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• Learning properties of dark matter particles from 
cosmological and astrophysical observations

• Are WIMP natural dark matter candidates?

• Chasing dark matter ambulances

• Clean dark matter signatures (... and being unhappy 
about them)

• ... add your own ...

A few proposals for topics we may discuss:



it accounts for the 
gravitational potential 
wells in which CMB 
acoustic oscillations  
take place: 

Credit: W. Hu website 

Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the

27

(Planck, 2013)

Plenty of (gravitational) evidence for non-baryonic cold (or coldish - as 
opposed to hot) DM being the building block of all structures in the 
Universe. E.g.:

Dark matter (indirectly) detected!
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the

27

(Planck, 2013)

Relying on the assumption that GR is the theory of gravity; still, it is 
very problematic to explain, e.g., the prominence of the third peak in 
an alternative  theory of gravity and matter consisting of baryons only 

Plenty of (gravitational) evidence for non-baryonic cold (or coldish - as 
opposed to hot) DM being the building block of all structures in the 
Universe. E.g.:

Dark matter (indirectly) detected!



Plenty of (gravitational) evidence for non-baryonic cold (or coldish - as 
opposed to hot) DM being the building block of all structures in the 
Universe. E.g.:

Dark matter (indirectly) detected!

Bullet cluster:
offset between DM, mapped 
via gravitational lensing, and 
hot gas - the bulk of the 
baryonic in the system, traced 
via its X-ray emissivity, in the
1E0657-558 cluster

Paraficz et al., arXiv: 1209.0384

magenta contours: Chandra 
X-ray image; blue contours: 
strong lensing map

12 D. Paraficz

Figure 7. F606W-band image of the Bullet Cluster. The size of the field of view is 15000 ⇥ 25000. The blue contours show the projected
mass density. The red line represent a critical line calculated using Faber-Jackson scaling relation to all cluster members while black line

represents the result from use of the two scaling relation Fundamental Plane to ellipticals and Tully-Fisher for spirals. The magenta lines

represent the contours of the Chandra X-rays brightness map.

existence and nature of dark matter but also provides an
exceptionally strong gravitational telescope.

In this work we have reconstructed a mass map of the
galaxy cluster 1E 0657-56 using strong lensing constraints
and X-rays data. Using deep, high-resolution optical data we
have revised the previously known multiple imaged systems
and identify new ones. As a result our model is based on
14 multiply imaged systems with 3 spectroscopic redshifts.
The model was sampled and optimized in the image plane by
a Bayesian Monte Carlo Markov chain implemented in the
publicly available software Lenstool. Our main conclusions
are as follows:

1. Using the strong lensing mass reconstruction we de-
rive a high-resolution mass map; we get a projected, en-
closed mass M

main

(< 250kpc) = 2.5 ± 0.1 ⇥ 1014M� and
M

sub

(< 250kpc) = 1.7 ± 0.2 ⇥ 1014M�. The main and sub
clump masses are respectively (11 ± 4)% and (27 ± 12)%
smaller to those predicted by (Bradač et al. 2006).

2. We have presented the implementation of the Fun-
damental Plane as a cluster members scaling relation and
X-rays gas mass maps into the strong lensing mass model-
ing.

3. We have found, in agreement with previous models of
1E 0657-56 that the major mass component (cluster scale-
DM halos) is in spatial agreement with the galaxies and not
with the X-rays gas, which confirms the collisionless nature
of dark matter. We detect the main and sub cluster DM peak
being aligned with their BCGs, both clearly o↵set from the
location of the X-ray gas in the system.

4. We have implemented the contribution of the X-ray

Figure 9. Contribution of the galaxy component to the total
mass as a function of radius (centered on the BCG 1). The vertical

dotted line shows the location of the 250 kpc radius where M
gal

=

11± 5%M
tot

.

gas mass in our mass modeling, which improved significantly
the lensing rms model.

The high accuracy mass map we have presented is made
available to the community and can be used to exploit 1E
0657-56 as a gravitational telescope, probing the high red-
shift universe (e.g. Kneib et al. 2004).

c� 0000 RAS, MNRAS 000, 000–000
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existence and nature of dark matter but also provides an
exceptionally strong gravitational telescope.

In this work we have reconstructed a mass map of the
galaxy cluster 1E 0657-56 using strong lensing constraints
and X-rays data. Using deep, high-resolution optical data we
have revised the previously known multiple imaged systems
and identify new ones. As a result our model is based on
14 multiply imaged systems with 3 spectroscopic redshifts.
The model was sampled and optimized in the image plane by
a Bayesian Monte Carlo Markov chain implemented in the
publicly available software Lenstool. Our main conclusions
are as follows:

1. Using the strong lensing mass reconstruction we de-
rive a high-resolution mass map; we get a projected, en-
closed mass M

main

(< 250kpc) = 2.5 ± 0.1 ⇥ 1014M� and
M

sub

(< 250kpc) = 1.7 ± 0.2 ⇥ 1014M�. The main and sub
clump masses are respectively (11 ± 4)% and (27 ± 12)%
smaller to those predicted by (Bradač et al. 2006).

2. We have presented the implementation of the Fun-
damental Plane as a cluster members scaling relation and
X-rays gas mass maps into the strong lensing mass model-
ing.

3. We have found, in agreement with previous models of
1E 0657-56 that the major mass component (cluster scale-
DM halos) is in spatial agreement with the galaxies and not
with the X-rays gas, which confirms the collisionless nature
of dark matter. We detect the main and sub cluster DM peak
being aligned with their BCGs, both clearly o↵set from the
location of the X-ray gas in the system.

4. We have implemented the contribution of the X-ray

Figure 9. Contribution of the galaxy component to the total
mass as a function of radius (centered on the BCG 1). The vertical

dotted line shows the location of the 250 kpc radius where M
gal

=

11± 5%M
tot

.

gas mass in our mass modeling, which improved significantly
the lensing rms model.

The high accuracy mass map we have presented is made
available to the community and can be used to exploit 1E
0657-56 as a gravitational telescope, probing the high red-
shift universe (e.g. Kneib et al. 2004).

c� 0000 RAS, MNRAS 000, 000–000

Relying again on GR as a theory of gravity; again it is very problematic 
to introduce an alternative theory and explain the component 
segregation within a model without DM but having baryons only



(Indirect) detection of dark matter particles?
Jump from this indirect evidence to a specific particle DM candidate?

(review: Bertone, (ed.) e al., 2010)



(Indirect) detection of dark matter particles?
Jump from this indirect evidence to a specific particle DM candidate?
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On one hand: ΛCDM cosmology  
with extraordinarily accurate 
measurement of the mean density 
of DM particles: 

⌦�h
2 = 0.1199± 0.0027

(Planck, 2013 + WMAP 7 yr pol.)



(Indirect) detection of dark matter particles?
Jump from this indirect evidence to a specific particle DM candidate?

(review: Bertone, (ed.) e al., 2010)

.. at the same time, very loose 
bounds on the properties which are 
crucial for devising a detection 
strategy for DM particles - the 
mass and coupling to ordinary 
matter.
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(Indirect) detection of dark matter particles?
Jump from this indirect evidence to a specific particle DM candidate?

(review: Bertone, (ed.) e al., 2010)

.. at the same time, very loose 
bounds on the properties which are 
crucial for devising a detection 
strategy for DM particles - the 
mass and coupling to ordinary 
matter.

just a 
subset

Credit: L. Roszkowski 

On one hand: ΛCDM cosmology  
with extraordinarily accurate 
measurement of the mean density 
of DM particles: 

⌦�h
2 = 0.1199± 0.0027

(Planck, 2013 + WMAP 7 yr pol.)



(Indirect) detection of dark matter particles?
Jump from the indirect (gravitational) evidence to a particle DM candidate?

(review: Bertone, (ed.) e al., 2010)
just a 
subset

E.g.: from the CMB, limits on 
eventual DM electromagnetic 
couplings and on the DM heating 
of the plasma at (moderately) 
recent times, and, from the Bullet 
cluster, limits on the self-
interaction of DM particles 

Credit: L. Roszkowski 

On one hand: ΛCDM cosmology  
with extraordinarily accurate 
measurement of the mean density 
of DM particles: 

⌦�h
2 = 0.1199± 0.0027

(Planck, 2013 + WMAP 7 yr pol.)



Learning more on DM particles from cosmology?
In the SM for cosmology and structure formation, the ΛCDM model,  DM 
is treated as a collisionless, cold fluid, coupled to ordinary (baryonic) matter 
only gravitationally: spectacular agreement between predictions from this 
model and data, especially on large scales!   

Shortcomings of the model on small scales, in the (very) non-linear regime, 
usually addressed via numerical N-body simulations?

• the missing satellite “problem”, Moore et al., Klypin et al. 1999

• the too-big-to-fail Milky Way  problem, Boylan-Kolchin et al. 2012

• the CDM profiles too cuspy when looking at low mass objects, like dwarf 
or LSB galaxies, see, e.g., Salucci et al. 2011, Kuzio de Naray et al. 2008

• ...
All of these loosely targeted as an excess of power on small scales? Introduce   
a dissipation of power on small scales as an imprint from DM particles? or 
just blame the fact the it is really hard to include a realistic model for 
baryonic components in the DM numerical simulations?  



Learning more on DM particles from cosmology?
Improving on ΛCDM  with some extra ingredient from particle physics:    

Warm DM: imprint on the sky of the DM particle free streaming scale, 
approximately: 

v(t) ∼ 1 (40)

t = tNR (41)

TNR ∼ Mp/3 (42)

t ∝ a2 (43)

tNR ∝ M−2
p (44)

aNR ∝ M−1
p (45)

λFS # 0.4 Mpc (Mp/keV)−1(Tp/T ) (46)

λν
FS # 40 Mpc (Mν/30 keV)−1(Tp/T ) (47)

Mp (48)

3

DM mass scale in, say, the keV - 100 keV range depending on the DM 
temperature T . Popular candidates: sterile neutrinos and gravitinos. p

search for the decay into 
1 photon & 1 neutrino
+ constraints from 
production + constraints 
from being a fermion 

Bo
ya

rs
ky

 e
t a

l.,
 

ar
X

iv
:0

90
1.

00
11

Their detection depends on features in the specific model; e.g. for sterile 
neutrinos:



Learning more on DM particles from cosmology?
Improving on ΛCDM  with some extra ingredient from particle physics:    

Self interacting DM: a “hint of detection” from the Musket Ball cluster? 

4.5

2.5

0.5

-1.5

-3.5

6.5

S
ur

fa
ce

 M
as

s 
D

en
si

ty
 S

/N

The Musket Ball mass & galaxy maps 
generally  agree,  but…
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Will Dawson | KITP | 5-15-2013

Dawson et al. 2013

another merging event, although at much smaller impact speed than for the 
Bullet cluster



Learning more on DM particles from cosmology?
Improving on ΛCDM  with some extra ingredient from particle physics:    

Self interacting DM: a “hint of detection” from the Musket Ball cluster? 
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displacement consistent with:                                         , rather large effect!
Pointing towards, e.g., a dark sector with a light mediator generating a fifth 
force? Feng et al. 2009, Tulin et al. 2013
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Learning more on DM particles from cosmology?
Improving on ΛCDM  with some extra ingredient from particle physics:    

DM as a BEC: identical bosonic particles highly condensed in phase 
space, going to the lowest energy available state when thermalizing.
Very “thin” phase space sheets wrapping themselves into and generating 
caustics when structures form:

The dark matter particles lie on a 
3-dimensional sheet in 

6-dimensional phase space

the physical  
density is the 
projection of 
the phase 
space sheet 
onto position 
space

z

z
.

The cold dark matter particles lie on 
a 3-dimensional sheet in 

6-dimensional phase space

the physical  
density is the 
projection of 
the phase 
space sheet 
onto position 
space

z

z
.

⇒

Look for their imprint in today’s galaxy halos; axion would give rise to 
such features Sikivie et al. 1998-2012 
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4Plenty of WIMPs in BSM setups! DM as a byproduct of some other 
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WIMPs as natural DM candidates (?)
Thermal generation of DM:



WIMPs as natural DM candidates (?)
Great idea, except that “vanilla” models usually fail. E.g.: 

MSSM with R-parity: the lightest neutralino as a DM candidate from 
the superposition of 4 interaction eigenstates:

�̃0
1 = N11B̃ + N12W̃

3 + N13H̃
0
1 + N14H̃

0
2

“Bino” “Wino” “Higgsinos”

• Binos annihilate into fermions via sfermions (helicity suppressed) and their 
relic abundance matching the cosmological DM density only for “light” 
masses, about 100-150 GeV, and fairly light sfermions (squarks) → excluded.
• Higgsinos (SU(2) doublet) mainly annihilate into gauge bosons (process not 
helicity suppressed); compensate the larger cross section lifting the mass 
scale up to about 1.1 TeV 
• Winos (SU(2) triplet) also annihilate into gauge bosons and even more 
efficiently than for Higgsinos, with the mass for thermal relic as large as 
about 2.8 TeV
In the last two cases clearly very little connection to naturalness as a 
motivation for SUSY  



WIMPs as natural DM candidates (?)
Great idea, except that “vanilla” models usually fail. E.g.: 

MSSM with R-parity: loopholes (pessimists would say epicycles)
• Consider compressed spectra: the thermal relic density of a “lazy” Bino 
driven by a state (a slepton?  a squark?) much more tightly coupled to the 
thermal bath (coannihilation process), decaying into the LSP after 
decoupling 

NOTE 1: Except for the last case, the picture of thermal relic DM in the 
MSSM has not changed dramatically entering the LHC era; it did when 
focussing on simplified scenarios, as the CMSSM  

• Tune the mixing: at a given mass scale find out the right balancing between 
Bino component and Higgsino or Wino component in the LSP, essentially 
decreasing the Higgsino or Wino annihilation efficiency

• Boost the Bino annihilation via S-channel resonance (a Higgs with mass 
being about twice the Bino mass) → harder in light of LHC Higgs discovery 
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Great idea, except that “vanilla” models usually fail. E.g.: 

MSSM with R-parity: loopholes (pessimists would say epicycles)
• Consider compressed spectra: the thermal relic density of a “lazy” Bino 
driven by a state (a slepton?  a squark?) much more tightly coupled to the 
thermal bath (coannihilation process), decaying into the LSP after 
decoupling 

NOTE 2: stop buying the perspective of DM as a byproduct in a deeply 
motivated setup; DM becomes (one of) the strong motivation(s) for the 
scenario; on the other hand there are way more minimal setups one can 
consider motivated by the presence of a DM candidate (SM + 1 extra scalar 
field is good enough) 

• Tune the mixing: at a given mass scale find out the right balancing between 
Bino component and Higgsino or Wino component in the LSP, essentially 
decreasing the Higgsino or Wino annihilation efficiency

• Boost the Bino annihilation via S-channel resonance (a Higgs with mass 
being about twice the Bino mass) → harder in light of LHC Higgs discovery 
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WIMPs as natural DM candidates (?)

Give up on thermal generation (???):
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WIMPs as natural DM candidates (?)

Give up on thermal generation (???):

Extra DM 
source !om non-

thermal states
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ṡ = −3 s H (78)

x ≡ Mχ/T (79)

x

Y eq
χ

dYχ

dx
= −

〈σAv〉neq
χ

H

[

(

Yχ

Y eq
χ

)2

− 1

]

(80)

4

WIMPs as natural DM candidates (?)

Give up on thermal generation (???):

Extra DM 
source !om non-

thermal states

DM dilution by 
late-time entropy 

injections

Change the 
Universe 

expansion rate



1 10 100 1000

0.0001

0.001

0.01

⌦�h2 ' 3 · 10�27cm�3s�1

h�AviT=Tf

x

Y eq
χ

dYχ

dx
= −

〈σAv〉T neq
χ

H

[

(

Yχ

Y eq
χ

)2

− 1

]

(80)

∼
∆Y

Y
(81)

Tf (82)

Γ(Tf ) = neq
χ (Tf)〈σAv〉T=Tf

% H(Tf) (83)

Γ & H (84)

Yχ(T ) % Y eq
χ (Tf ) (85)

(nχ

s

)

T=T0

=
(nχ

s

)

T=Tf

(86)

Ωχ =
ρχ

ρc
=

Mχ n0

ρc
=

Mχ s0 Y0

ρc
%

Mχ s0 Y eq
χ (Tf )

ρc
(87)

s0 % 3000 cm−3 (88)

Y eq
χ '= Y eq

χ (Tf ) (89)

Ωχ ∝ Mχ (90)

〈σAv〉T=Tf
(91)

Ωνh2 =

∑

mνi

91 eV
(92)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
%

Mχ s0

ρc/h2

H(Tf)

s(Tf )〈σAv〉Tf

(93)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
(94)

%
Mχ s0

ρc/h2

H(Tf )

s(Tf )〈σAv〉Tf

(95)

%
Mχ

Tf

g#
χ

geff

1 · 10−27cm−3s−1

〈σAv〉T=Tf

(96)

Mχ/Tf ∼ 20 (97)

Γ(Tf ) % H(Tf) (98)

5

x

Y eq
χ

dYχ

dx
= −

〈σAv〉T neq
χ

H

[

(

Yχ

Y eq
χ

)2

− 1

]

(80)

∼
∆Y

Y
(81)

Tf (82)

Γ(Tf ) = neq
χ (Tf)〈σAv〉T=Tf

% H(Tf) (83)

Γ & H (84)

Yχ(T ) % Y eq
χ (Tf ) (85)

(nχ

s

)

T=T0

=
(nχ

s

)

T=Tf

(86)

Ωχ =
ρχ

ρc
=

Mχ n0

ρc
=

Mχ s0 Y0

ρc
%

Mχ s0 Y eq
χ (Tf )

ρc
(87)

s0 % 3000 cm−3 (88)

Y eq
χ '= Y eq

χ (Tf ) (89)

Ωχ ∝ Mχ (90)

〈σAv〉T=Tf
(91)

Ωνh2 =

∑

mνi

91 eV
(92)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
%

Mχ s0

ρc/h2

H(Tf)

s(Tf )〈σAv〉Tf

(93)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
(94)

%
Mχ s0

ρc/h2

H(Tf )

s(Tf )〈σAv〉Tf

(95)

%
Mχ

Tf

g#
χ

geff

1 · 10−27cm−3s−1

〈σAv〉T=Tf

(96)

Mχ/Tf ∼ 20 (97)

Γ(Tf ) % H(Tf) (98)

5

x

Y eq
χ

dYχ

dx
= −

〈σAv〉T neq
χ

H

[

(

Yχ

Y eq
χ

)2

− 1

]

(80)

∼
∆Y

Y
(81)

Tf (82)

Γ(Tf ) = neq
χ (Tf)〈σAv〉T=Tf

% H(Tf) (83)

Γ & H (84)

Yχ(T ) % Y eq
χ (Tf ) (85)

(nχ

s

)

T=T0

=
(nχ

s

)

T=Tf

(86)

Ωχ =
ρχ

ρc
=

Mχ n0

ρc
=

Mχ s0 Y0

ρc
%

Mχ s0 Y eq
χ (Tf )

ρc
(87)

s0 % 3000 cm−3 (88)

Y eq
χ '= Y eq

χ (Tf ) (89)

Ωχ ∝ Mχ (90)

〈σAv〉T=Tf
(91)

Ωνh2 =

∑

mνi

91 eV
(92)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
%

Mχ s0

ρc/h2

H(Tf)

s(Tf )〈σAv〉Tf

(93)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
(94)

%
Mχ s0

ρc/h2

H(Tf )

s(Tf )〈σAv〉Tf

(95)

%
Mχ

Tf

g#
χ

geff

1 · 10−27cm−3s−1

〈σAv〉T=Tf

(96)

Mχ/Tf ∼ 20 (97)

Γ(Tf ) % H(Tf) (98)

5

with:

x

Y eq
χ

dYχ

dx
= −

〈σAv〉T neq
χ

H

[

(

Yχ

Y eq
χ

)2

− 1

]

(80)

∼
∆Y

Y
(81)

Tf (82)

Γ(Tf ) = neq
χ (Tf)〈σAv〉T=Tf

% H(Tf) (83)

Γ & H (84)

Yχ(T ) % Y eq
χ (Tf ) (85)

(nχ

s

)

T=T0

=
(nχ

s

)

T=Tf

(86)

Ωχ =
ρχ

ρc
=

Mχ n0

ρc
=

Mχ s0 Y0

ρc
%

Mχ s0 Y eq
χ (Tf )

ρc
(87)

s0 % 3000 cm−3 (88)

Y eq
χ '= Y eq

χ (Tf ) (89)

Ωχ ∝ Mχ (90)

〈σAv〉T=Tf
(91)

Ωνh2 =

∑

mνi

91 eV
(92)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
%

Mχ s0

ρc/h2

H(Tf)

s(Tf )〈σAv〉Tf

(93)

Ωχh2 %
Mχ s0 Y eq

χ (Tf )

ρc/h2
(94)

%
Mχ s0

ρc/h2

H(Tf )

s(Tf )〈σAv〉Tf

(95)

%
Mχ

Tf

g#
χ

geff

1 · 10−27cm−3s−1

〈σAv〉T=Tf

(96)

Mχ/Tf ∼ 20 (97)

Γ(Tf ) % H(Tf) (98)

5

(freeze-out + entropy conservation)

(standard rad. dominated cosmology)

ma ∼ 10−5 eV (60)

1/ma ∝ fa (61)

1/ma ∝ fa (62)

gaii ∝
1

fa
(63)

Laγγ = gaγγ aE · B (64)

χ Mχ (65)

χχ̄ ↔ PP̄ (66)

nχ =
gχ

(2π)3

∫

fχ(p, T ) d3p (67)

dnχ

dt
+ 3Hnχ = −〈σAv〉T

[

(nχ)2 −
(

neq
χ

)2
]

(68)

χχ̄ → PP̄ (69)

PP̄ → χχ̄ (70)

T ( Mχ (71)

T ) Mχ (72)

neq
χ ∝ T 3 (73)

neq
χ ∝ (MχT )3/2 exp (−Mχ/T ) (74)

Yχ ≡
nχ

s
(75)

s ∝ geff(T )T 3yt (76)

s a3 = const. (77)
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Chasing DM ambulances
Several “hints” of detection in cases in which “backgrounds” are not under 
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FIG. 2. Ionization yield versus recoil energy in all detectors
included in this analysis for events passing all signal criteria
except (top) and including (bottom) the phonon timing crite-
rion. The curved black lines indicate the signal region (-1.8�
and +1.2� from the mean nuclear recoil yield) between 7 and
100 keV recoil energies, while the gray band shows the range
of charge thresholds. Electron recoils in the detector bulk
have yield near unity. The data are colored to indicate recoil
energy ranges (dark to light) of 7–20, 20–30, and 30–100 keV
to aid the interpretation of Fig. 3.

of each candidate event must lie below 100 keV and above
a detector-dependent threshold ranging from 7 to 30 keV,
also chosen blindly based on calibration data. In order
to take advantage of the fact that the timing parameters
are better measured at high energies, the phonon timing
data-selection cut was optimized in three energy bins: 7–
20 keV, 20–30 keV, and 30–100 keV [20]. Fig. 1 shows
the estimated overall exposure to WIMP recoils on the
left y-scale, while the right-scale shows the “WIMP e�-
ciency,” namely the estimated fraction of WIMP recoils
at a given energy that would be accepted by these signal
criteria. The abrupt changes in e�ciency are due to the
di↵erent detector thresholds and changes to the timing
cuts in the three energy bins. Signal acceptance was mea-
sured using nuclear recoils from 252Cf calibration. Signal
acceptance is ⇠40% at most recoil energies, somewhat
higher than that of the Ge analysis [11]. After apply-
ing all selection criteria, the exposure of this analysis is
equivalent to 23.4 kg-days over a recoil energy range of
7–100 keV for a WIMP of mass 10 GeV/c2.

Neutrons from cosmogenic or radioactive processes
can produce nuclear recoils that are indistinguishable
from those from an incident WIMP. Simulations of the
rates and energy distributions of these processes using
GEANT4 [21] lead us to expect < 0.13 false candidate
events (90% confidence level) in the Si detectors from
neutrons in this exposure.

A greater source of background is the misidentifica-
tion of surface electron recoils, which may su↵er from re-
duced ionization yield and thus contribute events to the
WIMP-candidate region; these events are termed “leak-
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FIG. 3. Normalized ionization yield (standard deviations
from the nuclear recoil band centroid) versus normalized
phonon timing parameter (normalized such that the median
of the surface event calibration sample is at -1 and the cut
position is at 0) for events in all detectors from the WIMP-
search data set passing all other selection criteria. The black
box indicates the WIMP candidate selection region. The data
are colored to indicate recoil energy ranges (dark to light) of
7–20, 20–30, and 30–100 keV. The thin red curves on the bot-
tom and right axes are the histograms of surface events from
133Ba calibration data, while the thicker green curves are the
histograms of nuclear recoils from 252Cf calibration data.

age events”. Prior to looking at the WIMP-candidate
region (unblinding), the expected leakage was estimated
using the rate of single scatter events with yields con-
sistent with nuclear recoils from a previously unblinded
dataset [22] and the rejection performance of the timing
cut measured on low-yield multiple-scatter events from
133Ba calibration data. Two detectors used in this anal-
ysis were located at the end of detector stacks, so scat-
ters on their outer faces could not be tagged as mul-
tiple scatters. The multiple-scatter rates on the outer
faces of these two detectors were estimated using their
single-scatter rates from a previously unblinded dataset
presented in [22] and the multiples-singles ratio on the
interior detectors. The final pre-unblinding estimate for
misidentified surface event leakage into the signal band
in the eight Si detectors was 0.47+0.28

�0.17(stat.) events. This
initial leakage estimate informed the decision to unblind.

After all WIMP-selection criteria were defined, the sig-
nal regions of the Si detectors were unblinded. Three
WIMP-candidate events were observed, with recoil ener-
gies of 8.2, 9.5, and 12.3 keV. Two events were observed
in Detector 3 of Tower 4, and the third was observed in
Detector 3 of Tower 5. The events were well separated
in time and were in the middle of their respective tower
stacks. Fig. 2 illustrates the distribution of events in and
near the signal region of the WIMP-search data set be-
fore (top) and after (bottom) application of the phonon
timing criterion. Fig. 3 shows an alternate view of these
events, expressed in “normalized” versions of yield and

3 events after phonon timing criteria

4

timing that are transformed so that the WIMP accep-
tance regions of all detectors coincide.

After unblinding, extensive checks of the three candi-
date events revealed no data quality or analysis issues
that would invalidate them as WIMP candidates. The
signal-to-noise on the ionization channel for the three
events (ordered in increasing recoil energy) was measured
to be 6.7�, 4.9�, and 5.1�, while the charge threshold
had been set at 4.5� from the noise. A study on pos-
sible leakage into the signal band due to 206Pb recoils
from 210Po decays found the expected leakage to be neg-
ligible with an upper limit of < 0.08 events at the 90%
confidence level. The energy distribution of the 206Pb
background was constructed using events in which a co-
incident ↵ was detected in a detector adjacent to one
of the 8 Si detectors used in this analysis. Further-
more, as in the Ge analysis, we developed a Bayesian
estimate of the rate of misidentified surface events based
upon the performance of the phonon timing cut mea-
sured using events near the WIMP-search signal region
[22]. Classical confidence intervals provided similar esti-
mates [23]. Multiple-scatter events below the electron-
recoil ionization-yield region from both 133Ba calibration
andWIMP-search data were used as inputs to this model.
The final model predicts an updated surface-event leak-
age estimate of 0.41+0.20

�0.08(stat.)
+0.28
�0.24(syst.) misidentified

surface events in the eight Si detectors.

This result constrains the available parameter space
of WIMP dark matter models. We compute upper lim-
its on the WIMP-nucleon scattering cross section using
Yellin’s optimum interval method [24]. We assume a
WIMP mass density of 0.3 GeV/c2/cm3, a most probable
WIMP velocity with respect to the galaxy of 220 km/s,
a mean circular velocity of Earth with respect to the
galactic center of 232 km/s, a galactic escape velocity of
544 km/s [25], and the Helm form factor [26]. Fig. 4
shows the derived upper limits on the spin-independent
WIMP-nucleon scattering cross section at the 90% con-
fidence level (C.L.) from this analysis and a selection of
other recent results. The present data set an upper limit
of 2.4⇥ 10�41 cm2 for a WIMP of mass 10 GeV/c2. We
are completing the calibration of the nuclear recoil energy
scale using the Si-neutron elastic scattering resonant fea-
ture in the 252Cf exposures. This study indicates that our
reconstructed energy may be 10% lower than the true re-
coil energy, which would weaken the upper limit slightly.
Below 20 GeV/c2 the change is well approximated by
shifting the limits parallel to the mass axis by ⇠ 7%. In
addition, neutron calibration multiple scattering e↵ects
improve the response to WIMPs by shifting the upper
limit down parallel to the cross-section axis by ⇠ 5%.

A model of our known backgrounds, including both
energy and expected rate distributions, was constructed
for each detector and experimental run for each of the
three backgrounds considered: surface electron recoils,
neutron backgrounds, and 206Pb recoils. Simulations of
our background model yield a 5.4% probability of a sta-
tistical fluctuation producing three or more events in our

FIG. 4. Experimental upper limits (90% confidence level) for
the WIMP-nucleon spin-independent cross section as a func-
tion of WIMP mass. We show the limit obtained from the ex-
posure analyzed in this work alone (black dots), and combined
with the CDMS II Si data set reported in [22] (blue solid line).
Also shown are limits from the CDMS II Ge standard [11] and
low-threshold [27] analysis (dark and light dashed red), EDEL-
WEISS low-threshold [28] (orange diamonds), XENON10 S2-
only [29] (light dash-dotted green), and XENON100 [30] (dark
dash-dotted green). The filled regions identify possible signal
regions associated with data from CoGeNT [31] (magenta,
90% C.L., as interpreted by Kelso et al. including the e↵ect
of a residual surface event contamination described in [32]),
DAMA/LIBRA [16, 33] (yellow, 99.7% C.L.), and CRESST
[18] (brown, 95.45% C.L.) experiments. 68% and 90% C.L.
contours for a possible signal from these data are shown in
blue and cyan, respectively. The asterisk shows the maxi-
mum likelihood point at (8.6 GeV/c2, 1.9⇥ 10�41 cm2).

signal region.

This model of our known backgrounds was used to in-
vestigate the data in the context of a WIMP+background
hypothesis. We performed a profile likelihood analysis in
which the background rates were treated as nuisance pa-
rameters and the WIMP mass and cross section were
the parameters of interest. The highest likelihood is
found for a WIMP mass of 8.6 GeV/c2 and a WIMP-
nucleon cross section of 1.9⇥10�41 cm2. The goodness-
of-fit test of this WIMP+background hypothesis results
in a p-value of 68%, while the background-only hypoth-
esis fits the data with a p-value of 4.5%. A profile like-
lihood ratio test including the event energies finds that
the data favor the WIMP+background hypothesis over
our background-only hypothesis with a p-value of 0.19%.
Though this result favors a WIMP interpretation over
the known-background-only hypothesis, we do not be-
lieve this result rises to the level of a discovery.

blue and cyan are 68% and 
90% C.L. contours; 5.8% 
probability of fluctuation of 
estimated background



Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs: 

10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
correlation with the number of selected positrons.
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FIG. 5 (color). The positron fraction compared with the most
recent measurements from PAMELA [22] and Fermi-LAT [23].
The comparatively small error bars for AMS are the quadratic
sum of the statistical and systematic uncertainties (see Table I
and [13]), and the horizontal positions are the centers of
each bin.
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FIG. 2: The electron energy spectrum obtained in this work compared with modern measurements:

CAPRICE94 [19], HEAT [20], AMS [21], MASS91 [22], Kobayashi [23], BETS [24], ATIC [25],

HESS [26], Fermi [27]. Note that the data points from [23–27], indicated with blue symbols, and

the highest data point from HEAT [20] are for the electron and positron sum.

these measurements of order a few percent (see [28]). However, the PAMELA e− spectrum

appears softer than the (e− + e+ ) spectra presented by ATIC and Fermi. This difference

is within the systematic uncertainties between the various measurements, but it is also

consistent with a growing positron component with energy. An analysis of the PAMELA

positron energy spectrum (up to ∼ 300 GeV) will be presented in a future publication.

The differences with previous magnetic-spectrometer measurements [19–22] are larger and

probably due to uncertainties in the energy and efficiencies determination of the various

experiments. Below 10 GeV, discrepancies can be partially explained by the effect of solar

modulation for the various data taking periods.

Figure 3 top shows the PAMELA e− spectrum compared with a theoretical calculation

(solid line) based on the GALPROP code [29] and with a single power-law fit (long-dashed

line) to the data above 30 GeV (above the influence of solar modulation). The single

power-law fit represents well the data (χ2/ndf = 8.7/13) with a resulting spectral index

of −3.18 ± 0.05. This is incompatible (about 6 standard deviation discrepancy even con-

sidering systematic errors) with the soft e− spectrum [4] required to explain the PAMELA

positron fraction measurement within a standard model of cosmic-ray propagation. The

7
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10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
correlation with the number of selected positrons.

1 10 210

AMS-02 

-1
10

PAMELA
Fermi

FIG. 5 (color). The positron fraction compared with the most
recent measurements from PAMELA [22] and Fermi-LAT [23].
The comparatively small error bars for AMS are the quadratic
sum of the statistical and systematic uncertainties (see Table I
and [13]), and the horizontal positions are the centers of
each bin.
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HESS [26], Fermi [27]. Note that the data points from [23–27], indicated with blue symbols, and

the highest data point from HEAT [20] are for the electron and positron sum.

these measurements of order a few percent (see [28]). However, the PAMELA e− spectrum

appears softer than the (e− + e+ ) spectra presented by ATIC and Fermi. This difference

is within the systematic uncertainties between the various measurements, but it is also

consistent with a growing positron component with energy. An analysis of the PAMELA

positron energy spectrum (up to ∼ 300 GeV) will be presented in a future publication.

The differences with previous magnetic-spectrometer measurements [19–22] are larger and

probably due to uncertainties in the energy and efficiencies determination of the various

experiments. Below 10 GeV, discrepancies can be partially explained by the effect of solar

modulation for the various data taking periods.

Figure 3 top shows the PAMELA e− spectrum compared with a theoretical calculation

(solid line) based on the GALPROP code [29] and with a single power-law fit (long-dashed

line) to the data above 30 GeV (above the influence of solar modulation). The single

power-law fit represents well the data (χ2/ndf = 8.7/13) with a resulting spectral index

of −3.18 ± 0.05. This is incompatible (about 6 standard deviation discrepancy even con-

sidering systematic errors) with the soft e− spectrum [4] required to explain the PAMELA

positron fraction measurement within a standard model of cosmic-ray propagation. The
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We learned that the picture with electrons as primaries from SNRs and 
positrons as secondaries from the interaction of CRs on the ISM is wrong!



Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs: 

10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 2: The electron energy spectrum obtained in this work compared with modern measurements:

CAPRICE94 [19], HEAT [20], AMS [21], MASS91 [22], Kobayashi [23], BETS [24], ATIC [25],

HESS [26], Fermi [27]. Note that the data points from [23–27], indicated with blue symbols, and

the highest data point from HEAT [20] are for the electron and positron sum.

these measurements of order a few percent (see [28]). However, the PAMELA e− spectrum

appears softer than the (e− + e+ ) spectra presented by ATIC and Fermi. This difference

is within the systematic uncertainties between the various measurements, but it is also

consistent with a growing positron component with energy. An analysis of the PAMELA

positron energy spectrum (up to ∼ 300 GeV) will be presented in a future publication.

The differences with previous magnetic-spectrometer measurements [19–22] are larger and

probably due to uncertainties in the energy and efficiencies determination of the various

experiments. Below 10 GeV, discrepancies can be partially explained by the effect of solar

modulation for the various data taking periods.

Figure 3 top shows the PAMELA e− spectrum compared with a theoretical calculation

(solid line) based on the GALPROP code [29] and with a single power-law fit (long-dashed

line) to the data above 30 GeV (above the influence of solar modulation). The single

power-law fit represents well the data (χ2/ndf = 8.7/13) with a resulting spectral index

of −3.18 ± 0.05. This is incompatible (about 6 standard deviation discrepancy even con-

sidering systematic errors) with the soft e− spectrum [4] required to explain the PAMELA

positron fraction measurement within a standard model of cosmic-ray propagation. The

7

positron fraction electron, electron+positron fluxes

We learned that the picture with electrons as primaries from SNRs and 
positrons as secondaries from the interaction of CRs on the ISM is wrong!

We learned that there are primary (hard) positrons sources (or eventually 
secondaries from the interaction of CRs in source environments) & possibly 
extra electron sources. Since this extra components are measured at 100 
GeV - few TeV they need to be from local source (because of energy losses). 



Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs: 

A hard positron component (from AMS data possibly slightly softer than 
from Pamela data) in fair agreement with measurements, can be obtained 
from toy models of annihilating WIMPs, e.g.: Cholis &  Hooper, arXiv:1304.1840 

Not really a “vanilla” WIMP. You need: i) a large boost factor in the cross 
section compared the level at thermal freeze out (                                          
in the example above) or in local density of WIMP pairs (substructures???);
ii) a (combination of) leptophilic annihilation channel (hard from the model 
building point of view, possibly enforced via kinematics, see e.g.: Arkani-

Hamed et al., arXiv:0810.0713; Nomura & Thaler, arXiv:0810.5397)
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FIG. 2: As in Fig. 1, but for dark matter which annihilates into a pair of intermediate states, φ, which proceed to decay to
e+e− (first row), to µ+µ− (second row), to π+π− (third row), and to a 1:1:2 ratio of e+e−, µ+µ−, and π+π− (fourth row).
For annihilations to 2e+2e− and a mass of 400 GeV (1.2 TeV), we have used a thermally averaged annihilation cross section of
〈σv〉 = 7.3 × 10−25 cm3/s (6.2× 10−24 cm3/s). For annihilations to 2µ+2µ− and a mass of 800 GeV (2.5 TeV), we have used
a thermally averaged annihilation cross section of 3.4 × 10−24 cm3/s (2.6 × 10−23 cm3/s). For annihilations to 2π+2π− and
a mass of 1.0 TeV (3.0 TeV), we have used a thermally averaged annihilation cross section of 5.7 × 10−24 cm3/s (4.1 × 10−23

cm3/s). And for annihilations to a 1:1:2 ratio of e+e−, µ+µ−, and π+π− final states with a mass of 500 GeV (1.6 TeV), we
have used a thermally averaged annihilation cross section of 1.5× 10−24 cm3/s (1.3× 10−23 cm3/s).

1.5 · 10�24/1.3 · 10�23cm3s�1



Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs: 

Testing the DM hypothesis against other possibilities?
• Very hard from CR lepton data alone; possible falsification of the DM 
hypothesis from the detection of angular anisotropies in the flux (still one 
should be confident about modeling propagation in the local environment). 
• In principle possible by looking at the radiative emissions associated to 
the extra lepton components. Sources confined to the disc (as in case of 
pulsars) or spread out in the whole diffusive halo (as for DM annihilations) 
produce very different vertical lepton density profiles: 10
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FIG. 4: Electron vertical profile at R = 8 kpc and E = 200 GeV. Left Panel: Propagation model B0: We show primary
CR electrons (solid), secondary CR e+ + e− produced in the ISM (short dashed), secondary CR e+ + e− produced at the
source (dashed-dotted), and e+ + e− induced by DM annihilation in the model DMe (thick dotted). For comparison, we plot
the distribution of a source scaling as ρ2

DM (black dotted), with an arbitrary normalization. Central Panel: The same of the
left panel, but adding the propagation models B1 (green) and B2 (red) and considering only the contributions from primary
electrons and DM induced electrons + positrons. Right Panel: The same of the central panel, but in the propagation models
B3 (orange), B4 (cyan), and B5 (magenta).

scaling with ρ2, as in the WIMP case, or with ρ, as in the decaying DM case, are very mild. Therefore, our results can
be rephrased in term of two benchmark decaying DM scenarios, which corresponds to the DMe and DMτ cases. They
have, respectively, Mχ = 600 GeV, τ = (5.4, 6.0, 5.0, 5.4, 5.1, 6.6) · 1026s in the (B0, B1, B2, B3, B4, B5) propagation
model, and e+e− decaying mode, and Mχ = 800 GeV, τ = (1.9, 3.2, 1.5, 1.7, 1.8, 2.1) · 1026s in the (B0, B1, B2, B3,
B4, B5) propagation model, and τ+τ− decaying mode.

As discussed in the previous Section, for comparison, we consider also the case of an extra non-standard component
due to the production of secondary e+ − e− inside CR sources. In Fig. 3, we plot the e+ + e− spectrum and positron
fraction in the propagation model B0 for a population injected with βinj,sas = 1.36, an energy-cutoff at Ec = 1 TeV
and normalization tuned to the best fit value for the PAMELA data.

From the same figure, note that the local spectra of all the components considered as explanation for the positron
fraction are below the spectrum of primary CR electrons. Their local e+ + e− flux and the associated diffuse emission
is therefore hard to be detected (a small excess could be present in the DMe case). If the spatial distribution of the
sources of such ”exotic” components traces the CR sources, the last sentence would be true everywhere in the Galaxy.

In Fig. 4, we plot the vertical profiles of the electron number density distributions, at the local radial distance
R = 8 kpc and E = 200 GeV. For this slice of the Galaxy, at rather large distance from the GC, the determination
of propagation model parameters as derived by matching the LIS of nuclei is rather robust. We are focusing on
some typical energy at which electron and positron sources relevant for the raise in the positron fraction are also a
significant contribution to the total population of e+ +e−. In Fig. 4a we consider the propagation model B0, and plot
the vertical profile of CR primary electrons (solid), secondary e+ +e− produced in the ISM (short-dashed), secondary
e+ +e− injected at the source (dashed-dotted), and e+ +e− flux induced by WIMP annihilations in the DMe scenario
(dotted). All these cases but the latter follow a distribution which is mainly confined to the disc (although broadened
by the diffusion). The DM-induced component is instead much flatter (we plot for comparison the profile of the DM
injection source ∝ ρ2

DM ). It is the dominant component at intermediate and large z. We thus expect the associated
radiative emission to dominate at intermediate and high latitudes.

In order to understand how this conclusion is dependent on the propagation model considered, we show the cases
of the propagation model B1 and B2 (plus again B0, for comparison) in Fig. 4b, and of B3, B4, and B5 in Fig 4c. In
these figures, we do not plot the vertical profiles of secondary e+ + e−. Their shapes are analogous to the CR primary
electrons profile and the rescaling factor is roughly the same as in Fig. 4a. Note from Fig. 4b that, as expected, as
the boundary of propagation zh increases (decreases), the region at which the DM-induced component is dominant
becomes larger (smaller). From Fig. 4c, we conclude that at high energies the effect of convection (model B3) on the
shape of the vertical profile is negligible. The same conclusion applies also to the effect of varying the spectral index
of the diffusion coefficient (model B4). In the model B5, the population of electrons induced by DM at high z is
mildly reduced with respect to the model B2 since the spatial diffusion coefficient is increasing with z, and electrons
and positrons are less efficiently confined.
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should be confident about modeling propagation in the local environment). 
• In principle possible by looking at the radiative emissions associated to 
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pulsars) or spread out in the whole diffusive halo (as for DM annihilations) 
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FIG. 4: Electron vertical profile at R = 8 kpc and E = 200 GeV. Left Panel: Propagation model B0: We show primary
CR electrons (solid), secondary CR e+ + e− produced in the ISM (short dashed), secondary CR e+ + e− produced at the
source (dashed-dotted), and e+ + e− induced by DM annihilation in the model DMe (thick dotted). For comparison, we plot
the distribution of a source scaling as ρ2

DM (black dotted), with an arbitrary normalization. Central Panel: The same of the
left panel, but adding the propagation models B1 (green) and B2 (red) and considering only the contributions from primary
electrons and DM induced electrons + positrons. Right Panel: The same of the central panel, but in the propagation models
B3 (orange), B4 (cyan), and B5 (magenta).

scaling with ρ2, as in the WIMP case, or with ρ, as in the decaying DM case, are very mild. Therefore, our results can
be rephrased in term of two benchmark decaying DM scenarios, which corresponds to the DMe and DMτ cases. They
have, respectively, Mχ = 600 GeV, τ = (5.4, 6.0, 5.0, 5.4, 5.1, 6.6) · 1026s in the (B0, B1, B2, B3, B4, B5) propagation
model, and e+e− decaying mode, and Mχ = 800 GeV, τ = (1.9, 3.2, 1.5, 1.7, 1.8, 2.1) · 1026s in the (B0, B1, B2, B3,
B4, B5) propagation model, and τ+τ− decaying mode.

As discussed in the previous Section, for comparison, we consider also the case of an extra non-standard component
due to the production of secondary e+ − e− inside CR sources. In Fig. 3, we plot the e+ + e− spectrum and positron
fraction in the propagation model B0 for a population injected with βinj,sas = 1.36, an energy-cutoff at Ec = 1 TeV
and normalization tuned to the best fit value for the PAMELA data.

From the same figure, note that the local spectra of all the components considered as explanation for the positron
fraction are below the spectrum of primary CR electrons. Their local e+ + e− flux and the associated diffuse emission
is therefore hard to be detected (a small excess could be present in the DMe case). If the spatial distribution of the
sources of such ”exotic” components traces the CR sources, the last sentence would be true everywhere in the Galaxy.

In Fig. 4, we plot the vertical profiles of the electron number density distributions, at the local radial distance
R = 8 kpc and E = 200 GeV. For this slice of the Galaxy, at rather large distance from the GC, the determination
of propagation model parameters as derived by matching the LIS of nuclei is rather robust. We are focusing on
some typical energy at which electron and positron sources relevant for the raise in the positron fraction are also a
significant contribution to the total population of e+ +e−. In Fig. 4a we consider the propagation model B0, and plot
the vertical profile of CR primary electrons (solid), secondary e+ +e− produced in the ISM (short-dashed), secondary
e+ +e− injected at the source (dashed-dotted), and e+ +e− flux induced by WIMP annihilations in the DMe scenario
(dotted). All these cases but the latter follow a distribution which is mainly confined to the disc (although broadened
by the diffusion). The DM-induced component is instead much flatter (we plot for comparison the profile of the DM
injection source ∝ ρ2

DM ). It is the dominant component at intermediate and large z. We thus expect the associated
radiative emission to dominate at intermediate and high latitudes.

In order to understand how this conclusion is dependent on the propagation model considered, we show the cases
of the propagation model B1 and B2 (plus again B0, for comparison) in Fig. 4b, and of B3, B4, and B5 in Fig 4c. In
these figures, we do not plot the vertical profiles of secondary e+ + e−. Their shapes are analogous to the CR primary
electrons profile and the rescaling factor is roughly the same as in Fig. 4a. Note from Fig. 4b that, as expected, as
the boundary of propagation zh increases (decreases), the region at which the DM-induced component is dominant
becomes larger (smaller). From Fig. 4c, we conclude that at high energies the effect of convection (model B3) on the
shape of the vertical profile is negligible. The same conclusion applies also to the effect of varying the spectral index
of the diffusion coefficient (model B4). In the model B5, the population of electrons induced by DM at high z is
mildly reduced with respect to the model B2 since the spatial diffusion coefficient is increasing with z, and electrons
and positrons are less efficiently confined.
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High-latitude inverse Compton 
and synchrotron profiles are 

sensibly different in the two cases 
and should be distinguishable



Chasing DM ambulances
The cosmic ray lepton puzzle and leptophilic WIMPs: 

• Consistency checks are also possible looking at radiative emissions from 
the central region of the Galaxy, however these are much more model 
dependent. In particular they heavily rely on what extrapolation one takes 
for the dark matter distribution; in case of NFW profile, there is a severe 
tension with currently available radio data  
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A clean signature (... and being unhappy about it) 
About smoking guns and guns that quitted smoking... E.g.:

Annual modulation in direct detection signals: 
Bernabei et al., arXiv:0804.2741

An effect solidly detected over 10 annual cycles with huge statistics. For its 
interpretation, the phase of the modulation and its amplitude are 
compatible and suggestive of WIMP DM scatterings; however converting 
the effect into a WIMP event rate, there is tension with other direct 
detection experiments. 
New run at lower threshold, expecting results next year (?). Competitors are 
not targeting annual modulation. Directional detectors are at R&D phase.



Weniger, arXiv:1204.2797 optimized the search region (assuming a simple 
power-law background and find a 3.2σ statistical significance (if “look 
elsewhere” effect included) for a line signal at about 130 GeV!

3 σ

1 σ

Compatible with line limits from the whole 
sky: Fermi-LAT coll., arXiv:1205.2739, as well as 
from dwarfs: Geringer-Sameth & Koushiappas, 
arXiv:1206.0796

A clean signature (... and being unhappy about it) 
A γ-ray line detected by FERMI towards the GC?



Su & Finkbeiner, arXiv:1206.1616 use a template fitting method and claim 
“strong evidence”, with local significance of 5 o 6 σ for 2 lines at 111 & 129 
GeV!

Template for the DM cusp 
off-centered by 1.5º (200 pc)

Off-center due to a density wave excitation by the stellar components? 
Matching a hydrodynamical N-body result Kuhlen et al., arXiv:1208.4844

A clean signature (... and being unhappy about it) 
A γ-ray line detected by FERMI towards the GC?



The preliminary statements from the FERMI collaborations: 3 

Significant (3-4σ+) excess near the Galactic center, slight offset towards negative 
latitudes. Largely within 4° of Galactic plane. (However, be wary of interpretation in 
view of limited statistics…)  

Signal significance in fit to powerlaw + 1D signal PDF at 130 GeV for 4°x4° boxes 
near the Galactic Center in 1° steps. 

4 Years Data, P7CLEAN, 
θz < 100° E=[~50,~200GeV] 

 E. Charles, Fermi Symposium 2012

5 

The 111GeV feature is not as strong as the 130GeV feature, 
and does not appear to be spatially correlated with it,  
expect perhaps in the 4°x4° ROI nearest the Galactic center. 

4°x4° sliding windows, ~4σ at 130 GeV there seems to be a background 
contamination showing up in the 
Earth limb but not at the level to 
fully explain the signal, but ...  

A clean signature (... and being unhappy about it) 
A γ-ray line detected by FERMI towards the GC?



Spectral Line Spectral Line 9595% CL % CL Flux Upper Limit R41Flux Upper Limit R41
• No globally significant lines found

– Most significant fit was in R0 at 5 GeV, ~2σ (3.7σ local)

NFW optimized ROI

Expected limits calculated from 
powerlaw-only pseudo experiments
No systematic errors applied

11/02/20126 Fermi LAT Spectral Line Search

... the energy resolution may have 
been overestimated; updating it:

 A. Albert, Fermi Symposium 2012
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contamination showing up in the 
Earth limb but not at the level to 
fully explain the signal, but ...  

135 GeV
< 2.3 σ

A clean signature (... and being unhappy about it) 
A γ-ray line detected by FERMI towards the GC?



A  monochromatic signal + continuum counterpart in a model 
with physical background: Cholis, Tavakoli & P.U., arXiv:1207.1468

A fit with several degeneracies, 
given the many components in 
the fit: Diffuse emission + point 
sources + DM component

Significantly away from the 
typical 1-loop over tree-level  
ratio: definite guideline for 
the DM model? 

upper limit on:

lines best fit

Zγ + 2γ
Zγ + Hγ

μ μ+  −
W W+    −

b b
_

τ τ+  −
+  −e e

Sample model fitting the data:

A clean signature (... and being unhappy about it) 


