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A few proposals for topics we may discuss:

e Learning properties of dark matter particles from
cosmological and astrophysical observations

e Are WIMP natural dark matter candidates?
e Chasing dark matter ambulances

e Clean dark matter signatures (... and being unhappy
about them)

e ... add your own ...



Dark matter (indirectly) detected!

Plenty of (gravitational) evidence for non-baryonic cold (or coldish - as
opposed to hot) DM being the building block of all structures in the

Universe. E.g.:
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Dark matter (indirectly) detected!

Plenty of (gravitational) evidence for non-baryonic cold (or coldish - as
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Relying on the assumption that GR is the theory of gravity; still, it is
very problematic to explain, e.g., the prominence of the third peak in

an alternative theory of gravity and matter consisting of baryons only
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Dark matter (indirectly) detected!

Plenty of (gravitational) evidence for non-baryonic cold (or coldish - as
opposed to hot) DM being the building block of all structures in the

Universe. E.g.:
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X-ray image; blue contours:
strong lensing map




Dark matter (indirectly) detected!

Plenty of (gravitational) evidence for non-baryonic cold (or coldish - as
opposed to hot) DM being the building block of all structures in the
Universe. E.g.:
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magenta contours: Chandra
X-ray image; blue contours:
strong lensing map
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Relying again on GR as a theory of gravity; again it is very problematic

to introduce an alternative theory and explain the component

segregation within a model without DM but having baryons only
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(Indirect) detection of dark matter particles?

Jump from this indirect evidence to a specific particle DM candidate?
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(Indirect) detection of dark matter particles?

Jump from this indirect evidence to a specific particle DM candidate?
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(Indirect) detection of dark matter particles?

Jump from this indirect evidence to a specific particle DM candidate?
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.. at the same time, very loose
bounds on the properties which are
crucial for devising a detection
strategy for DM particles - the
mass and coupling to ordinary
matter.



(Indirect) detection of dark matter particles?

Jump from this indirect evidence to a specific particle DM candidate’?
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(Indirect) detection of dark matter particles?

Jump from the indirect (gravitational) evidence to a particle DM candidate?
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Learning more on DM particles from cosmology?

In the SM for cosmology and structure formation, the ACDM model, DM
is treated as a collisionless, cold fluid, coupled to ordinary (baryonic) matter
only gravitationally: spectacular agreement between predictions from this
model and data, especially on large scales!

Shortcomings of the model on small scales, in the (very) non-linear regime,
usually addressed via numerical N-body simulations?

* the missing satellite “problem”, Moore et al., Klypin et al. 1999
* the too-big-to-fail Milky Way problem, Boylan-Kolchin et al. 2012

* the CDM profiles too cuspy when looking at low mass objects, like dwarf
or LSB galaxies, see, e.g., Salucci et al. 2011, Kuzio de Naray et al. 2008

All of these loosely targeted as an excess of power on small scales? Introduce
a dissipation of power on small scales as an imprint from DM particles? or
just blame the fact the it is really hard to include a realistic model for
baryonic components in the DM numerical simulations?




Learning more on DM particles from cosmology?

Improving on ACDM with some extra ingredient from particle physics:

Warm DM: imprint on the sky of the DM particle free streaming scale,
' ly: 1
ApproXimately: - 5 o ~ 0.4 Mpc (M, /keV) (T, /T)

DM mass scale in, say, the keV - 100 keV range depending on the DM
temperature I,. Popular candidates: sterile neutrinos and gravitinos.

Their detection depends on features in the specific model; e.g. for sterile

neutrinos:
O \K\ | | |

search for the decay into 107
1 photon & 1 neutrino

+ constraints from
production + constraints
from being a fermion

)
[
Phase-space density
constraints

Boyarsky et al.,
arXiv:0901.0011

M, [keV]



Learning more on DM particles from cosmology?

Improving on ACDM with some extra ingredient from particle physics:

Self interacting DM: a “hint of detection” from the Musket Ball cluster?
Dawson et al. 2013
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Bullet cluster



Learning more on DM particles from cosmology?

Improving on ACDM with some extra ingredient from particle physics:

Self interacting DM: a “hint of detection” from the Musket Ball cluster?
Dawson et al. 2013
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displacement consistent with: opy/Mpar ~ 0.8cm? g, rather large effect!
Pointing towards, e.g., a dark sector with a light mediator generating a fifth
force? Feng et al. 2009, Tulin et al. 2013



Learning more on DM particles from cosmology?

Improving on ACDM with some extra ingredient from particle physics:

DM as a BEC: identical bosonic particles highly condensed in phase
space, going to the lowest energy available state when thermalizing.

Very “thin” phase space sheets wrapping themselves into and generating
caustics when structures form:

s Z s Z

//:,

/ Z /\/\f ‘

Look for their imprint in today’s galaxy halos; axion would give rise to
such features Sikivie et al. 1998-2012



WIMPs as natural DM candidates (?)

Thermal generation of DM:
L(Ty) = n(Ty){oav)r=1, = H(T})
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Plenty of WIMPs in BSM setups! DM as a byproduct of some other
property of the theory which urged you to go beyond the SM!

O h° ~ 3 WIMP “miracle”




WIMPs as natural DM candidates (?)

Great idea, except that “vanilla” models usually fail. E.g.:

MS SM with R-parity: the lightest neutralino as a DM candidate from
the superposition of 4 interaction eigenstates:

9 = N11B + N1oW?2 + NisHY + N1y H)

“Bino” “Wino”  “Higgsinos”

* Binos annihilate into fermions via sfermions (helicity suppressed) and their
relic abundance matching the cosmological DM density only for “light”
masses, about 100-150 GeV, and fairly light sfermions (squarks) — excluded.

* Higgsinos (SU(2) doublet) mainly annihilate into gauge bosons (process not
helicity suppressed); compensate the larger cross section lifting the mass
scale up to about 1.1 TeV

» Winos (SU(2) triplet) also annihilate into gauge bosons and even more

efficiently than for Higgsinos, with the mass for thermal relic as large as
about 2.8 TeV

In the last two cases clearly very little connection to naturalness as a
motivation for SUSY



WIMPs as natural DM candidates (?)

Great idea, except that “vanilla” models usually fail. E.g.:

M S SM with R-parity: loopholes (pessimists would say epicycles)

* Consider compressed spectra: the thermal relic density of a “lazy” Bino
driven by a state (a slepton? a squark?) much more tightly coupled to the
thermal bath (coannihilation process), decaying into the LSP after
decoupling

* Tune the mixing: at a given mass scale find out the right balancing between
Bino component and Higgsino or Wino component in the LSP, essentially
decreasing the Higgsino or Wino annihilation efficiency

* Boost the Bino annihilation via S-channel resonance (a Higgs with mass
being about twice the Bino mass) — harder in light of LHC Higgs discovery

NOTE 1: Except for the last case, the picture of thermal relic DM in the
MSSM has not changed dramatically entering the LHC era; it did when
focussing on simplified scenarios, as the CMSSM



WIMPs as natural DM candidates (?)

Great idea, except

that “vanilla” models usually fail. E.g.:

M S SM with R-parity: loopholes (pessimists would say epicycles)

* Consider compressed spectra: the thermal relic density of a “lazy” Bino

driven by a state (a
thermal bath (coan
decoupling

slepton? a squark?) much more tightly coupled to the
nihilation process), decaying into the LSP after
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decreasing the Higgsino or Wino annihilation efficiency

* Boost the Bino annihilation via S-channel resonance (a Higgs with mass
being about twice the Bino mass) — harder in light of LHC Higgs discovery
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WIMPs as natural DM candidates (?)

Give up on thermal generation (27?):
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Give up on thermal generation (27?):
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WIMPs as natural DM candidates (?)

' ion (27?): 77
Give up on thermal generation (?7?): DM dilution by
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WIMPs as natural DM candidates (?)
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WIMPs as natural DM candidates (?)
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Chasing DM ambulances

Several “hints” of detection in cases in which “backgrounds” are not under
control and the DM signal is not supported by a clean DM signature. E.g.:

Light WIMPs and Direct detection signals:
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Chasing DM ambulances

Several “hints” of detection in cases in which “backgrounds” are not under
control and the DM signal is not supported by a clean DM signature. E.g.:
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Chasing DM ambulances

Several “hints” of detection in cases in which “backgrounds” are not under
control and the DM signal is not supported by a clean DM signature. E.g.:

Light WIMPs and Direct detection signals:
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Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs:

positron fraction electron, electron+positron fluxes
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Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs:

positron fraction electron, electron+positron fluxes
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We learned that the picture with electrons as primaries from SNRs and
positrons as secondaries from the interaction of CRs on the ISM is wrong



Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs:

positron fraction electron, electron+positron fluxes
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We learned that the picture with electrons as primaries from SNRs and
positrons as secondaries from the interaction of CRs on the ISM is wrong!

We learned that there are primary (hard) positrons sources (or eventually
secondaries from the interaction of CRs in source environments) & possibly
extra electron sources. Since this extra components are measured at 100
GeV - few TeV they need to be from local source (because of energy losses).



Chasing DM ambulances

The cosmic ray lepton puzzle and leptophilic WIMPs:

A hard positron component (from AMS data possibly slightly softer than
from Pamela data) in fair agreement with measurements, can be obtained
from toy models of annihilating WIMPs, e.g.: Cholis & Hooper, arXiv:1304.1840
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Hamed et al., arXiv:0810.0713; Nomura & Thaler, arXiv:0810.5397)
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Chasing DM ambulances

The cosmic ray lepton puzzle and leptophilic WIMPs:

Testing the DM hypothesis against other possibilities?

* Very hard from CR lepton data alone; possible falsification of the DM
hypothesis from the detection of angular anisotropies in the flux (still one
should be confident about modeling propagation in the local environment).

* In principle possible by looking at the radiative emissions associated to
the extra lepton components. Sources confined to the disc (as in case of
pulsars) or spread out in the whole diffusive halo (as for DM annihilations)

produce very different vertical lepton density profiles:
versus a DM term extending

/ to much larger z
Primary/secondary astrophysical
components mostly localized at z=o

10" E

107 E

@, [MeV em” s st

Regis & P.U.,
arXiv: 0904.4645
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Chasing DM ambulances

The cosmic ray lepton puzzle and leptophilic WIMPs:

Testing the DM hypothesis against other possibilities?

* Very hard from CR lepton data alone; possible falsification of the DM
hypothesis from the detection of angular anisotropies in the flux (still one
should be confident about modeling propagation in the local environment).

* In principle possible by looking at the radiative emissions associated to
the extra lepton components. Sources confined to the disc (as in case of
pulsars) or spread out in the whole diffusive halo (as for DM annihilations)

produce very different vertical lepton density profiles:
versus a DM term extending

/ to much larger z
3 Primary/secondary astrophysical
A - components mostly localized at z=o
< R
o3 O > 0 : . .
23S = High-latitude inverse Compton.
> s/ s
S and synchrotron profiles are
— ¢ . 2
i sensibly different in the two cases

1 0—4- i

and should be distinguishable



Chasing DM ambulances

The cosmic ray lepton puzzle and leptophilic WIMPs:

* Consistency checks are also possible looking at radiative emissions from
the central region of the Galaxy, however these are much more model
dependent. In particular they heavily rely on what extrapolation one takes
for the dark matter distribution; in case of NFW profile, there is a severe
tension with currently available radio data



Chasing DM ambulances

The cosmic ray lepton puzzle and leptophilic WIMPs:

* Consistency checks are also possible looking at radiative emissions from
the central region of the Galaxy, however these are much more model
dependent. In particular they heavily rely on what extrapolation one takes
for the dark matter distribution; in case of NFW profile, there is a severe
tension with currently available radio data

* Limits from “polluting” the early Universe with DM yields:
Slatyer et al., arXiv: 0906.1197
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Chasing DM ambulances

The cosmic ray lepton puzzle and leptophilic WIMPs:

* Consistency checks are also possible looking at radiative emissions from
the central region of the Galaxy, however these are much more model
dependent. In particular they heavily rely on what extrapolation one takes
for the dark matter distribution; in case of NFW profile, there is a severe
tension with currently available radio data

* Limits from “polluting” the early Universe with DM yields:
Slatyer et al., arXiv: 0906.1197
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A clean signature (... and being unhappy about it)
About smoking guns and guns that quitted smoking... E.g.:

Annual modulation in direct detection signals:
Bernabel et al., arXiv:0804.2741

2-6 keV
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An effect solidly detected over 10 annual cycles with huge statistics. For its
interpretation, the phase of the modulation and its amplitude are
compatible and suggestive of WIMP DM scatterings; however converting
the effect into a WIMP event rate, there is tension with other direct
detection experiments.

New run at lower threshold, expecting results next year (?). Competitors are
not targeting annual modulation. Directional detectors are at R&D phase.



A clean signature (... and being unhappy about it)
A y-ray line detected by FERMI towards the GC?

Weniger, arXiv:1204.2797 optimized the search region (assuming a simple

power-law background and find a 3.20 statistical significance (if “look
elsewhere” effect included) for a line signal at about 130 GeV!

Reg3 | Signal Sig';niﬁ'cal}('e'(SOI_,TRCE)
Einasto

D S S I ' '

b [deg]

TS value

«— 10

20 50 100 200
E. [GeV]
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Compatible with line limits from the whole
G 60 w0 20 0 20 40 60 sky: Fermi-LAT coll., arXiv:1205.2739, as well as

from dwarfs: Geringer-Sameth & Koushiappas,
arXiv:1206.0796



A clean signature (... and being unhappy about it)

A y-ray line detected by FERMI towards the GC?

Su & Finkbeiner, arXiv:1206.1616 use a template fitting method and claim
“strong evidence”, with local significance. of 5 0 6 0 for 2 lines at 111 & 129

GeV!

10° T | T | T | 3 124.7 - 133.4 GeV 124.7 - 133.4 GeV
- Ibl>1° Uniform background ———— 3 20[ T —T T — ] T *
-1l <180° Galactic %g,ntelr °é‘-sﬁ —_— ] [ - _
° imple disk ———— _ _ . _
- FWHMof cusp 4 Whole bubble ——— - * Ny=13.99 TS=36.11 - : Ny= 16.13 TS=28.42
104 L Lines at 111 and 129 GeV | 4

—
4
w

Line Superposition ............ é 15 : 'Tl:l ". 15 .'
1 J/ \L i 10+ " | 1 -
3 ¢ \l/ \L E b | L

iy

I

E® dN/dE [GeV/cm®/s/sr]
o

b—
-
-
b
b
b
b
—
o

EEUTHRITRIE .
7L 1 : \11/1 [ 10 5 0 5 10 - . 10
\L Gal | [deF] Gal b [deg]

L L, S S Template tor the DM cusp
90 100 120 140 160 180 200 o
Photon Energy [Ge\ off-centered by 1.5° (200 pc)

—

-
o
&

—
o
@

Oft-center due to a density wave excitation by the stellar components?
Matching a hydrodynamical N-body result Kuhlen et al., arXiv:1208.4844




A clean signature (... and being unhappy about it)

A y-ray line detected by FERMI towards the GC?

The preliminary statements from the FERMI collaborations:

4 x4 sliding windows, -40 at 130 GeV  there seems to be a background
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E. Charles, Fermi Symposium 2012
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A clean signature (... and being unhappy about it)

A monochromatic signal + continuum counterpart in a model
with physical background: Cholis, Tavakoli & P.U., arXiv:1207.1468

Sample model fitting the data:

E®dN/dE (MeV em™3s7'sr™})
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A fit with several degeneracies,
given the many components in
the fit: Diffuse emission + point
sources + DM component
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(Signiﬁcantly away from the
typical 1-loop over tree-level
ratio: definite guideline for

\the DM model?
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