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1. NP through flavour 2/42

Indirect new physics

Today present indirect searches for NP.

These searches have been hugely successful in the past:

CPV in kaon system predicts >= 3 quark families, ∼ 13 years
before upsilon discovered.

Weak neutral current discovered by Gargamelle ∼ 10 years before Z
at UA1/2.

Large B mixing rate at Argus suggests heavy top quark ∼ 8 years
before direct discovery at TeVatron.
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New physics at the LHC

If NP is round the corner, then wheres the hints from flavour physics?

NP is either weakly coupled to flavour sector (MFV) or at a very high
scale.

Important to probe energies beyond LHC.

Do this by measuring processes suppressed or forbidden in the SM.

Flavour-Changing-Neutral-Currents (FCNC), LFV decays etc ..
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LHCb

LHCb is a single arm
spectrometer designed for heavy
flavour physics covering the
pseudo-rapidity range 2-5.

We collected 1 fb−1 of pp
collision data in 2011 @ 7 TeV
and 2 fb−1 in 2012 @ 8 TeV.

We ran at ∼200% design luminosity during 2012.
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LHCb

Huge heavy flavour cross-section at LHC energies puts strain on
detector.
IP resolution : identify tracks from displaced vertex.
Decay time resolution : crucial for B0

s mixing studies.
Momentum resolution : narrow signal region → reduce background
contamination.
Particle identification : separating kaons and pions essential.
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LHCb trigger

∼ 5(100)× 1010 B (D) mesons decay
inside our acceptance per fb−1.

Reduce 40MHz to 5KHz (2.5× nominal)
via a three stage trigger.

Saturated by signal, use multivariate
techniques already to squeeze every last
drop of physics out.
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Physics menu

LHCb has a huge BSM physics program, ranging from Majorana
neutrino searches to precision charm measurements.

Today, concentrate on:

Rare FCNC/LFV decays, e.g: B0
s → µ+µ−,

CPV in B0
s mixing, e.g: B0

s → J/ψφ

CKM angle γ, e.g: B → DK

CPV in charm, e.g: ∆(ACP)(D0 → hh)
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Rare decays
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Wilson Coefficients

Rare decays phenomenology based on effective field theory.

Write effective Hamiltonian as

Heff ∝
∑
i

(CiOi + C′iO
′
i ) + h.c .

Where the Wilson coefficients, Ci encapsulate short distance physics
above some energy scale, µ.

Form a complete basis, can put all the NP/SM physics operators in
here.

Allows a model independent interpretation.

If NP found at by direct searches, can study gauge structure using
rare decays.
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B0
s → µ+µ−

The decay B0
s → µ+µ− a helicity suppressed FCNC, making it an

incredibly rare decay.

Large enhancement possible in NP scenarios, especially to extended
Higgs sector.

SM prediction: [JHEP 1010:009,2010] + [Phys. Rev. D 86, 014027 (2012)]

B(B0
s → µ+µ−)<t ave> = 3.5± 0.3× 10−9

B(B0 → µ+µ−) = 1.0± 0.1× 10−10

B0 → µ+µ− suppressed by |Vtd/Vts |2 in SM → test non-MFV.
Higgs and BSM physics in light of the LHC Patrick Owen Proving BSM physics with LHCb
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B0
s → µ+µ−

Background dominated by real muons from different b decays.

B

µ+
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B

B
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Reduce using a Boosted Decision
Tree, using kinematic and geometric
information.
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B0
s → µ+µ−

Find first evidence for B0
s → µ+µ−, at 3.5 σ significance.

]2c [MeV/−µ+µm
5000 5500 6000

)2 c
C

an
di

da
te

s 
/ (

50
 M

eV
/

0

2

4

6

8

10

12

14
LHCb

(8TeV)1−(7TeV) +1.1 fb1−1.0 fb

BDT > 0.7

B(B0
s → µ+µ−) = 3.2+1.5

−1.2 × 10−9

B(B0 → µ+µ−) < 9.4× 10−10 @ 95% CL

Another 1 fb−1 of data in hand ready to analyse.

B(B0
s → µ+µ−)× 10−9

B(
B

0
→
µ

+
µ
−

)
×

10
−

9

Higgs and BSM physics in light of the LHC Patrick Owen Proving BSM physics with LHCb



4. Rare decays 13/42

D0 → µ+µ−

FCNC with up type quarks complementary to beauty and strange
sector.

The decay D0 → µ+µ− is even rarer than B0
s → µ+µ− (GIM

mechanism more exact).

SM limit from D0 → γγ [arXiv:1110.6480].

B(D0 → µ+µ−) < 6× 10−11@ 90 CL

Previous best limit set by BELLE, 1.4× 10−7 at 90% CL.
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D0 → µ+µ−

Main challenge is dealing with backgrounds via h→ µ
mis-identification.
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LHCb limit a factor 20 better than previous measurements
[arXiv:1305.5059].

B(D0 → µ+µ−) < 6.2× 10−9 @ 90% CL

Still plenty of room for NP to appear (2 fb−1 of data to add).
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B0→ K ∗0µ+µ−

B0→ K ∗0µ+µ− is a b → s µ+µ− process at the level of ∼ 10−6

Have ∼ 900 signal candidates across full q2 range with 1 fb−1 of data.
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B0!K*µµ 

04"

•  Flavour changing neutral current ! loop  

•  Sensitive to interference between O7!, 
O9,10 and their primed counterparts 

•  Exclusive decay ! theory uncertainty 
from form factors 

•  Decay described by three angles, Gl, GK 
and ', and q2 = m2

µµ , self-tagging ! 
angular analysis allows to probe helicity 

•  Multitude of angular observables in which 
uncertainties cancel to some extent e.g. 
AFB – asymmetry in Gl distribution 

It can be described by three angles θl , θk , φ and the invariant mass
squared of the dimuon system, q2.

Angular observables theoretically cleaner than rates.
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B0→ K ∗0µ+µ− angular distribution

Angular observables are sensitive to various NP models.

B0!K*µµ 

04"

•  Flavour changing neutral current ! loop  

•  Sensitive to interference between O7!, 
O9,10 and their primed counterparts 

•  Exclusive decay ! theory uncertainty 
from form factors 

•  Decay described by three angles, Gl, GK 
and ', and q2 = m2

µµ , self-tagging ! 
angular analysis allows to probe helicity 

•  Multitude of angular observables in which 
uncertainties cancel to some extent e.g. 
AFB – asymmetry in Gl distribution 

Apply “folding“ trick with angular distribution to cancel some angular
terms.

φ→ φ+ π for φ > 0
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B0→ K ∗0µ+µ− results

Results for FL and AFB with 1 fb−1 of 2011 data [arXiv:1304:6325]:
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Measurements agree amazingly well with SM predictions (from [JHEP
1107:067,2011]).
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B0
s → φµ+µ− results

Also can do similar analysis with B0
s mesons (1/4 statistics)

[arXiv:1305.2168]

Here not self tagging so cannot access full set of variables.
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Again, measurements agree well with SM predictions [arXiv:0811.1214].
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Constraints on new physics

BSM physics with O(1) flavour couplings must be >∼ 15TeV .

Constraints based on [JHEP 1208:121, 2012].

C7 C9 C10
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Constraints on new physics

If one inserts SM like flavour couplings, limit reduces to ∼300MeV -
2TeV.

Limits with MFV lower, but still competitive with direct searches.

C7 C9 C10
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Constraints on CMSSM

Can try scanning across a particular SUSY model (CMSSM), to see
comparison with direct searches.

Complimentary constraints compared with direct searches.

See [arXiv:1205.1845] for more detail on model.
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Isospin asymmetry in B→ K (∗)µ+µ− decays

The isospin asymmetry of B → K (∗)µ+µ−, AI , is defined as:

AI =
B(B0 → K (∗)0µ+µ−)− τ0

τ+
B(B± → K (∗)±µ+µ−)

B(B0 → K (∗)0µ+µ−) + τ0
τ+
B(B± → K (∗)±µ+µ−)

AI expected to be O(1%) in the SM

[JHEP 0301:074,2003],[JHEP 1302:010,2013].

In 2009, BABAR measured a surprising 3.9σ deviation from zero at low q2

[Phys. Rev. Lett. 102, 091803] .

Now significance down to ∼ 2 σ and only in the B→ Kµ+µ− mode.

Higgs and BSM physics in light of the LHC Patrick Owen Proving BSM physics with LHCb
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Isospin asymmetry results

AI for B→ Kµ+µ− is over 4σ away from the SM prediction.

For B0→ K ∗0µ+µ−, things are consistent with zero.
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B0
s → e+ µ−

Lepton flavour violating decays occur at ∼< 10−50 in the SM.

The decay B0
s → e+ µ− is allowed in models with a local gauge

symmetry with leptons and quarks.

Introduction B0
(s) ! e+µ� ⌧� ! µ�µ+µ� ⌧ ! pµµ Conclusions

Introduction

Charged lepton flavour violation (2)

Decays of the type B0
(s)

! e+µ� are allowed in

models with a local gauge symmetry b/w
quarks and leptons [1][2][3]

) leads to tree-level couplings between them
s

b

sB LQ

(e)µ

)µe(

) Direct searches by CMS and ATLAS put limits ⇠ mLQ < [0.5, 1]TeV

they access the lepto-quarks linking quarks and leptons of the same generation

blah
blah
blah
[1]A. Ilakovic Phys. Rev. D 62 (2000) 036010.
[2]R. A. Diaz et al. Eur. Phys. J C 41 (2005) 305.
[3]J. C. Pati and A. Salam Phys. Rev. D 10 (1974) 275.

Fatima Soomro (INFN) cLFV searches at LHCb June 25, 2013 3 / 45

So-called lepto-quarks have been directly searched for at the LHC,
with limits of around 0.5-1 TeV/c2 (no mixing assumed).
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B0
s → e+ µ−

Search for B0
s → e+ µ− at LHCb using 2011 dataset.

[LHCb-PAPER-2013-030]

Introduction B0
(s) ! e+µ� ⌧� ! µ�µ+µ� ⌧ ! pµµ Conclusions

LHCb-PAPER-2013-030

B0
(s) ! e+µ� results
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Solid black line: observed, dashed black line: expected

BR(B0
s ! e+µ�) ⇥10�8 BR(B0 ! e+µ�) ⇥10�9

at 90% (95%) CL at 90% (95%) CL

Expected LHCb, 1 fb�1 1.53 (1.95) 3.97 (4.95)
Observed LHCb, 1 fb�1 1.11 (1.36) 2.8 (3.72)
Current (CDF, 2 fb�1) 20.0(20.6) 64.0(79.0)
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No significant signal observed, set limits,

B(B0
s → e+µ−) < 1.4× 10−8 @ 95% CL

B(B0 → e+µ−) < 3.7× 10−9 @ 95% CL
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B0
s → e+ µ−

Convert branching fraction limits into lepto-quark masses using
formula from [arXiv:hep-ph/9409201].

Introduction B0
(s) ! e+µ� ⌧� ! µ�µ+µ� ⌧ ! pµµ Conclusions

LHCb-PAPER-2013-030

B0
(s) ! e+µ� results

The LHCb limits are 20 times better than the current world best (CDF)
branching ratio upper limits V lower limits on lepto�quark mass 1

) CDF limits mLQ(Bs ! e+µ�) > 47.8(44.9) TeV /c2 @ 90(95)%CL,

mLQ(Bd ! e+µ�) > 59.3(56.3) TeV /c2 @ 90(95)%CL
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1Theoretical formula Phys. Rev. D 50 (1994) 6843
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No significant signal observed , set limits,

mLQ(B0
s → e+µ−) > 101TeV /c2 @ 95% CL

mLQ(B0 → e+µ−) > 135TeV /c2 @ 95% CL

[LHCb-PAPER-2013-030]
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CPV in B0
s mixing
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CPV in B0
s mixing

B0
s oscillations studied at high precision at LHCb [arXiv:1304.4741].
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BSM physics can enter into the mixing amplitude, accessible via
interference.
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CP mixing angle φs

Find decay common to both B0
s and B̄0

s decays: e.g. B0
s → J/ψφ.

s
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Weak phase difference between B0
s mixing and B0

s decay, φs , is
predicted to be very small in the SM.

φs = −2arg(VtsV
∗
tb/VcV

∗
cb) = 0.036± 0.002rad, [arXiv : 1106.4041].

Higgs and BSM physics in light of the LHC Patrick Owen Proving BSM physics with LHCb

http://arxiv.org/abs/1106.4041


5. CPV in B0
s mixing 30/42

B0
s → J/ψψ analysis

PS→ VV decay, separate CP-odd (red), CP-even (green) and S-wave
(purple) final states with angular analysis.

[arXiv:1304.2600]
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Simultaneously fit angular distribution, lifetime and flavour to
determine φs .
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φs results

Determine 68% contour with ψs and difference in lifetimes of B0
s

eigenstates:

based on [arXiv:1107.0266]

Combined results with B0
s → J/ψπ+π− [arXiv:1304.2600]:

φs = 0.01± 0.07± 0.01 rad

So far results show good agreement with SM prediction.
Higgs and BSM physics in light of the LHC Patrick Owen Proving BSM physics with LHCb
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B0
s → φφ

Can also do the same analysis with a penguin decay, B0
s → φφ.

Literature Review - 8

models based on the framework of Minimal Falvour Violation3 (MFV) represent some
of the most pessimistic extentions of the Standard Model. The work of Lenz, A. &
Nierste, U.(2011)[9] represents a recent example of a MFV study. MFV assumes all
flavour changing interactions are governed by the same CKM matrix and that the one
independent phase in the CKM matrix is the only source of CP violation[10]. In general,
the MSSM and models involving MFV are plagued by the SUSY CP problem4. A class of
models that does not in general su�er from the SUSY CP problem and does not involve
MFV is given by supersymmetric flavour models (the interested reader is directed to the
work of Altmannshofer et al. (2010)[11]).

2.3 CP Violation in Bs � ��

The decay B0
s � �� is an example of a flavour changing neutral current (FCNC) and

hence, is forbidden at tree level in the standard model. The decay is only permitted
through penguin diagrams (shown in figure 5)[12].
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Figure 5: Feynman diagrams contributing to the Bs � �� decay[12]: a) Gluonic penguin,
b) singlet penguin, c) colour allowed penguin, d) colour supressed penguin.

The weak phase structure found due to mixing in the previous section for the Bs � J/⇥�
decay will also hold for the Bs � �� decay.

In the penguin diagrams of figure 5, the CKM structure remains the same throughout all
amplitudes due to the very high mass of the top quark in the propogators. If the QCD
structure is naively assumed to be the same for both B0

s and B̄0
s , the ratio of the decay

amplitudes will be of the form

3MFV models can be accommodated in the Minimal Supersymmetric Standard Model (MSSM), for
further details (specifically relating to B meson observables), see the work of Ellis et al. (2007)[8].

4This arises from neutron electric dipole moment and FCNC predictions constraining CP violating
phases.

School of Physics and Astronomy Date: 24-6-11
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[arXiv:1303.7125]

Less stats than B0
s → J/ψφ, but suppressed decay offers additional

sensitivity.
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B0
s → φφ

φs not the same as B0
s → J/ψφ as its different decay.
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[arXiv:1303.7125]

Use Feldman-Cousins technique to determine 68% CL region: [-2.46,
0.76] rad.

p-value with SM is 16%.
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CKM angle γ
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The CKM angle, γ

CKM picture consistent so far
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New measurements on γ could poke holes in this picture.
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γ via B → DK decays

Use interference between b → uc̄s and b → cūs decays.

Many analyses, latest update uses
B+ → (D0 → K 0

S hh)K+ decays with
3 fb−1. [LHCb-CONF-2013-004].

Model independent analysis, with
strong phase variation across
phase-space taken from CLEO data.

Analysis yields γ = (57± 16)o (already
competitive).
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https://cds.cern.ch/record/1528599/files/LHCb-CONF-2013-004.pdf
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Gamma combination

Tightest combination uses
B+ → D0K+ modes with
B+ → (D0 → K 0

S hh)K+ update
[LHCb-CONF-2013-006].

LHCb measurement already most precise:

LHCb: (67± 12)o

BELLE: (69+17
−16)o [arXiv:1301.2033]

BaBar: (68+15
−14)o [arXiv:1301.1029]

So far consistent with indirect measurements ((67± 5)o), but still
plenty of room left for NP to appear.

More measurements to be added/updated → expect a much
improved measurement soon.
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http://cds.cern.ch/record/1537822/files/LHCb-CONF-2013-006.pdf
http://arxiv.org/abs/1301.2033
http://arxiv.org/abs/1301.1029
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CPV in charm
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CPV in charm

Direct CPV in charm expected to be O(10−4) -O(10−3).

With 0.6 fb−1 of data, LHCb found 3.5σ evidence for direct CPV by
measuring

∆(ACP) = ACP(D0 → K+K−)−ACP(D0 → π+π−)

= [−0.82± 0.21(stat)± 0.11(syst)]%

Led to discussion whether O(%)
CPV could be SM or NP.
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∆(ACP) update

Two independent analyses, using 1 fb−1 of data.

[LHCb-CONF-2013-003] [arXiv:1303.2614]

Prompt mode tagged with slow pion, semi-leptonic mode tagged with
muon.

Orthogonal systematics → complementary measurements.
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http://cds.cern.ch/record/1521995/files/LHCb-CONF-2013-003.pdf
http://arxiv.org/abs/1303.2614
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∆(ACP) update with 1 fb−1

Results with 2011 data, [LHCb-CONF-2013-003], [arXiv:1303.2614]:

∆(ACP)prompt = [−0.34± 0.15(stat)± 0.10(syst)]%

∆(ACP)semilep = [0.49± 0.30(stat)± 0.14(syst)]%

Previous evidence not confirmed
with update.

More precise/complementary
measurements coming soon.
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http://cds.cern.ch/record/1521995/files/LHCb-CONF-2013-003.pdf
http://arxiv.org/abs/1303.2614
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Outlook

LHCb is probing BSM physics in various different ways

Rare decays.

CPV in B0
s mixing.

Direct measurement of γ.

High precision direct CP measurements.

Most results are consistent with the SM.

The isospin asymmetry of B→ K (∗)µ+µ− being an exception, but
no model can accommodate it so far.

Most of the results shown today use 1 fb−1, another 2 fb−1 in hand.
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