

Phenomenological MSSM interpretation of the 7 TeV CMS results

Lukas Vanelderen, on behalf of the CMS collaboration

June 24, 2013

the phenomenological MSSM (pMSSM) is ...

the pMSSM is ...

a realization of the R-parity conserving MSSM

- no new sources of CP violation
- no flavor changing neutral currents
- 1st and 2nd generation sfermions degenerate in mass

19 SUSY parameters

- M_1 , M_2 , and M_3
- tan β , μ , m_A
- 10 sfermion mass parameters
- A_t , A_b and A_{τ}

captures most of the phenomenological features of the R-parity conserving MSSM

preCMS prior for pMSSM parameters θ

preCMS prior

preCMS observables

i	Observable	Constraint	Likelihood function	MCMC /
	$\mu_j(\theta)$	$D_j^{\rm preCMS}$	$L(D_j^{\text{preCMS}} \mu_j(\theta))$	post-MCMC
1	$BR(b ightarrow s\gamma)$	$(3.55\pm0.23^{\text{stat}}\pm0.24^{\text{th}}\pm0.09^{\text{sys}}) imes10^{-4}$	Gaussian	MCMC
2a	$BR(B_S \rightarrow \mu \mu)$	observed CLs curve from	$d(1 - CLs)/d(BR(B_s \rightarrow \mu\mu))$	MCMC
2b	$BR(B_s \rightarrow \mu \mu)$	$3.2^{+1.5}_{-1.2} \times 10^{-9}$	2-sided Gaussian	post-MCMC
3	$R(B_U \rightarrow \tau \nu)$	1.63 ± 0.54	Gaussian	MCMC
4	Δa_{μ}	$(26.1 \pm 8.0^{exp} \pm 10.0^{th}) \times 10^{-10}$	Gaussian	MCMC
5	mt	173.3 ± 0.5 ^{stat} ± 1.3 ^{sys} GeV	Gaussian	MCMC
6	$m_b(m_b)$	4.19 ^{+0.18} _{-0.06} GeV	Two-sided Gaussian	MCMC
7	$\alpha_s(M_Z)$	0.1184 ± 0.0007	Gaussian	MCMC
8a	m _h	pre-LHC: $m_h^{low} = 112$	1 if $m_h \ge m_h^{low}$	MCMC
			0 if $m_h < m_h^{low}$	
8b	m _h	LHC: $m_h^{low} = 120, m_h^{up} = 130$	1 if $m_h^{low} \le m_h \le m_h^{up}$	post-MCMC
			0 if $m_h < m_h^{low}$ or $m_h > m_h^{up}$	
9	sparticle	LEP	1 if allowed	MCMC
	masses	(via micrOMEGAs)	0 if excluded	

preCMS prior

discrete representation with MCMC

- sample pMSSM parameters within a 19-D cube sparticle masses can go as high as ~3 TeV
- sample m_t , $m_b(m_b)$ and $\alpha_s(M_Z)$, no hard limits
- χ_1^0 must be LSP, χ_1^{\pm} must be short-lived

\sim 20 000 000 preCMS points sampled

CMS posterior density

CMS posterior density

$$p(\theta|D^{\text{CMS}}) = L(D^{\text{CMS}}|\theta) p^{\text{preCMS}}(\theta)$$

CMS likelihood

given a count experiment I

- N_l counts observed
- $B_l \pm \delta B_l$ bkg counts predicted

 $L(N_l|s_l(\theta)) = \int \text{Poiss}(N_l|s_l(\theta) + b_l) p(b_l) db_l$

 $p(b_l) = \text{Gamma}(b_l; (B_l/\delta B_l)^2 + 1, B_l/\delta B_l^2)$

for independent count experiments $L(D^{\text{CMS}}|\theta) = \prod_{l} L(N_{l}|s_{l}(\theta))$

signal prediction $s_l(\theta)$ from simulation

CMS posterior density

7 TeV CMS data

Hadronic $H_T + H_T^{miss}$ search: Hadronic jets + $E_T^{miss} + b$ -jets search: Hadronic $H_T + E_T^{miss} + \tau$ s search: Hadronic monojet + E_T^{miss} search: Leptonic same sign 2ℓ search: Leptonic opposite sign 2ℓ search: Leptonic EWKino search:

arXiv:1207.1898

- arXiv:1208.4859
- arXiv:1301.3792
- arXiv:1206.5663
- arXiv:1205.6615
- arXiv:1206.3949
- arXiv:1209.6620

discrete representation

choose random 7300 out of 20 000 000 preCMS points weight with $L(D^{\text{CMS}}|\theta)$

Results

gluino, ũ_R, ĉ_R masses

3rd generation squarks

EW gauginos

gluino and LSP

SUSY cross section

unexplored regions

Z-significance:

 $Z = \operatorname{sign}(\ln B_{10}) \sqrt{2 |\ln B_{10}|}$ $B_{10}(\theta) = L(D^{\text{CMS}}|\theta, H_1) / L(D^{\text{CMS}}|H_0)$ Bayesian analog of frequentist "*n*-sigma": $Z < -1.64 \approx \text{signal excluded, 95\% CL}$ $Z > 5 \approx 5 - \sigma \text{ discovery}$

Combination:

independent experiments: $B_{10}(\theta) = \prod_{l} B_{10}^{l}(\theta)$ overlapping experiments: Z_{best} : Z_{l} with max $|Z_{l}|$

unexplored regions with high cross section

decompose these interesting points into Simplified Model Spectra

production mechanism

dominated by EW gaugino production and by squark production

EWKino production

squark production

- typically, 1st/2nd gen squark pair production
- typically, rather low mass differences

Summary

impact of considered 7 TeV CMS data

- disfavoring squarks, gluinos $< 1 \mbox{ TeV}$
 - ... but many scenarios not probed
- impact on 3rd gen very limited
- impact on EWKinos, sleptons not visible

unexplored regions

- many "high cross section" scenarios not probed
- mainly EWKino production (mass degeneracy)
- and squark production (low mass splitting)

more in back-up

- consequences for dark matter and Higgs

full documentation: <u>SUS-12-030</u> coming soon: 8 TeV updates

some preCMS distributions

18/24

some preCMS distributions

19/24

degeneracy of EW gauginos

consequences for Higgs

consequences for Higgs

consequences for dark matter

consequences for dark matter

24/24