

Search for SM Higgs Boson in 4 lepton final state with CMS (4 muon)

Higgs and Beyond the Standard Model Physics at the LHC, ICTP 24-28 June, 2013

Ahmed Abdelalim^{1,2} ¹Helwan University ²CTP, Zewail City of Science and Technology For CMS Collaboration

Outline

CMS

- CMS detector
- SM Higgs @ LHC:
 - Production,
 - Decay.
- H**→**ZZ**→** 4/
- MC Simulation
- Muon Selection
 - Reco and ID
 - Particle Flow isolation.
- Event Selection.
- FSR Recovery
- Systematic uncertainties
- Results
 - m_{4/} spectrum
 - Event Yields
 - limits, p-value
 - mass mesurement

 $\sigma / \mathbf{p}_{\mathrm{T}} \approx 10^{-4} \mathbf{p}_{\mathrm{T}} \oplus 0.005$

 $\sigma / p_T \approx 0.10$ (1TeV muons)

 $\sigma / E \approx 1.0 / \sqrt{E} + 0.05$

SM Higgs @ LHC: Production

W/Z

Н

for m _H =125 GeV		ggF	VBF	WH	ZH	ttH
Xsec (pb)	8 TeV	19.52	1.578	0.6966	0.3943	0.1302
	7 TeV	15.32	1.222	0.5729	0.3158	0.0863
Error*	8 TeV	±14.7 %	+2.8%/-3%	+3.7%/-4.1%	+5.1%/-5%	+11.6 % / -17.1%
	7 TeV	±14.7 %	+2.8%/-2.4%	+3.7%/-4.3%	+4.9%/-5.1%	+11.8 % / -17.8%

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

27/6/13

ICTP Higgs & BSM Workshop -- Ahmed Abdelalim

- Very clean channel
- Requiring the highest possible efficiencies (Reco/ID/Isolation).
- Small BR (σ×BR≈few fb)

Background

- Irreducible: ZZ production
- Reducible: Zbb, Z+jets, tt +jets, WZ+jets
- In 4µ channel, the contributions of Z+jets, WZ +jets can be neglected.

Irreducible background (ZZ) (from simulation)

- Phenomenological shape models
- Events yield uncertainty related to PDF+ α_s and QCD scale evaluated using MCFM
- Corrected for data/MC differences

Background Estimate (Z+X)

- Measure probabilities for lepton mis-id
- Z→II + leptons from b-decays or from mis—id of light jets
- Control samples:
 - Z +1 good lepton+1 loose lepton+ MET<25 GeV (3P+1F)
 - Z +2 loose leptons +MET<25 GeV (2P+2F)
 - Z + 2 loose lepton with same sign and same flavour (SS-SF) + m_{4l}>100 and m_{z1}, m_{z2} cut

• Events yield extrapolated in signal region

Muon Selection

Good Muons: for baseline selection

- |η|< 2.4
- pT > 5 GeV
- Rely on information from both the silicon tracker and muon system. Matching can be either "outside-in", "inside-out".
- Passing the Particle Flow Muon ID (see later),
- Relative PFIso < 0.4
- Significance of the Impact Parameter = $IP/\sigma_{IP} < 4$
- FSR photons recovered.

Loose Muons: for reducible background estimation Have relaxed criteria on PF ID and isolation

<u>Muon ID:</u>

- Particle Flow: rely on information from all subdetectors
- Exploit also tracker-based muon ID
- Efficiency is high down to pT=5 GeV
- Controlled in data with J/ψ and Z T&P

Particle Flow Isolation

CONE

photon

neutral

hadron

charged

hadrons

Summing energy deposits from photons, neutral and charged hadrons in $\Delta R=0.4$ cone. Avoid double counting of calorimetric energy deposits from charged hadrons.

HCAL

ECAL

Clusters

Tracks

detector

particle-flow

35

Clusters

CONE

HCAL

Event Selection

- Trigger: di-muon stream
- Muons:
 - |η|< 2.4, pT > 5 GeV, isolated.
 - At least two muons with pT > 10 GeV. At least 1 muon pT>20 GeV.
- First Z candidate (Z1):
 - Muon pair with closest m_{II} to m_z.
 - 40 GeV < $m_{\mu\mu}$ < 120 GeV.
- Second Z candidate (Z2):
 - Built using the remaining highest pT muons.
 - 4 GeV < $m_{\mu\mu}$ < 120 GeV.
- m_{µµµµ} > 100 GeV && m_{Z2} > 12 GeV.

FSR Recovery

m₄₁ spectrum

Event Yields (4µ)

	100 < m _{4µ} < 1000 GeV	110 <m<sub>4µ < 160 GeV</m<sub>	
ZZ background	118.9 ±15.5	13.8 ±1.0	
Z+X	3.8 ± 1.5	1.6 ± 0.6	
All backgrounds expected	122.6 ± 15.5	15.4 ± 1.2	
m _H =125 GeV	6.8 ±0.8	6.8 ±0.8	
m _H =126 GeV	7.4 ±0.9	7.4 ±0.9	
m _H =500 GeV	6.8 ±0.8		
m _H =800 GeV	0.9 ±0.1		
Observed	125	23	

Event Display

ICTP Higgs & BSM Workshop -- Ahmed Abdelalim

Local Significance

3D pdf built (KD,m4l, EBE):

$$\mathcal{P}_{\rm sig}(m_{4\ell}, \textit{EBE}, \textit{KD}) = \mathcal{P}_{\rm sig}^{\rm 1D}(m_{4\ell}) \times \mathcal{P}_{\rm sig}(\textit{EBE}|m_{4\ell}) \times \mathcal{P}_{\rm sig}(\textit{KD}|m_{4\ell})$$

CMS Preliminary $\sqrt{s} = 7$ TeV, L= 5.1 fb⁻¹ $\sqrt{s} = 8$ TeV, L = 19.6 fb⁻¹ 10 Event by Event mass error (EBE) Combined .2∆ In included 9 $H \rightarrow ZZ \rightarrow 4e$ $H \rightarrow ZZ \rightarrow 4\mu$ from muon track fit error matrix 8 $H \rightarrow ZZ \rightarrow 2e2\mu$ from electron momentum error 6 5 $m_x = 125.8 \pm 0.5 \pm 0.2 \text{ GeV}$ 4 3 m_{4u} =125.2 -0.6/+0.5 GeV 122 124 126 128 130 132

m_H (GeV)

Exclusion Limits

Based on 5.1 fb-1 and 19.6 fb-1 data at 7 TeV and 8 TeV resp.:

- 6.7 σ of local significance for the m(X) =125.8 GeV
- measured mass: 125.8 ± 0.5(stat.) ± 0.2(syst.) GeV
- The SM-like Higgs boson is excluded by the four-lepton channels at 95% CL in the range 130–827 GeV (4e+4μ+2e2μ+2l2τ)
- Agreement with the SM prediction
- Beside the mass measurement, the CMS Higgs Working Group is now focusing on the properties measurement, in H->ZZ*->4I:
 - Signal strength relative to SM expectation for SM Higgs: $\mu = 0.91^{+0.3}_{-0.24}$ at 125.8 GeV.
 - Production mechanism signal modifiers $\mu_V = 1.0^{+2.4}_{-2.3}$, $\mu_F = 0.9^{+0.5}_{-0.4}$ at 125.8 GeV (consistent with SM expections).
 - Spin-parity: pure scalar hypothesis is found to be consistent with the observation when compared to six other spin-parity hypotheses. (see next slide).

• Fraction of a CP-violating contribution to the decay amplitude, expressed by the fraction f_{a3} of the corresponding decay rate $f_{a3}=0^{+0.23}_{-0.0}$ consistent with the SM expectations.

J^p	production	comment	expect (µ=1)	obs. 0+	obs. J^p	CLs
0-	$gg \rightarrow X$	pseudoscalar	2.6 σ (2.8σ)	0.5σ	3.3σ	0.16%
0_h^+	$gg \rightarrow X$	higher dim operators	1.7σ (1.8σ)	0.0σ	1.7σ	8.1%
2^{+}_{mgg}	$gg \rightarrow X$	minimal couplings	1.8σ (1.9σ)	0.8σ	2.7σ	1.5%
$2^+_{mq\bar{q}}$	$q\bar{q} ightarrow X$	minimal couplings	1.7 <i>σ</i> (1.9 <i>σ</i>)	1.8σ	4.0σ	<0.1%
1- "	$q\bar{q} \rightarrow X$	exotic vector	2.8σ (3.1σ)	1.4σ	$>4.0\sigma$	<0.1%
1+	$q\bar{q} \to X$	exotic pseudovector	2.3σ (2.6 σ)	1.7σ	$>4.0\sigma$	<0.1%

References:

- CMS-PAS-HIG-13-002
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002TWiki</u>

More Slides...

- ATLAS and CMS, used 5 fb⁻¹ of 2011 data, in H->ZZ->4/ channel, set 95% CL exclusion limits on SM Higgs:
 - CMS excluded the mass range 127-600 GeV
 - ATLAS excluded 111.4-116.6 GeV, 119.4-122.1 GeV, and 129.2-541 GeV

p_T/m_{4I} and V_D

Only events with $121.5 < m_{41} < 130.5$ GeV are considered

Matrix Element Likelihood Analysis:

kinematic inputs for signal and background $\{m_1, m_2, \theta_1, \theta_2, \theta^*, \Phi, \Phi_1\}$

