Proving BSM physics with LHCb

Higgs and BSM physics in light of the LHC

$\label{eq:Patrick Owen} Patrick \ Owen^1 \\ \mbox{on behalf of the LHCb collaboration} \\$

 $26^{\rm th}$ Jun 2013

Imperial College London

• • = • • = •

¹patrickowen22@gmail.com

Indirect new physics

- Today present indirect searches for NP.
- These searches have been hugely successful in the past:
 - $\bullet~\mbox{CPV}$ in kaon system predicts >= 3 quark families, \sim 13 years before upsilon discovered.
 - $\bullet\,$ Weak neutral current discovered by Gargamelle \sim 10 years before Z at UA1/2.
 - Large B mixing rate at Argus suggests heavy top quark \sim 8 years before direct discovery at TeVatron.

New physics at the LHC

- If NP is round the corner, then wheres the hints from flavour physics?
- NP is either weakly coupled to flavour sector (MFV) or at a very high scale.
 - Important to probe energies beyond LHC.
- Do this by measuring processes suppressed or forbidden in the SM.

• Flavour-Changing-Neutral-Currents (FCNC), LFV decays etc ...

LHCb

- LHCb is a single arm spectrometer designed for heavy flavour physics covering the pseudo-rapidity range 2-5.
- We collected 1 fb⁻¹ of pp collision data in 2011 @ 7 TeV and 2 fb⁻¹ in 2012 @ 8 TeV.

• We ran at $\sim 200\%$ design luminosity during 2012.

LHCb

- Huge heavy flavour cross-section at LHC energies puts strain on detector.
- **IP** resolution : identify tracks from displaced vertex.
- **Decay time resolution** : crucial for B_s^0 mixing studies.
- Momentum resolution : narrow signal region \rightarrow reduce background contamination.
- Particle identification : separating kaons and pions essential.

Higgs and BSM physics in light of the LHC

LHCb trigger

- $\sim 5(100) \times 10^{10} B (D)$ mesons decay inside our acceptance per fb⁻¹.
- Reduce 40MHz to 5KHz ($2.5 \times$ nominal) via a three stage trigger.
- Saturated by signal, use multivariate techniques already to squeeze every last drop of physics out.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

- LHCb has a huge BSM physics program, ranging from Majorana neutrino searches to precision charm measurements.
- Today, concentrate on:
 - Rare FCNC/LFV decays, e.g: $B_s^0 \rightarrow \mu^+ \mu^-$,
 - CPV in B^0_s mixing, e.g: $B^0_s \to J\!/\psi \phi$
 - CKM angle γ , e.g: $B \rightarrow DK$
 - CPV in charm, e.g: $\Delta(\mathcal{A}^{\mathrm{CP}})(D^0 \to hh)$

Rare decays

Wilson Coefficients

- Rare decays phenomenology based on effective field theory.
- Write effective Hamiltonian as

$$H_{ ext{eff}} \propto \sum_i (\mathcal{C}_i \mathcal{O}_i + \mathcal{C}_i' \mathcal{O}_i') + h.c.$$

- Where the Wilson coefficients, C_i encapsulate short distance physics above some energy scale, μ .
- Form a complete basis, can put all the NP/SM physics operators in here.
- Allows a model independent interpretation.
- If NP found at by direct searches, can study gauge structure using rare decays.

$B_s^0 ightarrow \mu^+ \mu^-$

- The decay $B^0_s \to \mu^+ \mu^-$ a helicity suppressed FCNC, making it an incredibly rare decay.
- Large enhancement possible in NP scenarios, especially to extended Higgs sector.

SM prediction: [JHEP 1010:009,2010] + [Phys. Rev. D 86, 014027 (2012)]

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-)_{<\text{t ave}>} &= 3.5 \pm 0.3 \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= 1.0 \pm 0.1 \times 10^{-10} \\ B^0 \to \mu^+ \mu^- \text{ suppressed by } |V_{td}/V_{ts}|^2 \text{ in SM} \to \text{test non-MFV}, \text{ for all } 0.00 \\ \end{split}$$
Higgs and BSM physics in light of the LHC Patrick Owen Proving BSM physics with LHCb

$B_s^0 ightarrow \mu^+ \mu^-$

Background dominated by real muons from different b decays.

Reduce using a Boosted Decision Tree, using kinematic and geometric information.

$B_s^0 ightarrow \mu^+ \mu^-$

Find first evidence for $B_s^0 \rightarrow \mu^+ \mu^-$, at 3.5 σ significance.

$$\mathcal{B}(B^0_s o \mu^+ \mu^-) = 3.2^{+1.5}_{-1.2} imes 10^{-9} \ \mathcal{B}(B^0 o \mu^+ \mu^-) < 9.4 imes 10^{-10}$$
 @ 95% CL

Another 1 fb^{-1} of data in hand ready to analyse.

$D^0 ightarrow \mu^+ \mu^-$

- FCNC with up type quarks complementary to beauty and strange sector.
- The decay $D^0 \to \mu^+ \mu^-$ is even rarer than $B_s^0 \to \mu^+ \mu^-$ (GIM mechanism more exact).
- SM limit from $D^0 \rightarrow \gamma \gamma$ [arXiv:1110.6480].

$$\mathcal{B}(D^0 o \mu^+ \mu^-) < 6 imes 10^{-11}$$
@ 90 CL

• Previous best limit set by BELLE, 1.4×10^{-7} at 90% CL.

$D^0 o \mu^+ \mu^-$

• Main challenge is dealing with backgrounds via $h \to \mu$ mis-identification.

• LHCb limit a factor 20 better than previous measurements [arXiv:1305.5059].

$$\mathcal{B}(D^0
ightarrow \mu^+ \mu^-) < 6.2 imes 10^{-9}$$
 @ 90% CL

• Still plenty of room for NP to appear $(2 \text{ fb}^{-1} \text{ of data to add})$.

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• $B^0 o K^{*0} \mu^+ \mu^-$ is a $b o s \ \mu^+ \mu^-$ process at the level of $\sim 10^{-6}$

• Have \sim 900 signal candidates across full q^2 range with 1 fb⁻¹ of data.

- It can be described by three angles θ_I , θ_k , ϕ and the invariant mass squared of the dimuon system, q^2 .
- Angular observables theoretically cleaner than rates.

$B^0 ightarrow K^{*0} \mu^+ \mu^-$ angular distribution

• Angular observables are sensitive to various NP models.

 Apply "folding" trick with angular distribution to cancel some angular terms.

$$\phi \rightarrow \phi + \pi \text{ for } \phi > 0$$

3

A B M A B M

$B^0 ightarrow K^{*0} \mu^+ \mu^-$ results

 \bullet Results for $\rm F_L$ and $\rm A_{FB}$ with 1 fb^{-1} of 2011 data [arXiv:1304:6325]:

Measurements agree amazingly well with SM predictions (from [JHEP 1107:067,2011]).

$B_s^0 \rightarrow \phi \mu^+ \mu^-$ results

- Also can do similar analysis with B_s^0 mesons (1/4 statistics) [arXiv:1305.2168]
- Here not self tagging so cannot access full set of variables.

Again, measurements agree well with SM predictions [arXiv:0811.1214].

Constraints on new physics

• BSM physics with O(1) flavour couplings must be $> \sim 15 TeV$.

Constraints based on [JHEP 1208:121, 2012].

Constraints on new physics

 $\bullet\,$ If one inserts SM like flavour couplings, limit reduces to ${\sim}300 MeV$ - 2TeV.

• Limits with MFV lower, but still competitive with direct searches.

Constraints on CMSSM

• Can try scanning across a particular SUSY model (CMSSM), to see comparison with direct searches.

- Complimentary constraints compared with direct searches.
- See [arXiv:1205.1845] for more detail on model.

Isospin asymmetry in $B \rightarrow K^{(*)} \mu^+ \mu^-$ decays

The isospin asymmetry of $B \to K^{(*)}\mu^+\mu^-$, A_I , is defined as:

$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

- *A_I* expected to be *O*(1%) in the SM
 [JHEP 0301:074,2003],[JHEP 1302:010,2013].
- In 2009, BABAR measured a surprising 3.9 σ deviation from zero at low q² [Phys. Rev. Lett. 102, 091803].
- Now significance down to $\sim 2 \sigma$ and only in the $B \rightarrow K \mu^+ \mu^-$ mode.

22/42

- A_I for $B \rightarrow K \mu^+ \mu^-$ is over 4σ away from the SM prediction.
- For $B^0 \to K^{*0} \mu^+ \mu^-$, things are consistent with zero.

$B_s^0 ightarrow e^+ \mu^-$

- Lepton flavour violating decays occur at $\sim < 10^{-50}$ in the SM.
- The decay $B_s^0 \rightarrow e^+ \mu^-$ is allowed in models with a local gauge symmetry with leptons and guarks.

 So-called lepto-guarks have been directly searched for at the LHC, with limits of around 0.5-1 TeV/ c^2 (no mixing assumed).

3

$B^0_s ightarrow e^+ \ \mu^-$

• Search for $B_s^0 \rightarrow e^+ \mu^-$ at LHCb using 2011 dataset. [LHCb-PAPER-2013-030]

Solid black line: observed, dashed black line: expected

• No significant signal observed, set limits,

$${\cal B}(B^0_s o e^+ \mu^-) < 1.4 imes 10^{-8}$$
 @ 95% CL ${\cal B}(B^0 o e^+ \mu^-) < 3.7 imes 10^{-9}$ @ 95% CL

Higgs and BSM physics in light of the LHC

Patrick Owen

$B^0_s ightarrow e^+ \; \mu^-$

 Convert branching fraction limits into lepto-quark masses using formula from [arXiv:hep-ph/9409201].

• No significant signal observed , set limits,

$$\begin{array}{l} m_{LQ}(B^0_s \to e^+ \mu^-) > 101 \, TeV/c^2 \, @ \, 95\% \, \, {\rm CL} \\ m_{LQ}(B^0 \to e^+ \mu^-) > 135 \, TeV/c^2 \, @ \, 95\% \, \, {\rm CL} \end{array}$$

[LHCb-PAPER-2013-030]

Higgs and BSM physics in light of the LHC

3

Image: A matrix

CPV in B_s^0 mixing

Higgs and BSM physics in light of the LHC

Patrick Owen

Proving BSM physics with LHCb

CPV in B_s^0 mixing

• B_s^0 oscillations studied at high precision at LHCb [arXiv:1304.4741].

 BSM physics can enter into the mixing amplitude, accessible via interference.

CP mixing angle ϕ_s

• Find decay common to both B_s^0 and $\overline{B_s^0}$ decays: e.g. $B_s^0 \to J/\psi \phi$.

• Weak phase difference between B_s^0 mixing and B_s^0 decay, ϕ_s , is predicted to be very small in the SM.

$$\phi_s = -2 \mathrm{arg}(\mathrm{V_{ts}V_{tb}^*/V_cV_{cb}^*}) = 0.036 \pm 0.002 \mathrm{rad}, [\mathrm{arXiv}: 1106.4041].$$

29/42

$B_s^0 \rightarrow J/\psi \psi$ analysis

 PS → VV decay, separate CP-odd (red), CP-even (green) and S-wave (purple) final states with angular analysis.

• Simultaneously fit angular distribution, lifetime and flavour to determine ϕ_s .

Higgs and BSM physics in light of the LHC

ϕ_s results

• Determine 68% contour with ψ_s and difference in lifetimes of B_s^0 eigenstates:

Combined results with $B_s^0 \rightarrow J/\psi \pi^+\pi^-$ [arXiv:1304.2600]:

 $\phi_{\it s} = 0.01 \pm 0.07 \pm 0.01 ~\rm rad$

• So far results show good agreement with SM prediction.

• Can also do the same analysis with a penguin decay, $B_s^0 \rightarrow \phi \phi$.

[arXiv:1303.7125]

• Less stats than $B_s^0 \to J/\psi \phi$, but suppressed decay offers additional sensitivity.

$B_s^0 \to \phi \phi$

• ϕ_s not the same as $B^0_s
ightarrow J\!/\!\psi\,\phi$ as its different decay.

- Use Feldman-Cousins technique to determine 68% CL region: [-2.46, 0.76] rad.
- p-value with SM is 16%.

CKM angle γ

Proving BSM physics with LHCb

The CKM angle, γ

• CKM picture consistent so far

Trees

• New measurements on γ could poke holes in this picture.

γ via $B \rightarrow DK$ decays

- Use interference between $b \rightarrow u\bar{c}s$ and $b \rightarrow c\bar{u}s$ decays.
 - B⁻ can decay into both D⁰ and D
 ⁰, diagrams very different amplitudes

- Decays of D⁰, $\overline{D^0}$ to same final state gives access to interference
- Many analyses, latest update uses $B^+ \rightarrow (D^0 \rightarrow K^0_{\rm s} hh)K^+$ decays with $3 \, {\rm fb}^{-1}$. [LHCb-CONF-2013-004].
- Model independent analysis, with strong phase variation across phase-space taken from CLEO data.
- Analysis yields $\gamma = (57 \pm 16)^o$ (already competitive).

Gamma combination

• Tightest combination uses $B^+ \rightarrow D^0 K^+$ modes with $B^+ \rightarrow (D^0 \rightarrow K^0_{\rm S} hh) K^+$ update [LHCb-CONF-2013-006].

- LHCb measurement already most precise:
 - LHCb: (67 ± 12)°
 - BELLE: $(69^{+17}_{-16})^o$ [arXiv:1301.2033]
 - BaBar: $(68^{+15}_{-14})^o$ [arXiv:1301.1029]
- So far consistent with indirect measurements $((67 \pm 5)^{\circ})$, but still plenty of room left for NP to appear.
- More measurements to be added/updated → expect a much improved measurement soon.

Higgs and BSM physics in light of the LHC

Patrick Owen

CPV in charm

Proving BSM physics with LHCb

CPV in charm

- Direct CPV in charm expected to be $\mathcal{O}(10^{-4})$ - $\mathcal{O}(10^{-3})$.
- With 0.6 fb⁻¹ of data, LHCb found 3.5 σ evidence for direct CPV by measuring

$$egin{aligned} \Delta(\mathcal{A}^{ ext{CP}}) &= \mathcal{A}^{ ext{CP}}(D^0 o \mathcal{K}^+ \mathcal{K}^-) - \mathcal{A}^{ ext{CP}}(D^0 o \pi^+ \pi^-) \ &= [-0.82 \pm 0.21(ext{stat}) \pm 0.11(ext{syst})]\% \end{aligned}$$

 Led to discussion whether O(%) CPV could be SM or NP.

Proving BSM physics with LHCb

$\Delta(\mathcal{A}^{ ext{CP}})$ update

• Two independent analyses, using 1 fb^{-1} of data.

- Prompt mode tagged with slow pion, semi-leptonic mode tagged with muon.
- Orthogonal systematics \rightarrow complementary measurements.

$|\Delta(\mathcal{A}^{ ext{CP}})|$ update with $1\, ext{fb}^{-1}$

Results with 2011 data, [LHCb-CONF-2013-003], [arXiv:1303.2614]:

$$egin{aligned} \Delta(\mathcal{A}^{ ext{CP}})_{ extsf{prompt}} &= [-0.34 \pm 0.15(\textit{stat}) \pm 0.10(\textit{syst})]\% \ \Delta(\mathcal{A}^{ ext{CP}})_{ extsf{semilep}} &= [0.49 \pm 0.30(\textit{stat}) \pm 0.14(\textit{syst})]\% \end{aligned}$$

- Previous evidence not confirmed with update.
- More precise/complementary measurements coming soon.

Outlook

- LHCb is probing BSM physics in various different ways
 - Rare decays.
 - CPV in B_s^0 mixing.
 - Direct measurement of γ .
 - High precision direct CP measurements.
- Most results are consistent with the SM.
 - The isospin asymmetry of $B \to K^{(*)}\mu^+\mu^-$ being an exception, but no model can accommodate it so far.
- Most of the results shown today use 1 fb^{-1} , another 2 fb^{-1} in hand.