of effectively massless DoF.



Co-annihilation

The freeze-out temperature xF can be approximated as,

xF = ln

(
5
4

√
45
8

geff (xF )

2π3
mMPl [aeff (xF ) + 6beff (xF )/xF ]√

g∗(xF )xF

)
.

aeff and beff are given by,

aeff (x) =
N∑
ij

aij
gigj

g2
eff

(1 + ∆i )
3/2(1 + ∆j )

3/2 exp (−x(∆i + ∆j )),

beff (x) =
N∑
ij

bij
gigj

g2
eff

(1 + ∆i )
3/2(1 + ∆j )

3/2 exp (−x(∆i + ∆j )),

and aij , bij are obtained from σijv = aij + bijv2 +O(v4).



Results for B(1) LKP

In nmUED the masses as well as the couplings of the
KK-excitations strongly depends on BLKT parameters.
These parameters consequently determines the mass spectrum,
i.e., the identity of LKP or which particles will contribute in
co-annihilation.
This flexibility in nmUED can make any of ν(1), H(1), W (1)

3 or B(1)

an LKP. We’ll consider the B(1) and W (1)
3 LKP case.



Results for B(1) LKP

The masses of the n = 1 KK-states are determined by their
respective BLKT parameters ri or equivalently, Ri = ri

R .

Consider B(1) to be the LKP. For simplicity assume only leptons
are next heavier in mass. So their co-annihilation is to be taken
into account.
Similar exercise in mUED, with B(1) LKP allows the
compactification scale R−1 to be within the range 500-600
GeV. [Kong and Matchev, JHEP 0601 038 ’06]

From recent Planck data the relic abundance,
Ωh2 = 0.1198± 0.0026.

[P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076[astro-ph.CO]]



Results for B(1) LKP

Figure: Variation of Ωh2 with relic B(1) mass.



Result for W (1)
3 LKP

To avoid fermion LKP we always choose RB, RW > Rf .

The choice of BLKTs, RW > RB makes W (1)
3 LKP.

Figure: Variation of Ωh2 with W (1)
3 mass



Direct detection prospects of B(1)

The spin dependent and spin independent or scalar cross
sections of B(1) scattering off Xenon (Z = 54,A = 131) nuclei
are estimated.
DM-nucleon cross sections are given by,

σscalar
p,n =

m2
Nm2

p,n

4πµ2A2(mB(1) + mN)2

(
Zf B(1)

p + (A− Z )f B(1)

n

)2
,

σ
spin
p,n =

g̃4
1

2π
µp,na2

p,n(
m2

B(1) −m2
f (1)

)2 ,

where µp,n(µ) is the reduced mass of the DM-nucleon(-nucleus)
system, ap,n are nuclear parameters, mN is the nuclear mass,
f B(1)

p and f B(1)

n are some kinematic factors which also contains
various nuclear parameters.



Spin independent cross sections

Figure: Variation of spin independent DM-nucleon cross section with the relic
particle mass for Xenon.



Spin dependent cross sections

Figure: Variation of spin dependent DM-nucleon cross section with the relic
particle mass for Xenon.



Summary

In nmUED, BLKTs with same strength at both the boundaries
can preserve KK-parity assuring the possibility of stable LKP.
The choice of parameters determine the identity of the LKP.

We consider the possibility of B(1) and W (1)
3 LKP.

Recent observational data on DM from Planck constrains the
nmUED parameter space. Allowed range of R−1 can be relaxed
from its mUED prediction of 0.5− 0.6 TeV.


