Going Beyond SM with Heavy Flavours

Anirban Kundu

University of Calcutta

June 26, 2013, AS-ICTP

The puzzles of flavour physics

- The CP puzzle: $n_{b} / n_{\gamma} \sim \mathcal{O}\left(10^{-9}\right)$, SM predicts $\sim \mathcal{O}\left(10^{-18}\right)$ BSM source for CP violation?
- Unknown parameters: 12 masses, 6 mixing angles, 2 (possibly) phases (+ Majorana)

Horizontal symmetries?

- Large hierarchy: $m_{\nu_{e}} / m_{t} \leq 10^{-14}$

Fermion localization in warped ED?

We will concentrate mostly on B physics, will also touch charm

Why is flavour physics important ?

- Better understanding of SM for $N_{\text {gen }}>1$
- Window to top and triple-gauge dynamics (e.g. $B^{0}-\bar{B}^{0}$ mixing, $\left.b \rightarrow s \gamma, Z \rightarrow b \bar{b}, B_{s} \rightarrow \mu \mu\right)$

Why is flavour physics important ?

- Better understanding of SM for $N_{\text {gen }}>1$
- Window to top and triple-gauge dynamics (e.g. $B^{0}-\bar{B}^{0}$ mixing, $\left.b \rightarrow s \gamma, Z \rightarrow b \bar{b}, B_{s} \rightarrow \mu \mu\right)$
- Better understanding of low-energy QCD
- Form factors, Resummation of higher-order effects, Relative importance of subleading topologies

Why is flavour physics important ?

- Better understanding of SM for $N_{\text {gen }}>1$
- Window to top and triple-gauge dynamics (e.g. $B^{0}-\bar{B}^{0}$ mixing, $\left.b \rightarrow s \gamma, Z \rightarrow b \bar{b}, B_{s} \rightarrow \mu \mu\right)$
- Better understanding of low-energy QCD - Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
- New source of CP violation needed for n_{b} / n_{γ}

Why is flavour physics important ?

- Better understanding of SM for $N_{\text {gen }}>1$
- Window to top and triple-gauge dynamics (e.g. $B^{0}-\bar{B}^{0}$ mixing, $\left.b \rightarrow s \gamma, Z \rightarrow b \bar{b}, B_{s} \rightarrow \mu \mu\right)$
- Better understanding of low-energy QCD - Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
- New source of CP violation needed for n_{b} / n_{γ}
- Indirect window to New Physics
- Tight constraints, compatible with direct searches, only probe to flavour structure

BaBar@SLAC : $e^{+} e^{-}, 429 \mathrm{fb}^{-1}, 4.7 \times 10^{8} B \bar{B}$ pairs

Belle@KEK : $e^{+} e^{-}$, over $1 \mathrm{ab}^{-1}, 7.72 \times 10^{8} B \bar{B}$ pairs

BaBar@SLAC : $e^{+} e^{-}, 429 \mathrm{fb}^{-1}, 4.7 \times 10^{8} B \bar{B}$ pairs

Belle@KEK : $e^{+} e^{-}$, over $1 \mathrm{ab}^{-1}, 7.72 \times 10^{8} B \bar{B}$ pairs

LHCb: $1 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}, 1.1 \mathrm{fb}^{-1}$ at 8 TeV
$7 \mathrm{TeV}: \sigma(p p \rightarrow b \bar{b} X)=(89.6 \pm 6.4 \pm 15.5) \mu \mathrm{b}$, scales linearly with \sqrt{s}
Ultimately, $5 \mathrm{fb}^{-1} / \mathrm{yr}$, total $\mathcal{L}_{\text {int }}=50 \mathrm{fb}^{-1}$,
~ 200-fold increase over $1 \mathrm{fb}^{-1}$ sample
ATLAS and CMS also have dedicated flavour physics programme
Belle II : $e^{+} e^{-}$, about $50 \mathrm{ab}^{-1}$, precision flavour physics

Reach of Flavour Physics

Direct detection

- NP@a few TeV: within reach of LHC@14 TeV
- NP > a few TeV: beyond LHC

Reach of Flavour Physics

Direct detection

- NP@a few TeV: within reach of LHC@14 TeV
- NP > a few TeV: beyond LHC

Indirect detection

Flav. structure	a few TeV	$>$ a few TeV
Anarchy	$\mathrm{O}(1) \mathbf{X}$	small $(<\mathrm{O}(1))$
Small	small	tiny
misalignment	$(\mathrm{O}(0.1))$	$(\mathrm{O}(0.01-0.1))$
Alignment	tiny	out of reach
(MFV)	$(\mathrm{O}(0.01))$	$<\mathrm{O}(0.01)$

Plan of the talk

(1) Some interesting B physics observables
(2) Beyond-SM hints?
(3) Beyond-SM through Beauty: B-physics observables and cMSSM
(1) Beyond-SM through Charm: Mixing, Direct CPV

Caveat emptor: Top and neutrinos excluded

Some interesting observables

Unitarity Triangle

$$
\begin{aligned}
V & =\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
\end{aligned}
$$

$$
V_{t d}=\left|V_{t d}\right| \exp (-i \beta), V_{u b}=\left|V_{u b}\right| \exp (-i \gamma)
$$

Wolfenstein parametrisation

$$
\begin{array}{ll}
\lambda=0.22543_{-0.00094}^{+0.00059}, & A=0.802_{-0.011,}^{+0.029}, \\
\rho\left(1-\frac{1}{2} \lambda^{2}\right)=0.140 \pm 0.027, & \eta\left(1-\frac{1}{2} \lambda^{2}\right)=0.343 \pm 0.015
\end{array}
$$

α	$90.5_{-4.1}^{+4.3}$
β direct	$21.38_{-0.77}^{+0.79}$
β indirect	$25.39_{-2.11}^{+0.92}$
β average	$21.73_{-0.74}^{+0.78}$
γ	$67.7_{-4.3}^{+4.1}$

Note the tension in β, caused by the $\left|V_{u b}\right|$ band.

University of Caicutta

The CKM paradigm seems to be vindicated, NP should be subleading But even the mundane is not so mundane

$B_{d}-\overline{B_{d}}$ and $B_{s}-\overline{B_{s}}$ Mixing

$$
\begin{gathered}
H=\left(\begin{array}{cc}
M_{q}-\frac{i}{2} \Gamma_{q} & M_{q}^{12}-\frac{i}{2} \Gamma_{q}^{12} \\
M_{q}^{12 *}-\frac{i}{2} \Gamma_{q}^{12 *} & M_{q}-\frac{i}{2} \Gamma_{q}
\end{array}\right) \\
\left.\frac{\Delta M}{\Gamma}\right|_{B_{d}}=\left.0.770(8) \quad \frac{\Delta M}{\Gamma}\right|_{B_{s}}=26.74(22) \\
\left.\frac{\Delta \Gamma}{\Gamma}\right|_{B_{d}}=(42 \pm 8) \times 10^{-4}(\mathrm{SM}) \quad 0.015 \pm 0.018 \text { (Delphi, BaBar, Belle) } \\
\left.\frac{\Delta \Gamma}{\Gamma}\right|_{B_{s}}=0.137 \pm 0.027(\mathrm{SM}) \quad 0.159 \pm 0.023(\mathrm{LHCb})
\end{gathered}
$$

$$
\frac{M_{q}^{12}}{M_{q, S M}^{12}} \equiv \operatorname{Re} \Delta_{q}+i \operatorname{Im} \Delta_{q}=\left|\Delta_{q}\right| \exp \left(2 i \Phi_{q, N P}\right)
$$

$B_{d}-\overline{B_{d}}$ and $B_{s}-\overline{B_{s}}$ Mixing

$B_{d}-\overline{B_{d}}$ and $B_{s}-\overline{B_{s}}$ Mixing

- The $2 \beta_{s}$ discrepancy - now consistent with SM ?
- Any need to introduce BSM in $B_{s}-\overline{B_{s}}$ mixing ?

Be careful

$\beta_{s}^{J / \psi \phi}=\arg \left[-V_{c b} V_{c s}^{*} / V_{t b} V_{t s}^{*}\right]=0.019(1)(\mathrm{SM})$ $\beta_{s}^{s l}=-\frac{1}{2} \phi_{s}, \phi_{s}=\arg \left(-M_{12 s} / \Gamma_{12 s}\right)=-0.0020(3)(\mathrm{SM})$,
$A_{s l}=\left(\Delta \Gamma_{s} / \Delta M_{s}\right) \tan \phi_{s}$

Some recent results from LHCb

(1) $\Delta M_{s}=17.768 \pm 0.024 \mathrm{ps}^{-1}$

SM: 17.3 ± 2.6
(2) $\beta_{s}^{J / \psi \phi}=0.020_{-0.045}^{+0.042}$ (direct), 0.0182 ± 0.0008 (global fit)

SM: 0.019 ± 0.001
(0) $\Delta \Gamma_{s}=0.095 \pm 0.014 \mathrm{ps}^{-1}$ (now measured to be positive)

SM: $0.087 \pm 0.021 \mathrm{ps}^{-1}$
(0) $\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.2_{-1.2}^{+1.5}\right) \times 10^{-9}$, $\operatorname{Br}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<9.4 \times 10^{-10}$
consistent with SM
(0) $A_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)$: zero crossing at $q^{2}=4.9 \pm 1.1 \mathrm{GeV}^{2}$ consistent with SM ($\sim 4.0-4.3 \mathrm{GeV}^{2}$)
(0) $A_{C P}\left(B_{s} \rightarrow K^{-} \pi^{+}\right)=0.27 \pm 0.04 \pm 0.01$: first $5 \sigma \mathrm{CP}$ violation in B_{s}
(1) Isospin asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

Direct CPV from charm (Moriond 13 update)

Caution !!!

Need a better control over nuisance parameters

- Quark masses and CKM elements
- Form factors, decay constants

Lattice people doing a commendable job uncertainty associated with LCD amplitudes

- Subleading Λ / m corrections

Also, higher orders in α_{s}, but they can be summed in most cases

- renormalization scale (μ) dependence

Hunting grounds

(1) $b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, B_{s} \rightarrow \ell^{+} \ell^{-}$

- Possible new operators from BSM, angular distributions and asymmetries affected

Hunting grounds

(1) $b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, B_{s} \rightarrow \ell^{+} \ell^{-}$

- Possible new operators from BSM, angular distributions and asymmetries affected
(2) $B \rightarrow D^{(*)} \tau \nu, B \rightarrow \tau \nu$
— Not quite consistent with SM , signals for BSM?

Hunting grounds

(1) $b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, B_{s} \rightarrow \ell^{+} \ell^{-}$

- Possible new operators from BSM, angular distributions and asymmetries affected
(2) $B \rightarrow D^{(*)} \tau \nu, B \rightarrow \tau \nu$
- Not quite consistent with SM , signals for BSM?
(3) Dimuon asymmetry from D0
- Large ϕ_{s} ? BSM with a new absorptive contribution for $B_{s}-\overline{B_{s}}$ mixing?

Hunting grounds

(1) $b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, B_{s} \rightarrow \ell^{+} \ell^{-}$

- Possible new operators from BSM, angular distributions and asymmetries affected
(2) $B \rightarrow D^{(*)} \tau \nu, B \rightarrow \tau \nu$
- Not quite consistent with SM , signals for BSM?
(3) Dimuon asymmetry from D0
- Large ϕ_{s} ? BSM with a new absorptive contribution for $B_{s}-\overline{B_{s}}$ mixing?
(1) $R_{b}, A_{F B}^{b}$
- Resurrected and existing, although not strictly B-physics observables

Hunting grounds

(1) $b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, B_{s} \rightarrow \ell^{+} \ell^{-}$

- Possible new operators from BSM, angular distributions and asymmetries affected
(2) $B \rightarrow D^{(*)} \tau \nu, B \rightarrow \tau \nu$
- Not quite consistent with SM , signals for BSM?
(3) Dimuon asymmetry from D0
- Large ϕ_{s} ? BSM with a new absorptive contribution for $B_{s}-\overline{B_{s}}$ mixing?
(1) $R_{b}, A_{F B}^{b}$
- Resurrected and existing, although not strictly B-physics observables
- Isospin asymmetry
- No explanation even in BSM

Example: 2HDM and $b \rightarrow s \gamma$

$$
\begin{aligned}
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right) & =\Gamma(b \rightarrow s \gamma)+O\left(\Lambda_{Q C D} / m_{b}\right) \\
A_{C P} & =\frac{\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)-\Gamma\left(B \rightarrow X_{\bar{s} \gamma}\right)}{\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)+\Gamma\left(B \rightarrow X_{\bar{s}} \gamma\right)}
\end{aligned}
$$

Measured with cut $E_{\gamma}>E_{0} \sim 2 \mathrm{GeV}: A_{C P}=-(1.2 \pm 2.8) \%$

$$
\operatorname{Br}(b \rightarrow s \gamma)=(3.37 \pm 0.23) \times 10^{4}(\exp),(3.15 \pm 0.23) \times 10^{-4}(\mathrm{SM})
$$

Strong constraint on 2HDM:

Example: $B \rightarrow K^{*} \ell^{+} \ell^{-}$

$A_{F B}\left(q^{2}\right)$ from $\gamma-Z$ interference
Zero-crossing point is clean, almost free from hadronic uncertainties Theory (SM): $q_{0}^{2}=[4.0-4.3] \pm 0.3 \mathrm{GeV}^{2}$
(Beneke et al. 0412400, Bobeth et al. 1111.2558)

Tensions with SM: NP or mirage?

$B \rightarrow K \pi C P$ asymmetries

$$
\left.\begin{array}{l}
A_{C P}=[\Gamma(B \rightarrow f)-\Gamma(\bar{B} \rightarrow \bar{f})] /[\Gamma(B \rightarrow f)+\Gamma(\bar{B} \rightarrow \bar{f})] \\
A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=0.040 \pm 0.021: \overbrace{b \rightarrow s \bar{u} u, b \rightarrow s \bar{d} \bar{d}}^{\begin{array}{l}
\text { Related by SU(2) }
\end{array}} \\
A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.086 \pm 0.007: b \rightarrow s \bar{u} u
\end{array}\right] \begin{aligned}
& \Delta A_{C P} \equiv A_{C P}\left(\pi^{0} K^{-}\right)-A_{C P}\left(\pi^{+} K^{-}\right)=(12.6 \pm 2.2) \%,\left(1.9_{-4.8}^{+5.8}\right) \%(S M) \\
& \text { Possible resolution: NP that mimics a large EWP }
\end{aligned}
$$

$B \rightarrow K \pi C P$ asymmetries

$$
\begin{aligned}
& A_{C P}=[\Gamma(B \rightarrow f)-\Gamma(\bar{B} \rightarrow \bar{f})] /[\Gamma(B \rightarrow f)+\Gamma(\bar{B} \rightarrow \bar{f})] \\
& A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=0.040 \pm 0.021: \overbrace{b \rightarrow s \bar{u} u, b \rightarrow s \bar{d} d}^{\begin{array}{c}
\text { Related by SU }(2)
\end{array}} \\
& A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.086 \pm 0.007: b \rightarrow s \bar{u} u
\end{aligned}
$$

$$
\Delta A_{C P} \equiv A_{C P}\left(\pi^{0} K^{-}\right)-A_{C P}\left(\pi^{+} K^{-}\right)=(12.6 \pm 2.2) \%,\left(1.9_{-4.8}^{+5.8}\right) \%(S M)
$$

Possible resolution: NP that mimics a large EWP

$B \rightarrow K \pi C P$ asymmetries

$$
\begin{aligned}
& A_{C P}=[\Gamma(B \rightarrow f)-\Gamma(\bar{B} \rightarrow \bar{f})] /[\Gamma(B \rightarrow f)+\Gamma(\bar{B} \rightarrow \bar{f})] \\
& A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=0.040 \pm 0.021: \overbrace{b \rightarrow s \bar{u} u, b \rightarrow s \bar{d} d}^{\begin{array}{c}
\text { Related by SU }(2)
\end{array}} \\
& A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.086 \pm 0.007: b \rightarrow s \bar{u} u
\end{aligned}
$$

$$
\Delta A_{C P} \equiv A_{C P}\left(\pi^{0} K^{-}\right)-A_{C P}\left(\pi^{+} K^{-}\right)=(12.6 \pm 2.2) \%,\left(1.9_{-4.8}^{+5.8}\right) \%(S M)
$$

Possible resolution: NP that mimics a large EWP
No such anomaly in $B \rightarrow \pi \pi$ or $B_{s} \rightarrow K \pi$. Is $b \rightarrow s$ troublesome? Large $P_{\text {EW }}$ affects $\operatorname{Br}\left(B^{+} \rightarrow K^{+} \pi(\rho)^{0}\right) / \operatorname{Br}\left(B^{0} \rightarrow K^{+} \pi(\rho)^{-}\right)$, consistent with SM Poorly understood SM?

- Completely analogous to $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$:

$$
\Gamma\left(B \rightarrow \tau \nu_{\tau}\right)=\frac{1}{8 \pi} G_{F}^{2}\left|V_{u b}\right|^{2} f_{B}^{2} m_{\tau}^{2} m_{B}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2}
$$

- World average:
$\operatorname{Br}(B \rightarrow \tau \nu)=(16.8 \pm 3.1) \times 10^{-5}($ pre-2012 $)$
$\operatorname{Br}(B \rightarrow \tau \nu)=(11.5 \pm 2.3) \times 10^{-5}$ (summer 2012, after Belle)
(BaBar: $(17.9 \pm 4.8) \times 10^{-5}, \quad$ Belle: $\left.\left(7.2_{-2.5}^{+2.7} \pm 1.1\right) \times 10^{5}\right)$
- Theory: $\operatorname{Br}(B \rightarrow \tau \nu)_{\mathrm{SM}}=\left(7.57_{-0.61}^{+0.98}\right) \times 10^{-5}$
- Tension at 1.6σ only, has come down from 2.8σ
- Only source of uncertainties: f_{B} and $V_{u b}$
- Lattice QCD: $f_{B}=191 \pm 13 \mathrm{MeV}$

$B \rightarrow \tau \nu$

Universtiv of Calcutta

- an SM-only explanation would require

$$
\left|V_{u b}\right|=(4.22 \pm 0.51) \times 10^{-3}
$$

- Inconsistent with the indirect determination of $V_{u b}$ from the sides of the Unitarity Triangle (UT),

$$
\left|V_{u b}\right|_{\text {indirect }}=(3.49 \pm 0.13) \times 10^{-3}
$$

or the average of direct inclusive ($B \rightarrow X_{u} \ell \nu$) and exclusive ($B \rightarrow \pi \ell \nu$) measurements,

$$
\left|V_{u b}\right|_{\text {measured }}=(3.92 \pm 0.09 \pm 0.45) \times 10^{-3}
$$

- an SM-only explanation would require

$$
\left|V_{u b}\right|=(4.22 \pm 0.51) \times 10^{-3}
$$

- Inconsistent with the indirect determination of $V_{u b}$ from the sides of the Unitarity Triangle (UT),

$$
\left|V_{u b}\right|_{\text {indirect }}=(3.49 \pm 0.13) \times 10^{-3}
$$

or the average of direct inclusive ($B \rightarrow X_{u} \ell \nu$) and exclusive ($B \rightarrow \pi \ell \nu$) measurements,

$$
\begin{gathered}
\left|V_{u b}\right|_{\text {measured }}=(3.92 \pm 0.09 \pm 0.45) \times 10^{-3} \\
\text { How well do we know } V_{u b} ?
\end{gathered}
$$

$B \rightarrow D\left(D^{*}\right) \tau \nu$

$$
R\left(D^{(*)}\right)=\frac{\operatorname{Br}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\operatorname{Br}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

$\mathrm{SM}: \quad R(D)=0.297 \pm 0.017, \quad R\left(D^{*}\right)=0.252 \pm 0.003$

BaBar: $R(D)=0.440 \pm 0.058 \pm 0.042, \quad R\left(D^{*}\right)=0.332 \pm 0.024 \pm 0.018$.

$$
\begin{array}{ll}
\frac{R(D)_{\exp }}{R(D)_{S M}}=1.481 \times(1 \pm 0.173), & R\left(D^{*}\right)_{\exp } \\
R\left(D^{*}\right)_{S M}
\end{array}=1.317 \times(1 \pm 0.091) .
$$

$B \rightarrow \tau \nu$ and $B \rightarrow D\left(D^{*}\right) \tau \nu$

Possible resolutions:

- Tensor operators
(Biancofiore et al. 1302.1042)
- Special type of charged Higgs
- Some new interaction involving only gen-3 fields
(Choudhury, Ghosh, AK, 1210.5076)
- Fed to lower generations through CKM like rotations
- Anomalous top decays? Still unobservably small
- Prediction: sizable enhancement in $B_{c} \rightarrow \tau \nu$
- Is gen-3 special? Only window to BSM?

The dimuon anomaly

$$
\begin{gathered}
A_{s l}^{b}=\frac{N\left(\mu^{+} \mu^{+}\right)-N\left(\mu^{-} \mu^{-}\right)}{N\left(\mu^{+} \mu^{+}\right)+N\left(\mu^{-} \mu^{-}\right)} \\
D \emptyset 9.0 \mathrm{fb}^{-1}: \quad A_{s l}^{b}=(-7.87 \pm 1.96) \times 10^{-3}
\end{gathered}
$$

The dimuon anomaly

$$
\begin{gathered}
A_{s l}^{b}=\frac{N\left(\mu^{+} \mu^{+}\right)-N\left(\mu^{-} \mu^{-}\right)}{N\left(\mu^{+} \mu^{+}\right)+N\left(\mu^{-} \mu^{-}\right)} \\
D \emptyset 9.0 \mathrm{fb}^{-1}: \quad A_{s l}^{b}=(-7.87 \pm 1.96) \times 10^{-3}
\end{gathered}
$$

Can be expressed as individual flavour-specific (fs) semileptonic asymmetries coming from B_{d} and B_{s} :

$$
A_{s l}^{b}=(0.595 \pm 0.022) a_{f s}^{d}+(0.405 \mp 0.022) a_{f s}^{s}
$$

The dimuon anomaly

$$
\begin{gathered}
A_{s l}^{b}=\frac{N\left(\mu^{+} \mu^{+}\right)-N\left(\mu^{-} \mu^{-}\right)}{N\left(\mu^{+} \mu^{+}\right)+N\left(\mu^{-} \mu^{-}\right)} \\
D \emptyset 9.0 \mathrm{fb}^{-1}: \quad A_{s l}^{b}=(-7.87 \pm 1.96) \times 10^{-3}
\end{gathered}
$$

Can be expressed as individual flavour-specific (fs) semileptonic asymmetries coming from B_{d} and B_{s} :

$$
A_{s l}^{b}=(0.595 \pm 0.022) a_{f s}^{d}+(0.405 \mp 0.022) a_{f s}^{s}
$$

SM :

$$
\begin{aligned}
& a_{f s}^{d}=(-4.1 \pm 0.6) \times 10^{-4}, \quad a_{f s}^{s}=(1.9 \pm 0.3) \times 10^{-5} \\
& \left(A_{s l}^{b}\right)_{S M}=(-2.4 \pm 0.4) \times 10^{-4}
\end{aligned}
$$

3.9 σ discrepancy

The dimuon anomaly

$a_{f_{s}}^{d}=0.0038 \pm 0.0036$ (HFAG),
$a_{f s}^{s}=(-0.0022 \pm 0.0052)(\mathrm{LHCb}+\mathrm{D} 0)$

The dimuon anomaly

The only way to resolve the dimuon anomaly is to introduce some operators that give new absorptive parts in $B_{s}-\overline{B_{s}}$ mixing.

$$
\text { Large } \phi_{s} \Rightarrow \text { Large } a_{f s}^{s} \Rightarrow \text { Large } A_{s l}^{b}
$$

Possibly, the only option still left is $\left(\bar{s} \Gamma^{A} b\right)\left(\bar{\tau}^{A} \tau\right)$ (Dighe, AK, Nandi, PRD 2007, 2010; Bauer and Dunn, PLB 2011)

The dimuon anomaly

The only way to resolve the dimuon anomaly is to introduce some operators that give new absorptive parts in $B_{s}-\overline{B_{s}}$ mixing.

$$
\text { Large } \phi_{s} \Rightarrow \text { Large } a_{f_{s}}^{s} \Rightarrow \text { Large } A_{s l}^{b}
$$

Possibly, the only option still left is $\left(\bar{s} \Gamma^{A} b\right)\left(\bar{\tau}^{A} \tau\right)$ (Dighe, AK, Nandi, PRD 2007, 2010; Bauer and Dunn, PLB 2011)
$B_{s} \rightarrow \tau^{+} \tau^{-}$? $B \rightarrow X_{s} \tau^{+} \tau^{-}$? Lifetime difference between B_{d} and B_{s} ? - Can be managed, still, but will soon be under pressure from LHCb (Dighe and Ghosh, 1207.1324)

Constraints from ΔM_{5} ? That's serious, and simple one-operator ansatz
nาav not wort

The dimuon anomaly

The only way to resolve the dimuon anomaly is to introduce some operators that give new absorptive parts in $B_{s}-\overline{B_{s}}$ mixing.

$$
\text { Large } \phi_{s} \Rightarrow \text { Large } a_{f s}^{s} \Rightarrow \text { Large } A_{s l}^{b}
$$

Possibly, the only option still left is $\left(\bar{s}^{{ }^{A}} b\right)\left(\bar{\tau} \Gamma^{A} \tau\right)$
(Dighe, AK, Nandi, PRD 2007, 2010; Bauer and Dunn, PLB 2011)
$B_{s} \rightarrow \tau^{+} \tau^{-}$? $B \rightarrow X_{s} \tau^{+} \tau^{-}$? Lifetime difference between B_{d} and B_{s} ? - Can be managed, still, but will soon be under pressure from LHCb (Dighe and Ghosh, 1207.1324)

Constraints from ΔM_{s} ? That's serious, and simple one-operator ansatz may not work
(Bobeth and Haisch, 1109.1826, Choudhury et al. 2012)

Isospin asymmetry

$$
A_{l}=\frac{\operatorname{Br}\left(B^{0} \rightarrow K^{0(*)} \mu^{+} \mu^{-}\right)-\frac{\tau_{0}}{\tau_{+}} \operatorname{Br}\left(B^{+} \rightarrow K^{+(*)} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B^{0} \rightarrow K^{0(*)} \mu^{+} \mu^{-}\right)+\frac{\tau_{0}}{\tau_{+}} \operatorname{Br}\left(B^{+} \rightarrow K^{+(*)} \mu^{+} \mu^{-}\right)}
$$

- $A_{I}=0$ in naive factorization
- ISR from spectator can contribute up to $\sim 1 \%$ unless q^{2} is very small
- $B \rightarrow K^{*} \mu \mu$ is consistent with SM
- $B \rightarrow K \mu \mu$: 4.4σ away from zero, integrated over all q^{2}
(LHCb, 1205.3422)

The resurrection of R_{b}

$R_{b}=\frac{\Gamma(Z \rightarrow b \bar{b})}{\Gamma(Z \rightarrow \text { hadrons })}$
R_{b} (SM) has gone down from $0.21576(8)$ to $0.21474(3)$ after the computation of full two-loop effects
(Freitas and Huang 2012) 2.4σ discrepancy with $R_{b}(\exp)=0.21629(66)$.
$A_{F B}^{b}$ has a discrepancy of 2.5σ
SM: 0.1032 ${ }_{-0.0006}^{+0.0004}$
exp: 0.0992 ± 0.0016
Possible resolution: slightly increase $Z-b_{R}-\overline{b_{R}}$ coupling

(Batell et al. 1209.6382)

Introduce an effective operator
(Choudhury, AK, Saha, 1305.7199)

$$
\frac{\xi}{\Lambda^{2}}\left[\bar{f} \gamma_{\mu}\left(v_{f}+a_{f} \gamma_{5}\right) f\right]\left[\bar{b} \gamma^{\mu}\left(v_{b}+a_{b} \gamma_{5}\right) b\right]
$$

Shift in R-coupling needed: $\mathcal{O}_{R R}^{t}=\frac{\xi}{\Lambda^{2}}\left(\bar{t}_{R} \gamma_{\mu} t_{R}\right)\left(\bar{b}_{R} \gamma^{\mu} b_{R}\right)$
Concentrate on $p p \rightarrow t \bar{t} b \bar{b}$

University of Caicutta

B-physics observables and cMSSM

$B_{s} \rightarrow \mu \mu$

Theoretically clean. LD effects negligible
Sensitive probe to FCNC effects, like new penguins

Standard Model

(Buras et al. 1208.0934)

$$
\begin{aligned}
& \operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)=(3.23 \pm 0.27) \times 10^{-9} \\
& \operatorname{Br}\left(B_{d} \rightarrow \mu \mu\right)=(1.07 \pm 0.10) \times 10^{-10}
\end{aligned}
$$

Maximum uncertainty from $f_{B_{s}}$. This is for $f_{B_{s}}=227 \mathrm{MeV}$ [MILC: 242(10); HPQCD: 225(4); ETMC: 234(6)]
includes leading NLO EW and full NLO QCD But $\sim 10 \%$ enhancement for nonzero $\Delta \Gamma_{s} \quad$ (de Bruyn et al. 1204.1735) Time-averaged SM: $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)=(3.54 \pm 0.30) \times 10^{-9}$

Standard Model

(Buras et al. 1208.0934)

$$
\begin{aligned}
\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right) & =(3.23 \pm 0.27) \times 10^{-9} \\
\operatorname{Br}\left(B_{d} \rightarrow \mu \mu\right) & =(1.07 \pm 0.10) \times 10^{-10}
\end{aligned}
$$

Maximum uncertainty from $f_{B_{s}}$. This is for $f_{B_{s}}=227 \mathrm{MeV}$ [MILC: 242(10); HPQCD: 225(4); ETMC: 234(6)]
includes leading NLO EW and full NLO QCD But $\sim 10 \%$ enhancement for nonzero $\Delta \Gamma_{s}$
(de Bruyn et al. 1204.1735) Time-averaged SM: $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)=(3.54 \pm 0.30) \times 10^{-9}$

LHCb (1211.2674)

$$
\begin{aligned}
\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right) & =\left(3.2_{-1.2}^{+1.5}\right) \times 10^{-9} \\
\operatorname{Br}\left(B_{d} \rightarrow \mu \mu\right) & <9.4 \times 10^{-10} @ 95 \% C L
\end{aligned}
$$

$B_{S} \rightarrow \mu \mu$ in SUSY

$$
\begin{aligned}
\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right) \approx & 3.5 \times 10^{-5}\left(\frac{m_{t}}{m_{A}}\right)^{4}\left(\frac{\tan \beta}{50}\right)^{6} \times \\
& \left(\frac{f_{B_{s}}}{230 \mathrm{MeV}}\right)^{2}\left(\frac{V_{t s}}{0.040}\right)^{2}
\end{aligned}
$$

(Buras et al. NPB 659, 2003)

Observable	$\begin{gathered} \hline \text { Mean value } \\ \mu \end{gathered}$	Uncertainties	
		σ (exper.)	τ (theor.)
$M_{W}[\mathrm{GeV}]$	80.399	0.023	0.015
$\sin ^{2} \theta_{\text {eff }}$	0.23153	0.00016	0.00015
$\delta a_{\mu} \mathrm{SUSY}^{\text {a }} \times 10^{10}$	28.7	8.0	2.0
$\operatorname{Br}(b \rightarrow s \gamma) \times 10^{4}$	3.55	0.26	0.30
$R_{\Delta} M_{B_{S}}$	1.04	0.11	-
$\operatorname{Br}(B \rightarrow \tau \nu)$	1.63	0.54	-
$R(D) \times 10^{2}$	41.6	12.8	3.5
$\operatorname{Br}\left(D_{s} \rightarrow \tau \nu\right) \times 10^{2}$	5.38	0.32	0.2
$\operatorname{Br}\left(D_{s} \rightarrow \mu \nu\right) \times 10^{3}$	5.81	0.43	0.2
$\operatorname{Br}(D \rightarrow \mu \nu) \times 10^{4}$	3.82	0.33	0.2
$\Omega_{\chi} h^{2}$	0.1109	0.0056	0.012
$m_{h}[\mathrm{GeV}]$	125.8	0.6	2.0
$\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)$	3.2×10^{-9}	1.5×10^{-9}	10\%
$m_{0}, m_{1 / 2}$	ATLAS, 5.8, $\sqrt{s}=8 \mathrm{TeV}, 2012$ limits		
$m_{A}, \tan \beta$	CMS, 4.7, $\sqrt{s}=7 \mathrm{TeV}, 2012$ limits		
$m_{\chi}-\sigma_{\chi}^{S I}{ }_{\chi}^{0}-p$	XENON100 2012 limits ($224.6 \times 34 \mathrm{~kg}$ days)		

(Strege et al. 1212.2636)

University of Caicutta

Large fine-tuning needed (0.07% or worse)

Large fine-tuning needed (0.07% or worse)

Enter R_{b}
(Bhattacharyya, AK, Ray, 1306.0344) SUSY contribution decouples for heavy chargino and charged Higgs.

cMSSM is in terribly bad shape, if not dead, when you take all the

Universtity of Caicutta

Enter R_{b}
(Bhattacharyya, AK, Ray, 1306.0344) SUSY contribution decouples for heavy chargino and charged Higgs.

cMSSM is in terribly bad shape, if not dead, when you take all the low-energy, cosmological, and direct constraints.

Small mixing and CP violation

$D-\bar{D}$ mixing is suppressed in SM
small masses for u and c, small CKM for b

$$
\begin{aligned}
& x=\Delta M / \Gamma=0.0063 \pm 0.0020 \\
& y=\Delta \Gamma / 2 \Gamma=0.0075 \pm 0.0012
\end{aligned}
$$

(HFAG, 1207.1158)

Relevant CP violation $\sim 0.1 \%$ (Nir, 0510413)
LD effects are also important ... NP search is not easy

Direct CP violation in SCS decays

- $\Delta A_{C P} \equiv A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$

Direct CP violation in SCS decays

- $\Delta A_{C P} \equiv A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$
- Common wisdom: DCPV in charm above 0.1% is a clear signal for NP

$$
\Delta A_{C P} \sim 0.13 \% \times \operatorname{Im}(\Delta R)
$$

0.13% from CKM suppression, $\arg \left(V_{c s}^{*} V_{u s} / V_{c d}^{*} V_{u d}\right) \sim \lambda^{4}$ ΔR is the ratio of penguin/tree, expected to be <1

Direct CP violation in SCS decays

- $\Delta A_{C P} \equiv A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$
- Common wisdom: DCPV in charm above 0.1% is a clear signal for NP

$$
\Delta A_{C P} \sim 0.13 \% \times \operatorname{Im}(\Delta R)
$$

0.13% from CKM suppression, $\arg \left(V_{c s}^{*} V_{u s} / V_{c d}^{*} V_{u d}\right) \sim \lambda^{4}$ ΔR is the ratio of penguin/tree, expected to be <1

$$
\begin{aligned}
& \Delta A_{C P}=(-0.82 \pm 0.21 \pm 0.11) \% \quad[\mathrm{LHCb}, \\
& \Delta A_{C P}=(-0.62 \pm 0.21 \pm 0.10) \%[\mathrm{CDF}, \\
& 1207.2158] \\
& \Delta A_{C P}=(-0.87 \pm 0.41 \pm 0.06) \%[\text { Belle, } \\
& \Delta A_{C P}=(-0.65 \pm 0.18) \% \quad[\mathrm{JDG}, \text { average] }]
\end{aligned}
$$

Moriond 2013: $(+0.49 \pm 0.30 \pm 0.14) \%(1303.2614)-\mu$-tagging?

Direct CP violation in SCS decays

- Charm is not light enough for χ PT but not heavy enough for HQET Kaons, what for D? Can charm be treated as a light quark?

Direct CP violation in SCS decays

- Charm is not light enough for χ PT but not heavy enough for HQET
- $\Delta R<1$ is expected for heavy quarks $m_{q} \gg \Lambda_{Q C D}$ but not for Kaons, what for D ? Can charm be treated as a light quark?

Direct CP violation in SCS decays

- Charm is not light enough for χ PT but not heavy enough for HQET
- $\Delta R<1$ is expected for heavy quarks $m_{q} \gg \Lambda_{Q C D}$ but not for Kaons, what for D ? Can charm be treated as a light quark?
- Can be explained with chromomagnetic $c \rightarrow u g$. breaking of $\operatorname{SU}(3)$, SUSY, RS, ...

Direct CP violation in SCS decays

- Charm is not light enough for χ PT but not heavy enough for HQET
- $\Delta R<1$ is expected for heavy quarks $m_{q} \gg \Lambda_{Q C D}$ but not for Kaons, what for D? Can charm be treated as a light quark?
- Can be explained with chromomagnetic $c \rightarrow u g$. breaking of $\operatorname{SU}(3)$, SUSY, RS, ...
- Feeds to $c \rightarrow u \gamma$, effects in radiative D decays?

Outlook for the future

Conclusions

(1) Flavour is one of the most pressing problems. Where to get the large CP violation from?

Conclusions

(1) Flavour is one of the most pressing problems. Where to get the large CP violation from?
(2) We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.

Conclusions

(1) Flavour is one of the most pressing problems. Where to get the large CP violation from?
(2) We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.
(There are a few tensions, mostly involving third-generation fermions. Is the third gen special? Is it the only window to new physics?

Conclusions

(1) Flavour is one of the most pressing problems. Where to get the large CP violation from?
(2) We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.
(0) There are a few tensions, mostly involving third-generation fermions. Is the third gen special? Is it the only window to new physics?
(0) Taking all numbers at face value, SM is disfavoured at more than 3σ but the deviations do not point to a single NP model. Maybe we are not smart enough.
(0) B Physics observables ($B_{s} \rightarrow \mu \mu, b \rightarrow s \gamma, \Delta M_{d}, \Delta M_{s}, A_{C P}$) plus m_{h}, R_{b}, DM and ($\left.g-2\right)_{\mu}$ are more than complementary to direct searches. For example, cMSSM is in a bad shape.

Better understanding of SM dynamics needed.

Conclusions

(1) Flavour is one of the most pressing problems. Where to get the large CP violation from?
(2) We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.
(3) There are a few tensions, mostly involving third-generation fermions. Is the third gen special? Is it the only window to new physics?
(4) Taking all numbers at face value, SM is disfavoured at more than 3σ but the deviations do not point to a single NP model. Maybe we are not smart enough.
(6) B Physics observables $\left(B_{s} \rightarrow \mu \mu, b \rightarrow s \gamma, \Delta M_{d}, \Delta M_{s}, A_{C P}\right)$ plus m_{h}, R_{b}, DM and $(g-2)_{\mu}$ are more than complementary to direct searches. For example, cMSSM is in a bad shape.
(0) There can be unexpected surprises like direct CPV in D decays. Better understanding of SM dynamics needed.

Thank you.

Backup slides

Hunting grounds for NP

(1) $\gamma=\arg \left(V_{u b}^{*}\right)$

- Can be determined even from tree-level $B \rightarrow D K$ decays only
$-B \rightarrow D K, D$ to CP eigenstates
$-B \rightarrow D K, D$ through DCS
$-B \rightarrow D K, D$ through 3-body self-conjugate final
$-B \rightarrow D K, D$ through SCS

Hunting grounds for NP

(1) $\gamma=\arg \left(V_{u b}^{*}\right)$

- Can be determined even from tree-level $B \rightarrow D K$ decays only
$-B \rightarrow D K, D$ to CP eigenstates
$-B \rightarrow D K, D$ through DCS
- $B \rightarrow D K, D$ through 3-body self-conjugate final
- $B \rightarrow D K, D$ through SCS
(2) Semileptonic $B \rightarrow K^{(*)} \mu^{+} \mu^{-}, \phi \mu^{+} \mu^{-}, \pi \mu^{+} \mu^{-}$
- FB asymmetry, isospin asymmetry, differential decay widths
- triple products for $B \rightarrow V \ell \ell$, also $B \rightarrow V_{1} V_{2}$ in general

Hunting grounds for NP

(1) $\gamma=\arg \left(V_{u b}^{*}\right)$

- Can be determined even from tree-level $B \rightarrow D K$ decays only
- $B \rightarrow D K, D$ to CP eigenstates
$-B \rightarrow D K, D$ through DCS
- $B \rightarrow D K, D$ through 3-body self-conjugate final
- $B \rightarrow D K, D$ through SCS
(2) Semileptonic $B \rightarrow K^{(*)} \mu^{+} \mu^{-}, \phi \mu^{+} \mu^{-}, \pi \mu^{+} \mu^{-}$
- FB asymmetry, isospin asymmetry, differential decay widths
- triple products for $B \rightarrow V \ell \ell$, also $B \rightarrow V_{1} V_{2}$ in general
(0) Radiative $B \rightarrow K^{*} \gamma$
- $A_{C P}$, constraint on EM Wilson coefficients

Hunting grounds for NP

(1) $\gamma=\arg \left(V_{u b}^{*}\right)$

- Can be determined even from tree-level $B \rightarrow D K$ decays only
- $B \rightarrow D K, D$ to CP eigenstates
$-B \rightarrow D K, D$ through DCS
- $B \rightarrow D K, D$ through 3-body self-conjugate final
- $B \rightarrow D K, D$ through SCS
(2) Semileptonic $B \rightarrow K^{(*)} \mu^{+} \mu^{-}, \phi \mu^{+} \mu^{-}, \pi \mu^{+} \mu^{-}$
- FB asymmetry, isospin asymmetry, differential decay widths
- triple products for $B \rightarrow V \ell \ell$, also $B \rightarrow V_{1} V_{2}$ in general
(0) Radiative $B \rightarrow K^{*} \gamma$
- $A_{C P}$, constraint on EM Wilson coefficients
(0) Leptonic decays $B_{d}, B_{s} \rightarrow \mu^{+} \mu^{-}, \tau^{+} \tau^{-}$
© Any other loop effects, CP asymmetries

Hunting grounds for NP

(1) $\gamma=\arg \left(V_{u b}^{*}\right)$

- Can be determined even from tree-level $B \rightarrow D K$ decays only
- $B \rightarrow D K, D$ to CP eigenstates
$-B \rightarrow D K, D$ through DCS
- $B \rightarrow D K, D$ through 3-body self-conjugate final
$-B \rightarrow D K, D$ through SCS
(2) Semileptonic $B \rightarrow K^{(*)} \mu^{+} \mu^{-}, \phi \mu^{+} \mu^{-}, \pi \mu^{+} \mu^{-}$
- FB asymmetry, isospin asymmetry, differential decay widths
- triple products for $B \rightarrow V \ell \ell$, also $B \rightarrow V_{1} V_{2}$ in general
(0) Radiative $B \rightarrow K^{*} \gamma$
- $A_{C P}$, constraint on EM Wilson coefficients
(1) Leptonic decays $B_{d}, B_{s} \rightarrow \mu^{+} \mu^{-}, \tau^{+} \tau^{-}$
- Any other loop effects, CP asymmetries

