Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Going Beyond SM with Heavy Flavours

Anirban Kundu

University of Calcutta

June 26, 2013, AS-ICTP

- The CP puzzle: $n_b/n_{\gamma} \sim \mathcal{O}(10^{-9})$, SM predicts $\sim \mathcal{O}(10^{-18})$ BSM source for CP violation?
- Unknown parameters: 12 masses, 6 mixing angles, 2 (possibly) phases (+ Majorana)

Horizontal symmetries?

• Large hierarchy: $m_{
u_e}/m_t \leq 10^{-14}$

Fermion localization in warped ED?

We will concentrate mostly on B physics, will also touch charm

Why is flavour physics important ?

- Better understanding of SM for $N_{gen} > 1$ — Window to top and triple-gauge dynamics (e.g. $B^0 - \overline{B}^0$ mixing, $b \rightarrow s\gamma, Z \rightarrow b\overline{b}, B_s \rightarrow \mu\mu$)
- Better understanding of low-energy QCD

 Form factors, Resummation of higher-order effects, Relative importance of subleading topologies

Why is flavour physics important ?

- Better understanding of SM for $N_{gen} > 1$
 - Window to top and triple-gauge dynamics (e.g. $B^0 \overline{B}^0$ mixing, $b \rightarrow s\gamma, Z \rightarrow b\overline{b}, B_s \rightarrow \mu\mu$)
- Better understanding of low-energy QCD

 Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
 - New source of CP violation needed for n_b/n_γ

Why is flavour physics important ?

- Better understanding of SM for $N_{gen} > 1$
 - Window to top and triple-gauge dynamics (e.g. $B^0 \overline{B}^0$ mixing, $b \rightarrow s\gamma, Z \rightarrow b\overline{b}, B_s \rightarrow \mu\mu$)
- Better understanding of low-energy QCD

 Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
 - New source of CP violation needed for n_b/n_γ
- Indirect window to New Physics

 Tight constraints, compatible with direct searches, only probe to flavour structure

Why is flavour physics important ?

- Better understanding of SM for $N_{gen} > 1$
 - Window to top and triple-gauge dynamics (e.g. $B^0 \overline{B}^0$ mixing, $b \rightarrow s\gamma, Z \rightarrow b\overline{b}, B_s \rightarrow \mu\mu$)
- Better understanding of low-energy QCD

 Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
 - New source of CP violation needed for n_b/n_γ
- Indirect window to New Physics

— Tight constraints, compatible with direct searches, only probe to flavour structure

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
	BaBar@SLAC : e^+e^-	⁻ , 429 fb ⁻²	¹ , 4.7 $ imes$ 10 ⁸ $Bar{B}$	pairs	
	Belle@KEK : e^+e^- ,	over 1 ab ⁻	$^{-1}$, 7.72 $ imes$ 10 8 B	$ar{B}$ pairs	

LHCb : 1 fb⁻¹ at $\sqrt{s} = 7$ TeV, 1.1 fb⁻¹ at 8 TeV 7 TeV: $\sigma(pp \rightarrow b\bar{b}X) = (89.6 \pm 6.4 \pm 15.5) \ \mu$ b, scales linearly with \sqrt{s}

Ultimately, 5 fb⁻¹/yr, total $\mathcal{L}_{int} = 50$ fb⁻¹, ~ 200 -fold increase over 1 fb⁻¹ sample

ATLAS and CMS also have dedicated flavour physics programme

Belle II : e^+e^- , about 50 ab⁻¹, precision flavour physics

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
	BaBar@SLAC : e^+e	⁻ , 429 fb ⁻¹ , 4.	$7 imes 10^8~Bar{B}$ pai	rs	
	Belle@KEK : e^+e^- ,	over 1 ab^{-1} , 7	.72 $ imes$ 10^8 $Bar{B}$ p	airs	

LHCb : 1 fb⁻¹ at $\sqrt{s} = 7$ TeV, 1.1 fb⁻¹ at 8 TeV 7 TeV: $\sigma(pp \rightarrow b\bar{b}X) = (89.6 \pm 6.4 \pm 15.5) \ \mu$ b, scales linearly with \sqrt{s}

Ultimately, 5 fb⁻¹/yr, total $\mathcal{L}_{int} =$ 50 fb⁻¹, \sim 200-fold increase over 1 fb⁻¹ sample

ATLAS and CMS also have dedicated flavour physics programme

Belle II : e^+e^- , about 50 ab⁻¹, precision flavour physics

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Reach of	Flavour P	hysics			

Direct detection

- ▶ NP@a few TeV: within reach of LHC@14 TeV
- ► NP > a few TeV: beyond LHC

Indirect detection

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Reach of	Flavour P	hysics			

Direct detection

- NP@a few TeV: within reach of LHC@14 TeV
- ► NP > a few TeV: beyond LHC

Indirect detection

Flav. structure	a few TeV	> a few TeV
Anarchy	O(1) X	small ($< O(1)$)
Small	small	tiny
misalignment	(O(0.1))	(O(0.01-0.1))
Alignment	tiny	out of reach
(MFV)	(O(0.01))	< O(0.01)

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Plan of t	he talk				

- **O** Some interesting B physics observables
- **2** Beyond-SM hints?
- Beyond-SM through Beauty: B-physics observables and cMSSM
- **9** Beyond-SM through Charm: Mixing, Direct CPV

Caveat emptor: Top and neutrinos excluded

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Some interesting observables

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Unitarity	Triangle				

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
$$V_{td} = |V_{td}| \exp(-i\beta), V_{ub} = |V_{ub}| \exp(-i\gamma) \qquad \text{Wolfenstein parametrisation}$$

$$\begin{split} \lambda &= 0.22543^{+0.00059}_{-0.00094}, & A &= 0.802^{+0.029}_{-0.011}, \\ \rho(1-\frac{1}{2}\lambda^2) &= 0.140\pm 0.027, & \eta(1-\frac{1}{2}\lambda^2) &= 0.343\pm 0.015 \end{split}$$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

The CKM paradigm seems to be vindicated, NP should be subleading But even the mundane is not so mundane

Plan Survey Tensions cMSSM NP in charm Conclusion
$$B_d - \overline{B_d} \text{ and } B_s - \overline{B_s} \text{ Mixing}$$

$$H = \begin{pmatrix} M_q - \frac{i}{2}\Gamma_q & M_q^{12} - \frac{i}{2}\Gamma_q^{12} \\ M_q^{12*} - \frac{i}{2}\Gamma_q^{12*} & M_q - \frac{i}{2}\Gamma_q \end{pmatrix}$$

$$\frac{M_q^{12}}{M_{q,SM}^{12}} \equiv \text{Re}\Delta_q + i\text{Im}\Delta_q = |\Delta_q|\exp(2i\Phi_{q,NP})$$

The tension is mostly due to V_{ub} coming from $B^+ \rightarrow \tau \nu$, even though new Belle result brings the tension down.

Does not include dimuon results from D0. All other results are consistent with SM. A_{SL} is 3.3σ away.

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

• The $2\beta_s$ discrepancy — now consistent with SM ? — Any need to introduce BSM in $B_s - \overline{B_s}$ mixing ?

Be careful

$$\begin{split} \beta_s^{J/\psi\phi} &= \arg[-V_{cb}V_{cs}^*/V_{tb}V_{ts}^*] = 0.019(1) \text{ (SM)} \\ \beta_s^{sl} &= -\frac{1}{2}\phi_s, \ \phi_s = \arg(-M_{12s}/\Gamma_{12s}) = -0.0020(3) \text{ (SM)}, \\ A_{sl} &= (\Delta\Gamma_s/\Delta M_s) \tan\phi_s \end{split}$$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Some	e recent res	ults from Ll	HCb		
C	$\Delta M_s = 17.7$	68 ± 0.024 ps $^{-1}$		SM: 17.3	3 ± 2.6
6	$\beta_s^{J/\psi\phi} = 0.02$	$20^{+0.042}_{-0.045}$ (direct),	0.0182 ± 0.00	008 (global fit)	0.001
	$\Delta \Gamma_s = 0.095$	5 ± 0.014 ps $^{-1}$ (n	ow measured	to be positive)	: 0.001
e	Br($B_s \rightarrow \mu^+$	$(\mu^{-}) = (3.2^{+1.5})$	$ imes 10^{-9}$.	SIVI: 0.087 ± 0.02	1 ps -

 $Br(B_d \to \mu^+ \mu^-) < 9.4 \times 10^{-10}$ consistent with SM $A_{FB}(B \to K^* \ell^+ \ell^-): \text{ zero crossing at } q^2 = 4.9 \pm 1.1 \text{ GeV}^2$ consistent with SM (~ 4.0 - 4.3 GeV²)

• $A_{CP}(B_s \rightarrow K^-\pi^+) = 0.27 \pm 0.04 \pm 0.01$: first 5 σ CP violation in B_s

Isospin asymmetry in B →
$$K\mu^+\mu^-$$

Direct CPV from charm (Moriond 13 update)
Hold on !

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Caution	111				

Need a better control over nuisance parameters

- Quark masses and CKM elements
- Form factors, decay constants Lattice people doing a commendable job uncertainty associated with LCD amplitudes
- Subleading Λ/m corrections Also, higher orders in α_s , but they can be summed in most cases
- renormalization scale (μ) dependence

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Hunting	grounds				

— Possible new operators from BSM, angular distributions and asymmetries affected

— Not quite consistent with SM, signals for BSM?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Hunting	grounds				

— Possible new operators from BSM, angular distributions and asymmetries affected

- - Not quite consistent with SM, signals for BSM?
- Oimuon asymmetry from D0

— Large ϕ_s ? BSM with a new absorptive contribution for $B_s - \overline{B_s}$ mixing?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Hunting	grounds				

- Possible new operators from BSM, angular distributions and asymmetries affected

- Not quite consistent with SM, signals for BSM?

O Dimuon asymmetry from D0

— Large ϕ_s ? BSM with a new absorptive contribution for $B_s - \overline{B_s}$ mixing?

— Resurrected and existing, although not strictly B-physics observables

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Hunting	grounds				

— Possible new operators from BSM, angular distributions and asymmetries affected

- Not quite consistent with SM, signals for BSM?

O Dimuon asymmetry from D0

— Large ϕ_s ? BSM with a new absorptive contribution for $B_s - \overline{B_s}$ mixing?

— Resurrected and existing, although not strictly B-physics observables

Isospin asymmetry

- No explanation even in BSM

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Hunting	grounds				

— Possible new operators from BSM, angular distributions and asymmetries affected

- Not quite consistent with SM, signals for BSM?

O Dimuon asymmetry from D0

— Large ϕ_s ? BSM with a new absorptive contribution for $B_s - \overline{B_s}$ mixing?

— Resurrected and existing, although not strictly B-physics observables

- Isospin asymmetry
 - No explanation even in BSM

$$\begin{split} \Gamma(\bar{B} \to X_s \gamma) &= \Gamma(b \to s \gamma) + O(\Lambda_{QCD}/m_b) \\ A_{CP} &= \frac{\Gamma(\bar{B} \to X_s \gamma) - \Gamma(B \to X_{\bar{s}} \gamma)}{\Gamma(\bar{B} \to X_s \gamma) + \Gamma(B \to X_{\bar{s}} \gamma)} \end{split}$$

Measured with cut $E_{\gamma} > E_0 \sim 2$ GeV: $A_{CP} = -(1.2 \pm 2.8)\%$

 $Br(b \to s\gamma) = (3.37 \pm 0.23) \times 10^4 \text{ (exp)}, (3.15 \pm 0.23) \times 10^{-4} \text{ (SM)}$

Strong constraint on 2HDM:

 $A_{FB}(q^2)$ from $\gamma - Z$ interference Zero-crossing point is clean, almost free from hadronic uncertainties Theory (SM): $q_0^2 = [4.0 - 4.3] \pm 0.3 \text{ GeV}^2$

(Beneke et al. 0412400, Bobeth et al. 1111.2558)

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Tensions with SM: NP or mirage?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B ightarrow K \pi$	CP asymi	metries			

$$\begin{split} A_{CP} &= \left[\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f}) \right] / \left[\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f}) \right] \\ A_{CP}(B^+ \to K^+ \pi^0) &= 0.040 \pm 0.021 : \overleftarrow{b \to s \bar{u} u}, \overrightarrow{b \to s \bar{d} d} \\ Related by SU(2) \\ A_{CP}(B^0 \to K^+ \pi^-) &= -0.086 \pm 0.007 : \overrightarrow{b \to s \bar{u} u} \end{split}$$

$\Delta A_{CP} \equiv A_{CP}(\pi^{0}K^{-}) - A_{CP}(\pi^{+}K^{-}) = (12.6 \pm 2.2) \,\% \,, (1.9^{+5.8}_{-4.8}) \,\% (SM)$

Possible resolution: NP that mimics a large EWP [Nandi and AK '04]

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B \rightarrow K$	π CP as	vmmetries			

$$\begin{aligned} A_{CP} &= \left[\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f}) \right] / \left[\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f}) \right] \\ A_{CP}(B^+ \to K^+ \pi^0) &= 0.040 \pm 0.021 : \overbrace{b \to s \bar{u} u}^{Full to box{}, b \to s \bar{d} d}_{\text{Related by SU(2)}} \\ A_{CP}(B^0 \to K^+ \pi^-) &= -0.086 \pm 0.007 : b \to s \bar{u} u \end{aligned}$$

 $\Delta A_{CP} \equiv A_{CP}(\pi^{0}K^{-}) - A_{CP}(\pi^{+}K^{-}) = (12.6 \pm 2.2)\%, (1.9^{+5.8}_{-4.8})\%(SM)$

Possible resolution: NP that mimics a large EWP [Nandi and AK '04]

No such anomaly in $B \to \pi\pi$ or $B_s \to K\pi$. Is $b \to s$ troublesome? Large P_{EW} affects $Br(B^+ \to K^+\pi(\rho)^0) / Br(B^0 \to K^+\pi(\rho)^-)$, consistent with SM Poorly understood SM?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
P	Ka CD -	summotrios			

こしいてろ

asy

$$\begin{aligned} A_{CP} &= \left[\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f}) \right] / \left[\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f}) \right] \\ A_{CP}(B^+ \to K^+ \pi^0) &= 0.040 \pm 0.021 : \overbrace{b \to s \bar{u} u}^{Full + I}, \overbrace{b \to s \bar{d} d}_{\text{Related by SU(2)}} \\ A_{CP}(B^0 \to K^+ \pi^-) &= -0.086 \pm 0.007 : b \to s \bar{u} u \end{aligned}$$

$$\Delta A_{CP} \equiv A_{CP}(\pi^{0}K^{-}) - A_{CP}(\pi^{+}K^{-}) = (12.6 \pm 2.2)\%, (1.9^{+5.8}_{-4.8})\%(SM)$$

Possible resolution: NP that mimics a large EWP [Nandi and AK '04]

No such anomaly in $B \to \pi\pi$ or $B_s \to K\pi$. Is $b \to s$ troublesome? Large P_{EW} affects $Br(B^+ \to K^+\pi(\rho)^0) / Br(B^0 \to K^+\pi(\rho)^-)$, consistent with SM Poorly understood SM?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B \to \tau \iota$,				

• Completely analogous to $\pi^+ \rightarrow \mu^+ \nu_{\mu}$:

$$\Gamma(B \to \tau \nu_{\tau}) = \frac{1}{8\pi} G_F^2 |V_{ub}|^2 f_B^2 m_{\tau}^2 m_B \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2$$

- World average: $Br(B \to \tau \nu) = (16.8 \pm 3.1) \times 10^{-5} \text{ (pre-2012)}$ $Br(B \to \tau \nu) = (11.5 \pm 2.3) \times 10^{-5} \text{ (summer 2012, after Belle)}$ (BaBar: $(17.9 \pm 4.8) \times 10^{-5}$, Belle: $(7.2^{+2.7}_{-2.5} \pm 1.1) \times 10^{5}$)
- Theory: $Br(B o au
 u)_{
 m SM} = \left(7.57^{+0.98}_{-0.61}
 ight) imes 10^{-5}$
- Tension at 1.6 σ only, has come down from 2.8 σ
- Only source of uncertainties: f_B and V_{ub}
- Lattice QCD: $f_B = 191 \pm 13$ MeV

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B \rightarrow \tau$	1/				

$R \rightarrow \tau \mu$	

• an SM-only explanation would require

 $|V_{ub}| = (4.22 \pm 0.51) \times 10^{-3}$

• Inconsistent with the indirect determination of V_{ub} from the sides of the Unitarity Triangle (UT),

$$|V_{ub}|_{
m indirect} = (3.49 \pm 0.13) imes 10^{-3}$$

or the average of direct inclusive $(B \to X_u \ell \nu)$ and exclusive $(B \to \pi \ell \nu)$ measurements,

 $|V_{ub}|_{
m measured} = (3.92 \pm 0.09 \pm 0.45) \times 10^{-3}$

How well do we know V_{ub} ?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B \rightarrow \tau \nu$					

• an SM-only explanation would require

 $|V_{ub}| = (4.22 \pm 0.51) \times 10^{-3}$

• Inconsistent with the indirect determination of V_{ub} from the sides of the Unitarity Triangle (UT),

$$|V_{ub}|_{
m indirect} = (3.49 \pm 0.13) \times 10^{-3}$$

or the average of direct inclusive $(B \to X_u \ell \nu)$ and exclusive $(B \to \pi \ell \nu)$ measurements,

 $|V_{ub}|_{
m measured} = (3.92 \pm 0.09 \pm 0.45) \times 10^{-3}$

How well do we know V_{ub} ?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B \rightarrow$	$D(D^*)\tau\nu$				

$$R(D^{(*)}) = \frac{\operatorname{Br}(B \to D^{(*)}\tau\nu)}{\operatorname{Br}(B \to D^{(*)}\ell\nu)}$$

SM: $R(D) = 0.297 \pm 0.017$, $R(D^*) = 0.252 \pm 0.003$

BaBar: $R(D) = 0.440 \pm 0.058 \pm 0.042$, $R(D^*) = 0.332 \pm 0.024 \pm 0.018$.

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
D	V TH and P	$(D^*)_{\sigma u}$			

Possible resolutions:

- Tensor operators (Biancofiore et al. 1302.1042)
- Special type of charged Higgs
- Some new interaction involving only gen-3 fields

(Choudhury, Ghosh, AK, 1210.5076)

(Celis et al. 1210.8443)

- Fed to lower generations through CKM like rotations
- Anomalous top decays? Still unobservably small
- Prediction: sizable enhancement in $B_c \rightarrow \tau \nu$
- Is gen-3 special? Only window to BSM?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
The di	muon and	omaly			

$$\begin{aligned} A^b_{sl} &= \frac{N(\mu^+\mu^+) - N(\mu^-\mu^-)}{N(\mu^+\mu^+) + N(\mu^-\mu^-)} \\ \emptyset \ 9.0 \ \mathrm{fb}^{-1}: \quad A^b_{sl} &= (-7.87 \pm 1.96) \times 10^{-3} \end{aligned}$$

Can be expressed as individual flavour-specific (fs) semileptonic asymmetries coming from B_d and B_s :

D

 $A^b_{sl} = (0.595 \pm 0.022) a^d_{fs} + (0.405 \mp 0.022) a^s_{fs}$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
The din	nuon and	omaly			

$$A_{sl}^{b} = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}$$
Ø 9.0 fb⁻¹: $A_{sl}^{b} = (-7.87 \pm 1.96) \times 10^{-3}$

Can be expressed as individual flavour-specific (fs) semileptonic asymmetries coming from B_d and B_s :

D

$$A^b_{sl} = (0.595 \pm 0.022) \, a^d_{fs} + (0.405 \mp 0.022) \, a^s_{fs}$$

SM:
$$a_{fs}^d = (-4.1 \pm 0.6) \times 10^{-4}, \ a_{fs}^s = (1.9 \pm 0.3) \times 10^{-5}$$

 $(A_{sl}^b)_{SM} = (-2.4 \pm 0.4) \times 10^{-4}$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
The		moly			
i ne d	iimuon and	omaly			

$$A_{sl}^{b} = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}$$

Ø 9.0 fb⁻¹: $A_{sl}^{b} = (-7.87 \pm 1.96) \times 10^{-3}$

Can be expressed as individual flavour-specific (fs) semileptonic asymmetries coming from B_d and B_s :

D

$$A^b_{sl} = (0.595 \pm 0.022) a^d_{fs} + (0.405 \mp 0.022) a^s_{fs}$$

SM:
$$a_{fs}^d = (-4.1 \pm 0.6) \times 10^{-4}, a_{fs}^s = (1.9 \pm 0.3) \times 10^{-5}$$

 $(A_{sl}^b)_{SM} = (-2.4 \pm 0.4) \times 10^{-4}$

 3.9σ discrepancy

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
	11				

The dimuon anomaly

$$a_{fs}^d = 0.0038 \pm 0.0036 \text{ (HFAG)}, \ a_{fs}^s = (-0.0022 \pm 0.0052) \text{ (LHCb} + \text{D0})$$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
The dim	nuon and	omaly			

The only way to resolve the dimuon anomaly is to introduce some operators that give new absorptive parts in $B_s - \overline{B_s}$ mixing. Large $\phi_s \Rightarrow \text{Large } a_{ss}^s \Rightarrow \text{Large } A_{ss}^b$

Possibly, the only option still left is $(\bar{s}\Gamma^A b)(\bar{\tau}\Gamma^A \tau)$ (Dighe, AK, Nandi, PRD 2007, 2010; Bauer and Dunn, PLB 2011)

 $B_s \rightarrow \tau^+ \tau^-? \ B \rightarrow X_s \tau^+ \tau^-?$ Lifetime difference between B_d and $B_s?$ — Can be managed, still, but will soon be under pressure from LHCb (Dighe and Ghosh, 1207.1324)

The only way to resolve the dimuon anomaly is to introduce some operators that give new absorptive parts in $B_s - \overline{B_s}$ mixing. Large $\phi_s \Rightarrow \text{Large } a_{fs}^s \Rightarrow \text{Large } A_{sl}^b$

Possibly, the only option still left is $(\bar{s}\Gamma^A b)(\bar{\tau}\Gamma^A \tau)$ (Dighe, AK, Nandi, PRD 2007, 2010; Bauer and Dunn, PLB 2011)

 $B_s \rightarrow \tau^+ \tau^-? B \rightarrow X_s \tau^+ \tau^-?$ Lifetime difference between B_d and $B_s?$ — Can be managed, still, but will soon be under pressure from LHCb (Dighe and Ghosh, 1207.1324)

Constraints from ΔM_s ? That's serious, and simple one-operator ansatz may not work

(Bobeth and Haisch, 1109.1826, Choudhury et al. 2012)

The only way to resolve the dimuon anomaly is to introduce some operators that give new absorptive parts in $B_s - \overline{B_s}$ mixing. Large $\phi_s \Rightarrow \text{Large } a_{ss}^s \Rightarrow \text{Large } A_{ss}^b$

Possibly, the only option still left is $(\bar{s}\Gamma^A b)(\bar{\tau}\Gamma^A \tau)$ (Dighe, AK, Nandi, PRD 2007, 2010; Bauer and Dunn, PLB 2011)

 $B_s \rightarrow \tau^+ \tau^-? B \rightarrow X_s \tau^+ \tau^-?$ Lifetime difference between B_d and $B_s?$ — Can be managed, still, but will soon be under pressure from LHCb (Dighe and Ghosh, 1207.1324)

Constraints from ΔM_s ? That's serious, and simple one-operator ansatz may not work

(Bobeth and Haisch, 1109.1826, Choudhury et al. 2012)

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Isospin asymmetry

$$A_{I} = \frac{Br(B^{0} \to K^{0(*)}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}Br(B^{+} \to K^{+(*)}\mu^{+}\mu^{-})}{Br(B^{0} \to K^{0(*)}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}Br(B^{+} \to K^{+(*)}\mu^{+}\mu^{-})}$$

- $A_I = 0$ in naive factorization
- ISR from spectator can contribute up to $\sim 1\%$ unless q^2 is very small
- $B
 ightarrow {\cal K}^* \mu \mu$ is consistent with SM
- $B
 ightarrow K \mu \mu$: 4.4 σ away from zero, integrated over all q^2

(LHCb, 1205.3422)

NIVERSITY C

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
The re	surrection	$of R_i$			

$$R_b = rac{\Gamma(Z
ightarrow bar{b})}{\Gamma(Z
ightarrow ext{hadrons})}$$

 $\overline{R_b}$ (SM) has gone down from 0.21576(8) to 0.21474(3) after the computation of full two-loop effects (Freitas and Huang 2012) 2.4 σ discrepancy with R_b (exp) = 0.21629(66).

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

B-physics observables and cMSSM

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B_s \rightarrow$	μμ				

Theoretically clean. LD effects negligible

Sensitive probe to FCNC effects, like new penguins

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Standard Model

(Buras et al. 1208.0934)

 $Br(B_s \to \mu\mu) = (3.23 \pm 0.27) \times 10^{-9}$ $Br(B_d \to \mu\mu) = (1.07 \pm 0.10) \times 10^{-10}$

Maximum uncertainty from f_{B_s} . This is for $f_{B_s} = 227$ MeV [MILC: 242(10); HPQCD: 225(4); ETMC: 234(6)]

Expert advice: Take HPQCD central values but MILC errors

includes leading NLO EW and full NLO QCD But ~ 10% enhancement for nonzero $\Delta\Gamma_s$ (de Bruyn et al. 1204.1735) Time-averaged SM: $Br(B_s \rightarrow \mu\mu) = (3.54 \pm 0.30) \times 10^{-9}$

LHCb (1211.2674)

 $\begin{array}{ll} Br(B_s \to \mu \mu) &=& (3.2^{+1.5}_{-1.2}) \times 10^{-9} \,, \\ Br(B_d \to \mu \mu) &<& 9.4 \times 10^{-10} \ @95\% \ CL \end{array}$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Standard Model

(Buras et al. 1208.0934)

 $Br(B_s \to \mu\mu) = (3.23 \pm 0.27) \times 10^{-9}$ $Br(B_d \to \mu\mu) = (1.07 \pm 0.10) \times 10^{-10}$

Maximum uncertainty from f_{B_s} . This is for $f_{B_s} = 227$ MeV [MILC: 242(10); HPQCD: 225(4); ETMC: 234(6)]

Expert advice: Take HPQCD central values but MILC errors

includes leading NLO EW and full NLO QCD But ~ 10% enhancement for nonzero $\Delta\Gamma_s$ (de Bruyn et al. 1204.1735) Time-averaged SM: $Br(B_s \rightarrow \mu\mu) = (3.54 \pm 0.30) \times 10^{-9}$

LHCb (1211.2674)

 $\begin{array}{ll} Br(B_s \to \mu \mu) &=& (3.2^{+1.5}_{-1.2}) \times 10^{-9} \,, \\ Br(B_d \to \mu \mu) &<& 9.4 \times 10^{-10} \,\, @95\% \,\, CL \end{array}$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
$B_s \rightarrow \mu\mu$	ι in SUSY				

$$Br(B_s \to \mu\mu) \approx 3.5 \times 10^{-5} \left(\frac{m_t}{m_A}\right)^4 \left(\frac{\tan\beta}{50}\right)^6 \times \left(\frac{f_{B_s}}{230 \ \text{MeV}}\right)^2 \left(\frac{V_{ts}}{0.040}\right)^2$$

(Buras et al. NPB 659, 2003)

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Observable	Mean value	Mean value Uncertainties			
	μ	σ (exper.)	au (theor.)		
M _W [GeV]	80.399	0.023	0.015		
$\sin^2 \theta_{eff}$	0.23153	0.00016	0.00015		
$\delta a_{\mu}^{\rm SUSY} \times 10^{10}$	28.7	8.0	2.0		
$Br(b \rightarrow s\gamma) \times 10^4$	3.55	0.26	0.30		
$R_{\Delta M_{B_s}}$	1.04	0.11	-		
$Br(B \rightarrow \tau \nu)$	1.63	0.54	-		
$R(D) \times 10^2$	41.6	12.8	3.5		
$Br(D_s \rightarrow \tau \nu) \times 10^2$	5.38	0.32	0.2		
$Br(D_s \rightarrow \mu \nu) \times 10^3$	5.81	0.43	0.2		
$Br(D \rightarrow \mu \nu) \times 10^4$	3.82	0.33	0.2		
$\Omega_{\chi} h^2$	0.1109	0.0056	0.012		
m _h [GeV]	125.8	0.6	2.0		
$Br(B_S \rightarrow \mu\mu)$	3.2×10^{-9}	1.5×10^{-9}	10%		
$m_0, m_{1/2}$	ATLAS, 5.8, $\sqrt{s} = 8$ TeV, 2012 limits				
m_A , tan β	CMS, 4.7, $\sqrt{s} = 7$ TeV, 2012 limits				
$m_{\chi} - \sigma_{\chi^0 - p}^{SI}$	XENON100 201	2 limits (224.6 \times	34 kg days)		

(Strege et al. 1212.2636)

Large fine-tuning needed (0.07% or worse)

Large fine-tuning needed (0.07% or worse)

Enter R_b (Bhattacharyya, AK, Ray, 1306.0344) SUSY contribution decouples for heavy chargino and charged Higgs.

cMSSM is in terribly bad shape, if not dead, when you take all the low-energy, cosmological, and direct constraints.

Enter R_b (Bhattacharyya, AK, Ray, 1306.0344) SUSY contribution decouples for heavy chargino and charged Higgs.

cMSSM is in terribly bad shape, if not dead, when you take *all the low-energy, cosmological, and direct constraints.*

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

NP in Charm

 $D-\overline{D}$ mixing is suppressed in SM small masses for u and c, small CKM for b

 $\begin{aligned} x &= \Delta M / \Gamma = 0.0063 \pm 0.0020 \\ y &= \Delta \Gamma / 2\Gamma = 0.0075 \pm 0.0012 \end{aligned} (HFAG, 1207.1158)$

Relevant CP violation $\sim 0.1\%$ (Nir, 0510413)

LD effects are also important ... NP search is not easy

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Direct	CP violati	on in SCS	decays		

- $\Delta A_{CP} \equiv A_{CP}(D^0 \rightarrow K^+ K^-) A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$
- Common wisdom: DCPV in charm above 0.1% is a *clear signal for NP*

 $\Delta A_{CP} \sim 0.13\% imes {
m Im}(\Delta R)$

0.13% from CKM suppression, $\arg(V_{cs}^* V_{us}/V_{cd}^* V_{ud}) \sim \lambda^4 \Delta R$ is the ratio of penguin/tree, expected to be < 1

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Direct C	P violation	in SCS dec	cays		

• $\Delta A_{CP} \equiv A_{CP}(D^0 \rightarrow K^+ K^-) - A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$

• Common wisdom: DCPV in charm above 0.1% is a *clear signal for* NP

 $\Delta A_{CP} \sim 0.13\% \times \mathrm{Im}(\Delta R)$

0.13% from CKM suppression, $\arg(V_{cs}^* V_{us}/V_{cd}^* V_{ud}) \sim \lambda^4$ ΔR is the ratio of penguin/tree, expected to be < 1

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Direct C	P violation	in SCS dec	cays		

• $\Delta A_{CP} \equiv A_{CP}(D^0 \rightarrow K^+ K^-) - A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$

• Common wisdom: DCPV in charm above 0.1% is a *clear signal for* NP

$$\Delta A_{CP} \sim 0.13\% imes \mathrm{Im}(\Delta R)$$

0.13% from CKM suppression, $\arg(V_{cs}^* V_{us}/V_{cd}^* V_{ud}) \sim \lambda^4$ ΔR is the ratio of penguin/tree, expected to be < 1

Moriond 2013: $(+0.49 \pm 0.30 \pm 0.14)\%$ (1303.2614) — μ -tagging?

• Charm is not light enough for χPT but not heavy enough for HQET

• $\Delta R < 1$ is expected for heavy quarks $m_q \gg \Lambda_{QCD}$ but not for Kaons, what for D? Can charm be treated as a light quark?

- Charm is not light enough for χPT but not heavy enough for HQET
- $\Delta R < 1$ is expected for heavy quarks $m_q \gg \Lambda_{QCD}$ but not for Kaons, what for D? Can charm be treated as a light quark?
- Can be explained with chromomagnetic c → ug. breaking of SU(3), SUSY, RS, ...

- Charm is not light enough for χPT but not heavy enough for HQET
- $\Delta R < 1$ is expected for heavy quarks $m_q \gg \Lambda_{QCD}$ but not for Kaons, what for D? Can charm be treated as a light quark?
- Can be explained with chromomagnetic $c \rightarrow ug$. breaking of SU(3), SUSY, RS, ...
- Feeds to $c \rightarrow u\gamma$, effects in radiative D decays?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Direct (P violation	in SCS de			

- - $\bullet\,$ Charm is not light enough for $\chi {\rm PT}$ but not heavy enough for HQET
 - $\Delta R < 1$ is expected for heavy quarks $m_q \gg \Lambda_{QCD}$ but not for Kaons, what for D? Can charm be treated as a light quark?
 - Can be explained with chromomagnetic $c \rightarrow ug$. breaking of SU(3), SUSY, RS, ...
 - Feeds to $c \rightarrow u\gamma$, effects in radiative D decays?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Outlook for the future

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Conclu	sions				

• Flavour is one of the most pressing problems. Where to get the large CP violation from?

We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Conclu	usions				

• Flavour is one of the most pressing problems. Where to get the large CP violation from?

- We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.
- There are a few tensions, mostly involving third-generation fermions. Is the third gen special? Is it the only window to new physics?

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Conclu	isions				

• Flavour is one of the most pressing problems. Where to get the large CP violation from?

- We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.
- There are a few tensions, mostly involving third-generation fermions.Is the third gen special? Is it the only window to new physics?
- Taking all numbers at face value, SM is disfavoured at more than 3σ but the deviations do not point to a single NP model. Maybe we are not smart enough.
- B Physics observables (B_s → µµ, b → sγ, ΔM_d, ΔM_s, A_{CP}) plus m_h, R_b, DM and (g − 2)_µ are more than complementary to direct searches. For example, cMSSM is in a bad shape.

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Conclu	isions				

• Flavour is one of the most pressing problems. Where to get the large CP violation from?

- We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.
- There are a few tensions, mostly involving third-generation fermions.Is the third gen special? Is it the only window to new physics?
- Taking all numbers at face value, SM is disfavoured at more than 3σ but the deviations do not point to a single NP model. Maybe we are not smart enough.
- B Physics observables (B_s → μμ, b → sγ, ΔM_d, ΔM_s, A_{CP}) plus m_h, R_b, DM and (g 2)_μ are more than complementary to direct searches. For example, cMSSM is in a bad shape.

There can be unexpected surprises like direct CPV in D decays. Better understanding of SM dynamics needed.

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Conclu	sions				

• Flavour is one of the most pressing problems. Where to get the large CP violation from?

- We are in the era of precision flavour physics. NP models at a few TeV generating large FCNC are ruled out.
- There are a few tensions, mostly involving third-generation fermions.Is the third gen special? Is it the only window to new physics?
- Taking all numbers at face value, SM is disfavoured at more than 3σ but the deviations do not point to a single NP model. Maybe we are not smart enough.
- S Physics observables (B_s → μμ, b → sγ, ΔM_d, ΔM_s, A_{CP}) plus m_h, R_b, DM and (g − 2)_μ are more than complementary to direct searches. For example, cMSSM is in a bad shape.
- There can be unexpected surprises like direct CPV in D decays. Better understanding of SM dynamics needed.

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Thank you.

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion

Backup slides

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
11	1				

88

- Can be determined even from tree-level $B \rightarrow DK$ decays only
- $B \rightarrow DK$, D to CP eigenstates
- $B \rightarrow DK$, D through DCS
- $B \rightarrow DK$, D through 3-body self-conjugate final
- $B \rightarrow DK$, D through SCS
- ② Semileptonic $B o K^{(*)} \mu^+ \mu^-, \phi \mu^+ \mu^-, \pi \mu^+ \mu^-$
 - FB asymmetry, isospin asymmetry, differential decay widths
 - triple products for $B
 ightarrow V\ell\ell$, also $B
 ightarrow V_1V_2$ in general

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
Hunti	ng grounds	s for NP			

ьь

- Can be determined even from tree-level $B \rightarrow DK$ decays only
- $B \rightarrow DK$, D to CP eigenstates
- $B \rightarrow DK$, D through DCS
- $B \rightarrow DK$, D through 3-body self-conjugate final
- $B \rightarrow DK$, D through SCS
- 2 Semileptonic $B \to K^{(*)}\mu^+\mu^-, \phi\mu^+\mu^-, \pi\mu^+\mu^-$
 - FB asymmetry, isospin asymmetry, differential decay widths
 - triple products for $B o V\ell\ell$, also $B o V_1V_2$ in general
- Radiative $B o K^* \gamma$

 $- A_{CP}$, constraint on EM Wilson coefficients

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
11					

• $\gamma = \arg(V_{ub}^*)$

ьь

- Can be determined even from tree-level B
 ightarrow DK decays only
- $B \rightarrow DK$, D to CP eigenstates
- $B \rightarrow DK$, D through DCS
- $B \rightarrow DK$, D through 3-body self-conjugate final
- $B \rightarrow DK$, D through SCS
- 2 Semileptonic $B \to K^{(*)}\mu^+\mu^-, \phi\mu^+\mu^-, \pi\mu^+\mu^-$
 - FB asymmetry, isospin asymmetry, differential decay widths
 - triple products for $B o V\ell\ell$, also $B o V_1V_2$ in general
- $\textbf{③} \ \mathsf{Radiative} \ B \to K^* \gamma$
 - A_{CP} , constraint on EM Wilson coefficients
- Leptonic decays $B_d, B_s o \mu^+ \mu^-, \tau^+ \tau^-$

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
11	1				

ъ

- Can be determined even from tree-level $B \rightarrow DK$ decays only
- $B \rightarrow DK$, D to CP eigenstates
- $B \rightarrow DK$, D through DCS
- $B \rightarrow DK$, D through 3-body self-conjugate final
- $B \rightarrow DK$, D through SCS
- 2 Semileptonic $B \to K^{(*)}\mu^+\mu^-, \phi\mu^+\mu^-, \pi\mu^+\mu^-$
 - FB asymmetry, isospin asymmetry, differential decay widths
 - triple products for $B o V\ell\ell$, also $B o V_1V_2$ in general
- **3** Radiative $B \to K^* \gamma$
 - A_{CP} , constraint on EM Wilson coefficients
- Leptonic decays $B_d, B_s \rightarrow \mu^+ \mu^-, \tau^+ \tau^-$
- Any other loop effects, CP asymmetries

Plan	Survey	Tensions	cMSSM	NP in charm	Conclusion
11	1				

ьь

- Can be determined even from tree-level B
 ightarrow DK decays only
- $B \rightarrow DK$, D to CP eigenstates
- $B \rightarrow DK$, D through DCS
- $B \rightarrow DK$, D through 3-body self-conjugate final
- $B \rightarrow DK$, D through SCS
- 2 Semileptonic $B \to K^{(*)}\mu^+\mu^-, \phi\mu^+\mu^-, \pi\mu^+\mu^-$
 - FB asymmetry, isospin asymmetry, differential decay widths
 - triple products for $B o V\ell\ell$, also $B o V_1V_2$ in general
- **3** Radiative $B \to K^* \gamma$
 - A_{CP} , constraint on EM Wilson coefficients
- Leptonic decays $B_d, B_s \rightarrow \mu^+ \mu^-, \tau^+ \tau^-$
- Any other loop effects, CP asymmetries

