

Dalian University

Searching for Heavy Charged Higgs with Jet Substructure

Based on JHEP02(2012)074 [arXiv:1111.4530 hep-ph]

Shuo Yang

Workshop on Higgs and Beyond the Standard Model at the LHC June 24~June 28 2013, ICTP, Trieste, Italy

Outline

- Jet algorithm and Jet substructure
- Heavy charged Higgs search with jet substructure
- Summary

I. Jet Algorithms and Jet Substructure

Jet Definition

• Which?

• How?

Jet Algorithms

Cone Algorithm

UAI, JetCLU, SISCone....

Based on fixed geometry Idea: Put cone along dominatant direction of flow direction

Recombination Algorithm

Jade, Kt, Cambrige-Aachen, Anti-Kt....

Idea: Undo branching

For a review, 0906.1833

- 1. Calculate the distance d_{ij} between all pairs of pseudo-jets and the beam distance d_{iB} for each pseudo-jet.
- 2. Find the minimum in the list of d_{ij} and d_{iB} .
- 3. If the minimum is d_{ij} , recombine i and j into a new particle and then return to step 1.
- 4. If it is d_{iB} , define it as a final-state jet and remove it from the jet list. Return to step 1.
- 5. Iterate this process until the original list is empty, i.e., all peudo-jets have been clustered to jets.

The d_{ij} and d_{iB} in most popular sequential recombine algorithms for use at the LHC can be parameterized as:

$$\begin{aligned} d_{ij} &= \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \\ d_{iB} &= p_{ti}^{2p}, \end{aligned}$$

$$P \text{ is a parameter, 1 for kt, -1 for anti-kt, 0 for CA}$$

Remarks

- There is no standard jet algorithms. The jet algorithm and the parameters could be chosen flexibly.
- All these algorithms are infrared-safe and collinear safe.
- The anti-kt algorithms gets circular jets area which act much like an idealized cone-based algorithm, while the kt and CA get irregular jets area.
- The kt and CA algorithms incline to combine the harder pseudo-jets or pseudo-jets with a large separation in the later, so it is expected that the combination in the last step is the reverse of the main QCD branching or the 2-body decay of a massive particle. So decluster can be used in CA and kt in substructure study.

Boosted Massive Particles

Cone size

Fat Jet

- Cone size should be chosen flexibly for physical intention.
- Boosted massive hadronically decaying objects is common at the LHC. M_Z/TeV
- Fat jet is useful to capture hadronical decay of the highly boosted massive particle. *W*, *H*, *t*
- Generally, mass discriminator is not enough!

In order to separate signal, one have to anatomize the Jet Substructure and reconstruct delicate kinematical variables on subjets !

Brief history of Jet Substructure

- Michael H. Seymour *Searches for new particles using cone and cluster jet algorithms: A Comparative study*, Jun 1993, Z. Phys. C62(1994) 127-138
- Butterworth, Cox, Forshaw, Jan 2002 *WW scattering at the CERN LHC*, Phys. Rev. D65 (2002) 096014
- Butterworth, Davison, Rubin, Salam, Feb 2008, *Jet substructure as new Higgs search channel at the LHC*, Phys.Rev.Lett.100(2008) 242001.
- Kaplan, Rehermann, Schwartz and Tweedie, ``Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks," Phys. Rev. Lett.101(2008) 142001
- Grooming: Filtering, Trimming, Pruning,
- Higgs-tagger, top-tagger, W-tagger
- Jet shape

.

For a review, 1201.0008

JH Top Tagger

- 1. Four momenta of particles is clustered with a large cone size ${\cal R}$ (CA algorithm are used in original paper)
- 2. The last cluster is undone to get two objects j_1 and j_2 . If the p_T ratio of the softer jet j_2 over the original jet j is too small, i.e., $p_{T_{j_2}}/p_{T_j} < \delta_p$, throw the softer j_2 and go on to decluster on the harder one.
- 3. The declustering step is repeated until two separated hard objects are found. If any criterion below are satisfied, the event is failed: 1) both objects are softer than δ_p

(2) the two objects are too close, $\Delta \eta + \Delta \phi < \delta_r$ (3)the original jet is considered irreducible.

- 4. Declustering repeatedly on these two subjets will result in 2,3, or 4 hard objects.
- 5. The case with 3 or 4 subjets are kept. And then require the these subjets that the total mass should be near m_t , the mass of two subjets should be in the m_W window, W helicity angle θ_t should be consistent with a top decay².

The parameters involved in the method can be optimized event by event [12]. In our study, these parameters are fixed as below:

$$\delta_p = 0.19$$
 $\delta_r = 0.1$ $|\theta_t| < 0.65$. (2.3)

II. Heavy charged Higgs search with jet substructure

We study the full hadronic decay mode of heavy charged Higgs. It is the first study along this line.

Hybrid-R Reconstruction Method

- 1. CA jet algorithm with a large cone and top tagger to capture the highly boosted top t_1 . Form a jet list J_0 .
- 2. Recluster the pseudo-jets in the event with a small cone (antikt R=0.4) and then get a new jet list L_0 .
- 3. If a small-size jet is within the larger cone of the direction of the tagged top jet, remove it and then form a new jet list L_1 .
- 4. We identify the most energetic jet in L_1 as the b_3 jet. The unused jets in the jet list form L_2 .
- 5. We require there are at lest 3 jets in the list L₂. Reconstruct the second top and W by $\chi^2 = \frac{|m(j_1, j_2) m_W^{\text{PDG}}|^2}{\sigma_W^2} + \frac{|m(j_1, j_2, j_3) m_t^{\text{PDG}}|^2}{\sigma_t^2}$

JHEP02(2012)074 [arXiv:1111.4530]

Parton level supports

Figure 1: The transverse momenta and the angle separation are exposed at parton level with $m_{h^{\pm}} = 1.0$ TeV. The transverse momentum difference between t_1 and t_2 and the angle separation difference between $R(t_1b_3)$ and $R(t_2b_3)$ are also shown.

R size vs. mass distribution

Figure 2: The mass distribution of the leading massive jet and the reconstructed charged Higgs boson mass are shown with the case $m_{h^{\pm}} = 1$ TeV. The dependence on the angle separation parameter R in the anti- k_t algorithm is also exposed. To be more realistic, the detector effects have been taken into account by using PGS4.

R	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
k_t algorithm	16%	22%	25%	28%	29%	29%	28%	27%
CA algorithm	13%	19%	24%	27%	29%	30%	30%	30%

Table 1: The efficiency of top tagger in k_t and CA algorithms along with the variation of angle separation parameter R are tabulated. The charged Higgs boson mass is assumed to be 1.0 TeV.

R	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
k_t algorithm	25%	27%	28%	28%	27%	26%	24%	22%
CA algorithm	23%	27%	29%	30%	30%	30%	30%	29%

Table 2: The efficiency of top tagger in k_t and CA algorithms along with the variation of angle separation parameter R are tabulated. The charged Higgs boson mass is assumed to be 1.5 TeV.

Analysis Results

	signal	$t\bar{t} + jets$	QCD
	$m_{h^{\pm}} = 1 \text{ TeV}$		$n_j \ge 4$
Cross Section x Br (pb)	0.053	553	9186.8
After JH tagger & $H_T > 400 \text{GeV}$	29%	7%	4.8×10^{-3}
Two <i>b</i> -taggings	10%	4.2×10^{-4}	4.8×10^{-7}
The number of jets in jet list $L_0, n_j \ge 6$	10%	3.7×10^{-4}	3.4×10^{-7}
$H_T > 700 \text{GeV} \& C > 0.3$	9.6%	2.1×10^{-4}	3.0×10^{-7}
The leading jet $E(j_1) > 350 \text{GeV}$	8.9%	1.6×10^{-4}	2.5×10^{-7}
The second leading jet $E(j_2) > 250 \text{GeV}$	7.9%	1.3×10^{-4}	2.2×10^{-7}
$p_T(b_3) > 300 \text{ GeV } \& p_T(t_1) > 300 \text{ GeV}$	5.3%	4.5×10^{-5}	7.7×10^{-8}
$ m_{W_2} - m_W^{\text{PDG}} < 20 \text{ GeV}$	3.1%	2.6×10^{-5}	2.3×10^{-8}
$ m_{t_2} - m_t^{\text{PDG}} < 30 \text{ GeV}$			
$ m_{h^{\pm}} - m_{h^{\pm}}^{\text{assumed}} < 200 \text{ GeV}$	2.5%	1.5×10^{-5}	1.5×10^{-8}
Events in 100 fb^{-1}	133	830	13.8

	signal	$t\bar{t} + jets$	QCD
	$m_{\pm} = 1.5 \text{ TeV}$		$n_j \ge 4$
Cross Section x Br (pb)	0.007	553	9186.8
After JH tagger & $H_T > 400 \text{GeV}$	29%	3%	3.3×10^{-3}
Two <i>b</i> -taggings	10%	1.8×10^{-4}	3.3×10^{-7}
The number of jets in jet list $L_0, n_j \ge 6$	9.3%	1.7×10^{-4}	2.5×10^{-7}
$H_T > 1050 \text{GeV} \& C > 0.3$	8.3%	5.5×10^{-5}	8.9×10^{-8}
The leading jet $E(j_1) > 525 \text{GeV}$	7.7%	4.4×10^{-5}	7.3×10^{-8}
The second leading jet $E(j_2) > 375 \text{GeV}$	6.8%	3.4×10^{-5}	5.4×10^{-8}
$p_T(b_3) > 450 \text{ GeV } \& p_T(t_1) > 450 \text{ GeV}$	4.4%	9.2×10^{-6}	8.5×10^{-9}
$ m_{W_2} - m_W^{\text{PDG}} < 20 \text{ GeV}$	2.5%	4.6×10^{-6}	4.3×10^{-9}
$ m_{t_2} - m_t^{\text{PDG}} < 30 \text{ GeV}$			
$ m_{h\pm} - m_{h\pm}^{\rm assumed} < 200 {\rm GeV}$	1.8%	1.9×10^{-6}	1.8×10^{-10}
Events in 100 fb^{-1}	13	105	0.2

One typical signal event

η

	signal	$t\bar{t} + jets$	QCD
	$m_{\pm} = 1.0 \text{ TeV}$		$n_j \ge 4$
After simple cuts	2.5%	1.5×10^{-5}	1.5×10^{-8}
After NN cut $(NN > 0.6)$	5.5%	2.0×10^{-5}	3.0×10^{-8}
After BDT cut $(BDT > 0.5)$	5.7%	2.1×10^{-5}	3.2×10^{-8}

$m_{H^{\pm}}$ (TeV)		0.9	1	1.1	1.2	1.3	1.4	1.5
σ (fb)		192	118	75	49	33	22	15
$\frac{S}{\sqrt{B}}$ (with two <i>b</i> taggings & TMVA)		13.3	9.5	7.0	5.1	4.0	3.1	2.6
lower bound on σ (fb)		29	25	21	19	16	14	11
$\frac{S}{\sqrt{B}}$ (with two <i>b</i> taggings without TMVA)		6.5	4.6	3.4	2.5	1.9	1.5	1.3
lower bound on σ (fb)		59	51	44	39	35	29	23

IV Summary

- Jet Substructure is helpful to identify highly boosted massive particles or to tell the jet origin.
- We proposed a hybrid-R method with top-tagger. By studying the full hadronic mode of $pp \rightarrow H^{\pm}t \rightarrow ttb$, we find that this method can greatly reduce the combinatorics and can successfully reduce background down to a controlled level.
- The sensitivity of LHC to the heavy charged Higgs is also studied.

Backup

• Theory: Two Higgs Doublet Model Five physical Higgs particles A, h, H, H[±]

• Charged Higgs Search:

1. For $m_{H^{\pm}} < m_t$, search for $t \to H^+ b$ in top pair decay. Tevatron set a limit for charged Higgs mass up to ~ 160.

2. At LHC, the main production mechanism $gb \rightarrow tH^-$. Previous studies for charged Higgs search mainly focus on

$$\begin{array}{l} gb \rightarrow tH^{-} \rightarrow t\tau\bar{\nu} \\ gb \rightarrow tH^{-} \rightarrow t\bar{t}b \rightarrow bqq\tau(had)\nu bb \\ gb \rightarrow tH^{-} \rightarrow t\bar{t}b \rightarrow bqqbl\nu b \end{array}$$

- Detector acceptance cuts are chosen as $p_T(j) > 20$ GeV, $|\eta|(j) < 2.5$.
- A cut on the number of jets in the jet list $L_0, n_j \ge 6$.
- A cut on the H_T , $H_T > \frac{7}{10}M_{H^{\pm}}$, and the centrality, C > 0.3.
- A cut on the leading energetic jet in the jet list L_0 , $E(j_1) > \frac{7}{20}M_{H^{\pm}}$.
- A cut on the second leading energetic jet in the jet list L_0 , $E(j_1) > \frac{1}{4}M_{H^{\pm}}$.

- A large p_T requirement on t_1 jet captured by the top-tagger and on the supposed b_3 in hybrid-R reconstruction method, i.e. $p_T(b_3) > \frac{3}{10}M_{H\pm}$ and $p_T(t_1) > \frac{3}{10}M_{H\pm}$.
- Cuts are chosen for the mass bumps in the t_2 reconstruction, i.e., $|m_{W_2} m_W^{\text{PDG}}| < 20$ GeV and $|m_{t_2} - m_t^{\text{PDG}}| < 30 GeV$.
- The charged Higgs boson mass window is chosen as $|m_{h\pm} m_{h\pm}^{\text{assumed}}| < 200 \text{ GeV}.$

Refine the jet resolution

- Filtering: break jet into subjets on angular scale R_{filt}, take n filtered hardest subjets.
- Trimming: break jet into subjets on angular scale R_{trim}, take all subjets with P_{t,sub}>εP_{t,jet}
- Pruning: If the subjets about to be recombined have $\Delta R > R_{prune}$ and $\min(P_{t_1}, P_{t_2}) < \epsilon(P_{t_1}+P_{t_2})$, discard the softer one.

There are many boosted massive objects at the LHC, which inspire the study of jet substructure.

small cone vs. large cone

perturbative fragmentation

non-perturbative fragmentation

underlying event & pile up

multi-hard-parton

Illustration for collinear safety (left) and collinear unsafety in an IC-PR algorithm(right)