

Colored Scalars and Vector-like Quarks in the light of recent Higgs data

Admir Greljo "Jožef Stefan" Institute

In collaboration with:

Ilja Doršner, Svjetlana Fajfer, Ivana Mustać and Jernej Fesel Kamenik

"Higgs and Beyond the SM Physics at LHC", ICTP, 26. June 2013.

Outline

- Higgs data
- Fitting procedure
- Colored Scalars and Higgs phenomenology arXiv:1208.1266 (JHEP 2012:130) - I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik
- Vector-like Quarks and Higgs phenomenology arXiv:1304.4219 (JHEP accepted) - S. Fajfer, A. Greljo, I. Mustać, J. F. Kamenik
- Conclusions

Higgs data so far...

- Decay channels:
 - h->bb (BR_{SM}=0.569)
 - h->WW* (BR_{SM}=0.224)
 - h->ττ (BR_{SM}=0.063)
 - h->ZZ* (BR_{SM}=0.028)
 - h->γγ (BR_{SM}=0.0023)
 - h->Zγ (BR_{SM}=0.0016)
 - h->μμ (BR_{SM}=0.0002)
 - h->invisible

- Production mechanisms:
 - Gluon-gluon fusion (ggF) (σ_{SM 8TeV}=19.4 pb)
 - Vector-boson fusion (VBF) ($\sigma_{SM_{BTeV}}$ =1.55 pb)
 - Associated production with gauge bosons (VH) (σ_{SM 8TeV}=1.07 pb)
 - Associated production with top (ttH) $(\sigma_{SM 8TeV}=0.13)$

- Signal strengths (μ)
 - Number of signal events normalized to SM prediction

$$\mu_{A \to h}^{h \to B} = \frac{\sigma_{A \to h}}{\sigma_{A \to h}^{SM}} \frac{\mathcal{B}_{h \to B}}{\mathcal{B}_{h \to B}^{SM}}$$

- Several analysis categories for each decay channel
 - Generally target certain production mechanism
 - 0/1 jets, VBF-tag, VH-tag, ttH-tag
 - Does not imply 100% purity

Decomposition into production mechanisms

• Parameterize likelihood with (G. Cacciapaglia et al, G. Belanger et al)

$$\chi_{1}^{2} = \sum_{i} \left(\mu_{GF}^{i} - \hat{\mu}_{GF}^{i}, \ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \right) \left(\begin{pmatrix} \left(\hat{\sigma}_{GF}^{i} \right)^{2} & \rho^{i} \hat{\sigma}_{GF}^{i} \hat{\sigma}_{VF}^{i} \\ \rho^{i} \hat{\sigma}_{GF}^{i} \hat{\sigma}_{VF}^{i} & \left(\hat{\sigma}_{VF}^{i} \right)^{2} \end{pmatrix}^{-1} \left(\begin{matrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{matrix} \right)$$

Higgs data summarized

(arXiv:1304.4219 - S. Fajfer, A. Greljo, I. Mustać, J. F. Kamenik)

Decay channel	Production mode	Signal strength	Comment		
ATLAS					
$h \to ZZ^*$	Inclusive $(87\% \text{ ggF})$	1.5 ± 0.4	[14, 21]		
$h \to b\overline{b}$	VH	-0.4 ± 1.0	[14]		
$ h \to WW^* $	ggF+ttH	0.79 ± 0.35	Correlation $a = -0.3$ [14, 22]		
	VBF+VH	1.6 ± 0.8	$\rho = -0.3, [14, 22]$		
$h \to \gamma \gamma$	ggF+ttH	1.60 ± 0.44	Correlation $a = -0.4$ [14, 23]		
	VBF+VH	1.80 ± 0.87	p = -0.4, [14, 25]		
$h \to \tau \tau$	ggF+ttH	2.2 ± 1.6	Correlation $\rho = -0.5$, [14]		
	VBF+VH	-0.3 ± 1.1			
CMS					
$h \to b\overline{b}$	VH	1.3 ± 0.7	[15]		
$h \to WW^*$	$0/1$ jet $(97\% {\rm ggF})$	0.76 ± 0.21	[24]		
	VBF-tag $(20\% \mathrm{ggF})$	0.0 ± 0.7	[15]		
	VH	-0.3 ± 2.1	[15]		
$h \to ZZ^*$	ggF+ttH	0.90 ± 0.45	Correlation $\rho = -0.7$, [25]		
	VBF+VH	1.0 ± 2.3			
$h\to\gamma\gamma$	ggF+ttH	0.52 ± 0.40	Correlation, $\rho = -0.5$, [26]		
	VBF+VH	1.5 ± 0.9			
$h \to \tau \tau$	$0/1 \text{ jet } (80\% \mathrm{ggF})$	0.73 ± 0.51	[27]		
	VBF-tag $(20\% \text{ ggF})$	1.37 ± 0.63	[27]		
	VH	0.75 ± 1.5	[27]		

Table I: LHC Higgs data used in the analysis.

Light colored scalars and Higgs phenomenology

arXiv:1208.1266 (JHEP 2012:130) - I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik

- Motivation (Grand Unified Theory)
 - Light colored scalars improve unification
 - Correlation with observable partial proton decay lifetimes
 - We find viable unification scenarios for two SU(5) models
 - 5-, 45- scalar and 24- dimensional fermion Perez (2007)
 - 5-, 15-, 45- scalar Doršner and Perez (2006), Doršner and Mocioiu (2008)
- Higgs portal! $\Phi^{\dagger}\Phi H^{\dagger}H$
- Loop induced Higgs decays
 - Sensitive to colored and/or charged massive particles
 - a) $h \rightarrow \gamma \gamma$, $h \rightarrow Z \gamma$
 - b) gg→h

- Higgs signal strengths analysis:
 - Fitting parameters: $R_{gg} = \sigma_{ggF} / \sigma_{ggF}^{SM}$ and $R_{\gamma\gamma} = \Gamma_{h-\gamma\gamma} / \Gamma_{h-\gamma\gamma}^{SM}$

Light colored scalars and Higgs phenomenology: Results

- Correlation between $h \rightarrow \gamma \gamma$ and $gg \rightarrow h$
 - Dimension and Index of color rep. d_{ϕ} and C_{ϕ}
 - Electric charge Q_{ϕ}
- Single parameter $\lambda v^2/m_{\phi}^2$

• Do one-dimensional χ^2 , find allowed parameter region

$SU(3) \times SU(2) \times U(1)$	$\lambda v^2/m_\phi^2$
$(\bar{3}, 1, 1/3)$	-0.3 ± 0.5
$(\bar{3}, 1, -2/3)$	-0.4 ± 0.6
(3, 1, -4/3)	-0.7 ± 0.6
(3, 2, 1/6)	-0.2 ± 0.3
(3, 2, 7/6)	-0.3 ± 0.3
(3, 3, -1/3)	-0.2 ± 0.2
$(\overline{6}, 1, -1/3)$	-0.06 ± 0.12
$(\overline{6}, 1, 2/3)$	-0.07 ± 0.12
$(\overline{6}, 1, -4/3)$	-0.09 ± 0.12
$\overline{(\overline{6} \ 2 \ 1/2)}$	-0.02 ± 0.04
(0, 3, -1/3)	-1.0 < x < 0.9
(8.2, 1/2)	-0.03 ± 0.05
	-1.22 ± 0.04

Light Vector-like Quarks and Higgs Phenomenology

arXiv:1304.4219 (JHEP accepted) - S. Fajfer, A. Greljo, I. Mustać, J. F. Kamenik

- Set-up
 - Assume new lightest degree of freedom Vector-like Quark (VLQ)
 - Consider weak representation of SM chiral quarks mixing!
 - Singlet Up-type VLQ, Singlet Down-type VLQ, Doublet VLQ
 - Study leading dimension five operators (5DO)

$$H^{\dagger}H\overline{q}_{i}Q,\ H^{\dagger}H\overline{Q}Q$$

- Motivation
 - Models addressing EW hierarchy problem with Higgs and VLQ being lightest composite remnants of strong TeV dynamics
- Higgs data: Probe of Naturalness

- Renormalizable models with VLQ
 - Mass terms in weak (chiral) eigenbasis

$$-\mathcal{L}_{\text{mass}} = \bar{u}_L^i \mathcal{M}_u^{ij} u_R^j + \bar{d}_L^i \mathcal{M}_d^{ij} d_R^j + \text{h.c.}$$

Bi-unitary rotations

$$\mathcal{M}_{u,d,\mathrm{diag}} = U_L^{u,d} \mathcal{M}_{u,d} U_R^{u,d\dagger}$$

- Interaction terms in mass eigenbasis

$$\begin{aligned} \mathcal{L}_{W} &= -\frac{g}{\sqrt{2}} (V_{ij}^{L} \bar{u}^{i} \gamma^{\mu} P_{L} d^{j} + V_{ij}^{R} \bar{u}^{i} \gamma^{\mu} P_{R} d^{j}) W_{\mu}^{+} + \text{h.c.}, \\ \mathcal{L}_{Z} &= -\frac{g}{2c_{W}} \left(X_{ij}^{u} \bar{u}^{i} \gamma^{\mu} P_{L} u^{j} - X_{ij}^{d} \bar{d}^{i} \gamma^{\mu} P_{L} d^{j} + Y_{ij}^{u} \bar{u}^{i} \gamma^{\mu} P_{R} u^{j} - Y_{ij}^{d} \bar{d}^{i} \gamma^{\mu} P_{R} d^{j} - 2s_{W}^{2} J_{\text{EM}}^{\mu} \right) Z_{\mu}, \\ \mathcal{L}_{h}^{(0)} &= -(X_{ij}^{u} - Y_{ij}^{u}) \frac{m_{j}}{v} \bar{u}^{i} P_{R} u^{j} h - (X_{ij}^{d} - Y_{ij}^{d}) \frac{m_{j}}{v} \bar{d}^{i} P_{R} d^{j} h + \text{h.c.}, \end{aligned}$$

Flavour matrices

$$V_{ij}^L \equiv (U_L^d)_{jk}^* (U_L^u)_{ik} \qquad X^u \equiv V^L V^{L\dagger}, \ X^d \equiv V^{L\dagger} V^L$$

• Higgs interactions fixed by neutral current interactions!

• Summarized constraints on flavor matrices (Renormalizable models with VLQ)

Coupling	Constraint	Reference
$ X_{cu}^u , Y_{cu}^u $	$<2.1\times10^{-4}$	[12, 58]
$ X^u_{tu,tc} , Y^u_{tu,tc} $	< 0.14	$\operatorname{Appendix} A$
$ X_{ds}^d , Y_{ds}^d $	$< 1.4 \times 10^{-5}$	
$ X_{db}^d , Y_{db}^d $	$< 4 \times 10^{-4}$	Appendix B
$ X^d_{sb} , Y^d_{sb} $	$<1\times10^{-3}$	
δX_{uu}^u	-0.0001(6)	[9]
δX^u_{cc}	-0.0020(13)	Appendix \mathbf{C}
δX^d_{dd}	-0.0031(20)	
δX^d_{ss}	-0.002(3)	Appendix C
δX^d_{bb}	0.0027(15)	
δY^u_{uu}	0.035(40)	
δY^u_{cc}	-0.003(9)	
δY^d_{dd}	0.030(35)	Appendix C
δY^d_{ss}	$-0.05\substack{+0.08\\-0.06}$	
δY^d_{bb}	-0.018(6)	

• Lesson for Higgs: Hard to distinguish from SM!

- Including dimension five operators
 - Manifestly preserve mass diagonalization! (v²/2-|H|²)
- The main consequences of dim-5 operators

$$\mathcal{L}_{h}^{(1)} = \left(\frac{X_{ij}^{u\prime}}{\Lambda} \bar{u}_{L}^{i} u_{R}^{j} + \frac{X_{ij}^{d\prime}}{\Lambda} \bar{d}_{L}^{i} d_{R}^{j}\right) \left[vh + \frac{h^{2}}{2}\right] + \text{h.c.}$$

- Direct di-Higgs coupling
- Modification of single Higgs quark coupling
 - not related to weak currents!
- Possible effects:
 - Large flavour diagonal Higgs couplings to light quarks
 - Additional Higgs decay width
 - h->bb
 - Modification of loop induced decays
 - New heavy quarks in the loops

- Higgs data fit
 - Fitting parameters R_{gg} , $R_{\gamma\gamma}$, R_{bb} , $\Delta\gamma$
 - Four scenarios

$$\hat{\Gamma} \equiv \frac{\Gamma_{tot}}{\Gamma_{tot}^{SM}} = 0.569R_{bb} + 0.317 + 0.085R_{gg} + \Delta\gamma$$

$$\mu_{GF}^{h \to \gamma\gamma} = \frac{R_{gg}}{\hat{\Gamma}} R_{\gamma\gamma} , \qquad \mu_{GF}^{h \to ZZ, WW, \tau\tau} = \frac{R_{gg}}{\hat{\Gamma}} , \qquad \mu_{VF}^{h \to \gamma\gamma} = \frac{R_{\gamma\gamma}}{\hat{\Gamma}} \qquad \mu_{VF}^{h \to ZZ, WW, \tau\tau} = \frac{1}{\hat{\Gamma}} , \qquad \mu_{VH}^{h \to \overline{b}b} = \frac{R_{bb}}{\hat{\Gamma}}.$$

- Ex: Singlet up-like VLQ
 - Correlation

- From the Higgs fit: r_y^t=0.87±0.08
- Indirect constraint on top partner's mass:
 - m_{u'}>360 GeV @ 95% C.L.
- Complementary probe to direct searches
- More statistics needed!

Conclusions

- Higgs data fitting procedure reviewed
- Constraints on Higgs interactions with light colored scalars
- Higgs phenomenology in presence of dynamical
 VLQ and dimension five operators
- Higgs precision physics New indirect probe of New Physics

Back up

Higgs data and fitting procedure

- Improved χ² method
- Separation into GF=(ggF+tth) and VF=(VBF+VH)
 - Parameterize likelihood with

$$\chi_{1}^{2} = \sum_{i} \left(\mu_{GF}^{i} - \hat{\mu}_{GF}^{i}, \ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \right) \left(\begin{pmatrix} \left(\hat{\sigma}_{GF}^{i} \right)^{2} & \rho^{i} \hat{\sigma}_{GF}^{i} \hat{\sigma}_{VF}^{i} \\ \rho^{i} \hat{\sigma}_{GF}^{i} \hat{\sigma}_{VF}^{i} & \left(\hat{\sigma}_{VF}^{i} \right)^{2} \end{pmatrix}^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{VF}^{i} - \hat{\mu}_{VF}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{GF}^{i} \\ \mu_{F}^{i} - \hat{\mu}_{F}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{F}^{i} \\ \mu_{F}^{i} - \hat{\mu}_{F}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{F}^{i} \\ \mu_{F}^{i} - \hat{\mu}_{F}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{F}^{i} \\ \mu_{F}^{i} - \hat{\mu}_{F}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{GF}^{i} - \hat{\mu}_{F}^{i} \\ \mu_{F}^{i} - \hat{\mu}_{F}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{F}^{i} - \hat{\mu}_{F}^{i} \\ \mu_{F}^{i} \end{pmatrix} \right)^{-1} \left(\begin{pmatrix} \mu_{F}^{i} -$$

- Example: _ Vs=7TeV L=5.1fb CMS Preliminary vs=8TeV L=19.6fb CMS h->yy decay channel HV+Hpp U $\rho = -0.5$ Best Fit μ_{VF} 4 - 1o $\hat{\mu}_{VF} = 1.48$ · 20 $\hat{\sigma}_{\rm VF}=0.89$ 3 $\hat{\mu}_{\rm GF} = 0.52$ 2 $\hat{\sigma}_{\rm GF}=0.40$ 1 0 = 1.48 = 0.52 μ_{GF} 2 -1 0 3 4 -1 0 2 3 4 1
- If the separation is not provided, use search categories
 - Estimate contribution from each production mode
 - Parameterize with likelihood
- Total $\chi^2(\mu_i) = \chi_1^2 + \chi_2^2$

$$\mu_{A \to h}^{h \to B} = \frac{\sigma_{A \to h}}{\sigma_{A \to h}^{SM}} \frac{\mathcal{B}_{h \to B}}{\mathcal{B}_{h \to B}^{SM}}$$

$$\frac{\sigma_{A \to h}}{\sigma_{A \to h}^{SM}} = \xi_{ggF} \frac{\sigma_{ggF}}{\sigma_{ggF}^{SM}} + \xi_{VBF} \frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}} + \xi_{VH} \frac{\sigma_{VH}}{\sigma_{VH}^{SM}} + \xi_{ttH} \frac{\sigma_{ttH}}{\sigma_{ttH}^{SM}}$$
$$\chi_2^2 = \sum_j \left(\frac{\mu_j - \hat{\mu}_j}{\hat{\sigma}_j}\right)^2$$

Renormalizable Adjoint SU(5) (P. Fileviez Perez, Phys. Lett. B 654, 189 (2007))

• Standard Model matter fields $\overline{5} \oplus 10$

$$\overline{5} \to \left(\overline{3}, 1, \frac{1}{3}\right) \oplus \left(1, 2, -\frac{1}{2}\right) \qquad 10 \to \left(3, 2, \frac{1}{6}\right) \oplus \left(\overline{3}, 1, -\frac{2}{3}\right) \oplus (1, 1, 1)$$

$$\overline{5} \equiv \begin{bmatrix} d_1^c \\ d_2^c \\ d_3^c \\ e \\ -\nu \end{bmatrix} \qquad 10 \equiv \begin{bmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ -u_3^c & 0 & u_1^c & u_2 & d_2 \\ u_2^c & -u_1^c & 0 & u_3 & d_3 \\ -u_1 & -u_2 & -u_3 & 0 & e^c \\ -d_1 & -d_2 & -d_3 & -e^c & 0 \end{bmatrix}$$

SU(5) spontaneously broken down to Standard Model gauge group at GUT scale by 24_H (adjoint) Higgs representation

 $\mathbf{24} \equiv (\Sigma_8, \Sigma_3, \Sigma_{(3,2)}, \Sigma_{(\overline{3},2)}, \Sigma_{24}) = (\mathbf{8}, \mathbf{1}, 0) \oplus (\mathbf{1}, \mathbf{3}, 0) \oplus (\mathbf{3}, \mathbf{2}, -5/6) \oplus (\overline{\mathbf{3}}, \mathbf{2}, 5/6) \oplus (\mathbf{1}, \mathbf{1}, 0)$

$$\mathbf{24}_{H} = \begin{bmatrix} (\Sigma_{8})_{3\times3} & (\Sigma_{(3,2)})_{3\times2} \\ (\Sigma_{(\overline{3},2)})_{2\times3} & (\Sigma_{3})_{2\times2} \end{bmatrix}_{5\times5} + \left(1 + \frac{\Sigma_{24}}{v}\right) \langle \mathbf{24}_{H} \rangle \qquad \langle 24_{H} \rangle = \frac{v}{\sqrt{30}} \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 & -3 \end{pmatrix}$$

Scalar fields

$$egin{aligned} {f 5} \equiv (\Psi_D, \Psi_T) = ({f 1}, {f 2}, 1/2) \oplus ({f 3}, {f 1}, -1/3) \end{aligned}$$

 $\begin{aligned} \mathbf{45} &\equiv (\Delta_1, \Delta_2, \Delta_3, \Delta_4, \Delta_5, \Delta_6, \Delta_7) \\ &= (\mathbf{8}, \mathbf{2}, 1/2) \oplus (\overline{\mathbf{6}}, \mathbf{1}, -1/3) \oplus (\mathbf{3}, \mathbf{3}, -1/3) \oplus (\overline{\mathbf{3}}, \mathbf{2}, -7/6) \oplus (\mathbf{3}, \mathbf{1}, -1/3) \oplus (\overline{\mathbf{3}}, \mathbf{1}, 4/3) \oplus (\mathbf{1}, \mathbf{2}, 1/2) \end{aligned}$

• Extra fermion representation 24_F (adjoint) (B. Bajc and G. Senjanovic, JHEP 0708, 014 (2007))

 $\mathbf{24}_{F} \equiv (\rho_{8}, \rho_{3}, \rho_{(3,2)}, \rho_{(\bar{3},2)}, \rho_{24}) = (\mathbf{8}, \mathbf{1}, 0) \oplus (\mathbf{1}, \mathbf{3}, 0) \oplus (\mathbf{3}, \mathbf{2}, -5/6) \oplus (\overline{\mathbf{3}}, \mathbf{2}, 5/6) \oplus (\mathbf{1}, \mathbf{1}, 0)$

Viable unification for Renormalizable Adjoint SU(5)

• Mass spliting constraints - from the potential $V_{24} = m Tr(24^2) + \lambda Tr(24^224_H)$

$$egin{aligned} m_{
ho_8} = \hat{m} m_{
ho_3}, & m_{
ho_{(3,2)}} = m_{
ho_{(ar{3},2)}} = rac{(m_{
ho_3} + m_{
ho_8})}{2}, \end{aligned}$$

- We present a viable unification in a m[^] vs. M_{GUT} plane, where M_{GUT} represents the scale of gauge coupling unification.
 - M_{GUT} is maximized through numerical procedure that varies scalar and fermion masses, in accordance with mass splitting constraints, in the following ranges:

$$200 \, GeV \le m_{\Sigma_3}, m_{\Delta_1}, m_{\Delta_2}, m_{\Delta_4}, m_{\Delta_7}, m_{\rho_3}, m_{\rho_8}, m_{\rho_{(3,2)}}, m_{\rho_{(\bar{3},2)}} \le M_{\rm GUT}$$

 $10^{12} \, GeV \le m_{\Psi_T}, m_{\Delta_3}, m_{\Delta_5} \le M_{\rm GUT} \quad 10^5 \, GeV \le m_{\Sigma_8} \le M_{\rm GUT}$

• All unification scenarios below the dashed line in figure are excluded by experimental limits on $p \rightarrow \pi^0 e^+$. A lower bound on proton decay mediating scalar masses imposed.

Renormalizable SU(5) with 5, 45 and 15 Higgs

• Standard Model matter fields $\overline{5} \oplus 10$

$$\overline{5} \to \left(\overline{3}, 1, \frac{1}{3}\right) \oplus \left(1, 2, -\frac{1}{2}\right) \qquad \qquad \boxed{10 \to \left(3, 2, \frac{1}{6}\right) \oplus \left(\overline{3}, 1, -\frac{2}{3}\right) \oplus (1, 1, 1)}$$
$$\overline{5} \equiv \begin{bmatrix} d_1^c \\ d_2^c \\ d_3^c \\ e \\ -\nu \end{bmatrix} \qquad \qquad 10 \equiv \begin{bmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ -u_3^c & 0 & u_1^c & u_2 & d_2 \\ u_2^c & -u_1^c & 0 & u_3 & d_3 \\ -u_1 & -u_2 & -u_3 & 0 & e^c \\ -d_1 & -d_2 & -d_3 & -e^c & 0 \end{bmatrix}$$

SU(5) spontaneously broken down to Standard Model gauge group at GUT scale by 24_H (adjoint) Higgs representation

 $\mathbf{24} \equiv (\Sigma_8, \Sigma_3, \Sigma_{(3,2)}, \Sigma_{(\overline{3},2)}, \Sigma_{24}) = (\mathbf{8}, \mathbf{1}, 0) \oplus (\mathbf{1}, \mathbf{3}, 0) \oplus (\mathbf{3}, \mathbf{2}, -5/6) \oplus (\overline{\mathbf{3}}, \mathbf{2}, 5/6) \oplus (\mathbf{1}, \mathbf{1}, 0)$

$$\mathbf{24}_{H} = \begin{bmatrix} (\Sigma_{8})_{3\times3} & (\Sigma_{(3,2)})_{3\times2} \\ (\Sigma_{(\overline{3},2)})_{2\times3} & (\Sigma_{3})_{2\times2} \end{bmatrix}_{5\times5} + \left(1 + \frac{\Sigma_{24}}{v}\right) \langle \mathbf{24}_{H} \rangle \qquad \langle 24_{H} \rangle = \frac{v}{\sqrt{30}} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 & 0 \end{pmatrix}$$

Scalar fields

$$\mathbf{5} \equiv (\Psi_D, \Psi_T) = (\mathbf{1}, \mathbf{2}, 1/2) \oplus (\mathbf{3}, \mathbf{1}, -1/3)$$

 $\mathbf{45} \equiv (\Delta_1, \Delta_2, \Delta_3, \Delta_4, \Delta_5, \Delta_6, \Delta_7)$

 $=({\bf 8},{\bf 2},1/2)\oplus(\overline{{\bf 6}},{\bf 1},-1/3)\oplus({\bf 3},{\bf 3},-1/3)\oplus(\overline{{\bf 3}},{\bf 2},-7/6)\oplus({\bf 3},{\bf 1},-1/3)\oplus(\overline{{\bf 3}},{\bf 1},4/3)\oplus({\bf 1},{\bf 2},1/2)$

 $\mathbf{15} = (\Phi_a, \Phi_b, \Phi_c) = (\mathbf{1}, \mathbf{3}, 1) \oplus (\mathbf{3}, \mathbf{2}, 1/6) \oplus (\mathbf{6}, \mathbf{1}, -2/3)$

Viable unification for Renormalizable SU(5) with 5, 45 and 15 Higgs

- We present a viable unification in a m_{Δ_1} vs. M_{GUT} plane
 - M_{GUT} is maximized through numerical procedure that varies scalar masses in the following ranges:

 $200 \,\text{GeV} \le m_{\Sigma_3}, m_{\Delta_1}, m_{\Delta_2}, m_{\Delta_4}, m_{\Delta_6}, m_{\Delta_7}, m_{\rho_{(3,2)}}, m_{\rho_{(\bar{3},2)}}, m_{\Phi_a}, m_{\Phi_c} \le M_{\text{GUT}}$ $10^{12} \,\text{GeV} \le m_{\Psi_T}, m_{\Delta_3}, m_{\Delta_5}, m_{\Phi_b} \le M_{\text{GUT}} \quad 10^5 \,\text{GeV} \le m_{\Sigma_8} \le M_{\text{GUT}}$

- A lower bound on proton decay mediating scalar masses imposed.
- In both models, the relevant coupling of the octet to the Higgs field originates from the following SU(5) contraction:

$$egin{aligned} \lambda_1 \mathbf{5}^*_lpha \mathbf{5}^lpha \mathbf{45}^{eta\gamma}_\delta \mathbf{45}^{eta\gamma}_{eta\gamma} \mathbf{45}^{eta\gamma}_{eta\gamma} \end{bmatrix}$$