Search for MSSM Higgs decaying into b quarks with CMS

Jörg Behr (DESY)

On Behalf of the CMS Collaboration Trieste Workshop: Workshop on Higgs and BSM physics Trieste, June 27 2013

Outline

Motivation

- **2** The all-hadronic $b\Phi \rightarrow b(bb)$ analysis
- **6** The semileptonic $b\Phi \rightarrow b(bb)$ analysis
- 4 Results
- Summary

Neutral MSSM Higgs boson production

- $\rightarrow\,$ A Higgs boson has been observed
- $\rightarrow\,$ Question now is the structure of the Higgs sector
- $\rightarrow\,$ Are there any additional heavy Higgs particles?
- → One possible extension of the Standard Model: Supersymmetry

Minimal Supersymmetric Standard Model (MSSM)

- Two scalar Higgs doublets, five particles
 - Three neutral (h, H, A)
 - Two charged (H^{\pm})
- Higgs sector at tree level defined by
 - 1 Mass of pseudoscalar Higgs, M_A
 - **2** Ratio of vacuum expectation values, $\tan \beta$
- If MSSM is realised in nature \rightarrow associate the boson observed at 126 GeV with one of the CP-even MSSM Higgs bosons
- Both the mass and the production rates of the observed boson in the various channels imply constraints in the MSSM parameter space

Neutral MSSM Higgs boson

Production at the LHC:

- For relatively large values of $\tan \beta$
 - Higgs couplings to u-type fermions suppressed w.r.t. Standard Model
 - Couplings to *d*-type fermions enhanced by $\tan \beta$
 - Mass degeneration within experimental resolution (except for decay into $\mu^+\mu^-$)
 - \rightarrow Enhancement of Higgs production in association with b quarks by $\approx 2 \tan^2 \beta$

Higgs boson decay

• Neutral MSSM Higgs decays dominantly to

1 $bb \rightarrow \sim 90\%$

• Unlike in the SM, also important contributions at very high masses!

$\mathsf{MSSM}\ \Phi \to bb\ \mathsf{searches}$

Signature:

- Search for Higgs decaying to a pair of *b* quarks + at least one additional *b* quark
- Signal would show up as a peak in the invariant mass distribution of the two leading jets
- Very large background, dominated by QCD multi-jet events

2011 CDF+D0 results (arXiv:1207.2757):

\rightarrow Novel search at the LHC

 $\rightarrow\,$ Has not been looked at before at CMS!

Searched for with CMS using two complementary approaches:

- **1** All-hadronic: Final state characterized purely by jets
- **2** Semi-leptonic: Requirement of additional non-isolated muon

All-hadronic $b\Phi \rightarrow b(bb)$ analysis

Challenging trigger due to large hadronic interaction rate:

- Dedicated trigger developed
- Requirement of at least 2 to 3 centrally ($|\eta| < 2.6$) produced jets
- Online b-tagging: Select ≥ 2 b-tagged jets based on the impact parameter significance of 2^{nd} most significant track w.r.t. primary vertex

Two scenarios for Higgs mass hypothesis:

- 1 Low mass scenario ($M_{\Phi} < 180 \text{ GeV}$): $P_T^{jet1(2,3)} > 46$ (38, 20) GeV \rightarrow integrated luminosity: 2.7 fb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$
- ² Medium mass scenario ($M_{\Phi} \ge 180 \text{ GeV}$): $P_T^{jet1(2,3)} > 60$ (53, 20) GeV → integrated luminosity: 4.0 fb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$

Additional offline cuts:

- $\Delta R > 1$ between two leading jets to suppress background from gluon splitting
- Offline *b* tagging for selected jets using *"Combined Secondary Vertex"* algorithm

Signature of the signal:

Events with at least three b-tagged jets (Triple b-tag sample)

Background:

- Dominated by QCD multi-jet production with three *b* jets and two *b* jets + one misidentified *c* or light-flavour jet
- Other backgrounds such as $t\overline{t}$ and Z + jets found to be small
- · Analysis employs a data-driven technique to model the background
 - \rightarrow Construction of background templates using events with two b-tagged jets (Double b-tag sample)

Background model in data

Construction of background templates in double b-tag sample similar to CDF analysis:

- Require at least 3 jets (sorted in p_T)
- Assign flavour assumption of b, c, udsg for untagged jet X

 \rightarrow bbX, bXb, Xbb

- $\rightarrow\,$ Nine different templates
 - Apply probability of the assumed flavour to be identified as b jet to the events
 - Probabilities extracted from background MC

Background and signal templates

- Similar Background templates are merged :
- \rightarrow (Qb)b=Qbb+bQb
- $\rightarrow\,$ Reduction from 9 to 5 templates!
 - X_{123} helps to distinguish e.g. (Bb)b and (Qb)b
 - Signal templates extracted from MC

Background and signal templates

- Similar Background templates are merged :
- \rightarrow (Qb)b=Qbb+bQb
- $\rightarrow\,$ Reduction from 9 to 5 templates!
- X_{123} helps to distinguish e.g. (Bb)b and (Qb)b
- Signal templates extracted from MC

Background-only fit in signal region

Background+signal fit in signal region

Medium mass scenario:

- Fit of linear combination of background + signal templates in the signal region (triple b-tag sample)
- Performed for Higgs masses from 90 to 350 ${\rm GeV}$
- Shown: $M_{\Phi} = 200 \text{ GeV}$
 - Good fit quality
 - Largest upward fluctuation: $\sim 1.4\sigma$
- $\rightarrow\,$ No significant deviation from background observed

Semi-leptonic $b\Phi \rightarrow b(bb)$ analysis

• Sensitive to semileptonic decays of at least one b quark in the muon channel

Trigger:

- Similar trigger requirements as in all-hadronic analysis, but
 - requirement of a muon with $p_T > 12$ GeV,
 - lower jet p_T thresholds possible due to muon requirement

Offline selection cuts:

- Muon with $p_T > 15~{
 m GeV}$ associated to one of the two leading jets
- At least three centrally produced jets with $p_T^{
 m jet1,2(3)}>$ 30 (20) ${
 m GeV}$
- $\Delta R > 1$ between any pair of jet
- Offline *b* tagging for selected jets using *"Combined Secondary Vertex"* algorithm

ightarrow Data sample with integrated luminosity of 4.8 ${
m fb}^{-1}$

Background in semi-leptonic $b\Phi ightarrow b(bb)$ analysis

• Application of two different methods for the data-driven background estimation

"B-Tag Matrix method":

- $\rightarrow\,$ Utilisation of event sample in which the two leading jets are b-tagged
- \rightarrow Probability of third jet to be b-tagged: $P_b = \epsilon_b \cdot f_b + \epsilon_c \cdot f_c + \epsilon_q \cdot (1 f_b f_c)$
- $ightarrow \epsilon$ taken from simulation (corrected for data/MC differences)
 - Flavour fractions f extracted from data using a template fit to
 - Secondary vertex mass
 - Discriminant describing the probability that the associated tracks originate from the primary vertex

"Nearest-neighbour method":

- Usage of event sample in which the leading jet is b-tagged
- Methods estimates the probability that the three leading jets are b-tagged based on similar events in a multi-dimensional hyper-ellipsoid

Control region in semi-leptonic $b\Phi ightarrow b(bb)$ analysis

• Testing of background predictions in signal-depleted control region

• Independent data sample used in the two methods ightarrow Combination of results

Signal region in semi-leptonic $b\Phi \rightarrow b(bb)$ analysis

[•] No indication of an excess

Combination and systematic uncertainties

• Combination of results from semi-leptonic and all-hadronic analyses

- Common events removed from all-hadronic analysis
- Small statistical overlap of ($\sim 2.5\%)$ due to requirement of additional muon and, hence, rather different selection cuts
- Statistical and systematic uncertainties and correlations thoroughly treated

Source	all-hadronic	semi-leptonic	type
Trigger efficiency	10%	3 - 5%	rate
Online b-tagging efficiency	32%	-	rate
b-tagging efficiency	$10 - 13\%^{\dagger}$	12%	shape/rate
b-tagging efficiency dependence on topology	6%	-	rate
Jet Energy Scale	1.4 - 6.8%	+2.5%	shape/rate
Jet Energy Resolution	0.6 - 1.3%	1.9%	shape/rate
Muon momentum scale	-	0.2%	rate
Muon momentum resolution	-	0.6%	rate
Signal Monte Carlo statistics	1.1 - 2.6%		rate
Integrated luminosity	2.2%		rate
<i>PDF</i> and α_s uncertainties [*]	3-6% +(2.5-4.7) -(2.7-4.4)%		rate
Renormalisation and fragmentation QCD scale*	6-28%		rate
Underlying event and parton showering*	4	ŀ%	rate

Systematic uncertainties are implemented as nuisance parameters in the fit

95% CL upper limits

- ightarrow Observed combined limits statistically in agreement with expected limits!
- $\rightarrow\,$ In particular no confirmation of excess at low $\mathit{m_A}$ as seen by CDF/D0
- \rightarrow Combined result translated to the MSSM framework as functions of the mass of the pseudoscalar Higgs, m_A , and tan β
- $\rightarrow\,$ CMS results more sensitive to MSSM parameter space

- A search for a MSSM Higgs boson decaying into a pair of b quarks and produced in association with at least one additional b quark was performed^{ab}
- Measurement performed for the first time at CMS, novel at LHC
 - Paper published last month!
- No evidence for an excess of events was found
- The results from a all-hadronic and semi-leptonic analyses have been combined
- Limits as functions of $\tan \beta$ and m_A have been derived and found to exclude a considerable amount of the MSSM parameter space
- Currently most stringent MSSM Higgs limits in this decay channel

^aCMS Collaboration, Phys. Lett. B 722, Issues 4-5 (2013) 207. ^bhttps://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12033TWiki

Backup

The analysis strategy

• CMS is one of the large multi-purpose experiments at LHC

- Presented analysis extensively use in particular muon system, tracker, and calorimeter
- Application of particle flow techniques for optimised reconstruction of all particles in the event
 - Extensive combination of all CMS sub-detector systems

Background model in data

Construction of background templates in double b-tag sample:

- Require at least 3 jets (sorted in p_T)
- Assign flavour assumption of b, c, udsg for untagged jet X

 \rightarrow bbX, bXb, Xbb

- $\rightarrow~$ Nine different templates
 - Apply probability of the assumed flavour to be identified as b jet to the events

95% CL upper limits on cross sections \times branching ratio

- Shown in linear and logarithmic scale
- ightarrow Observed combined limits statistically in agreement with expected limits!
- \rightarrow In particular no confirmation of excess at low m_A as seen by CDF/D0

- Designed to yield maximum value of light MSSM Higgs mass, m_h
- $M_{\rm SUSY} = 1 \text{ TeV}$
- $X_t = 2M_{\rm SUSY}$
- $\mu = +200~{\rm GeV}$
- $M_{
 m gluino} = 800 \ {
 m GeV}$
- *M*₂ = 200 GeV
- $A_b = A_t$
- *M*₃ = 800 GeV
- $X_t = A_t \mu / \tan \beta^2$