Light in a Twist: Orbital Angular Momentum

Miles Padgett

Kelvin Chair of Natural Philosophy

The talk today

- Orbital Angular Momentum, what is it?
- What has been done with OAM
- A couple of example of what we have done and doing!

A question

- A photon carries a spin angular momentum of \hbar
- So how does a multi-pole transition ($\Delta \mathrm{J}>\hbar$) conserve angular momentum?

Linear momentum at a radius exerts a torque

Notes on the Theory of Radiation
C. G. Darwin

Proc: R. Soc: Lond. A 1932 136, 36-52

University
of Glasgow

Getting started on Orbital Angular Momentum of Light

- 1992, Allen, Beijersbergen, Spreeuw and Woerdman

PHYSICAL REVIEW A

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands (Received 6 January 1992)

- 1994, Les meets Miles at dinner......

Orbital Angular Momentum from helical phase fronts

$p_{\theta} \neq 0$

Angular momentum in terms of photons

- Spin angular momentum
- Circular polarisation
- ot per photon

$$
\sigma=+1
$$

- Orbital angular momentum
- Helical phasefronts
- $\ell \hbar$ per photon

$\ell=0$
$\ell=1$
$\ell=2$
$\ell=3$
etc

Optical vortices, Helical phasefronts, Angular momentum

- Intensity, $I \geq 0$
- Phase, $2 \pi \geq \phi \geq 0$ $\ell=0$, plane wave
$\ell=1$, helical wave
$\ell=2$, double helix
$\ell=3$, pasta fusilli etc.
$\ell=$ vortex charge

Making helical phasefronts with holograms

Screw dislocations in light wavefronts

V. YU. BAZHENOV, M. S. SOSKIN and M. V. VASNETSOV
Institute of Physics, Academy of Sciences of Ukraine, 252650 Kiev, Prospect Nauki 46, Ukraine

(Received 14 June 1991; revision reccived 8 Janwary 1992)

JOURNAL OF MODERN OPTICS, 1992, voL. 39 , No. 5, 985-990

Making OR measuring phasefronts with holograms

Make interactive by using SLM

Switching time $\approx 5-20 \mathrm{mSec}$ Efficiency $\approx 50 \%$

A gift for all the family.....

A double-start helix ($\ell=2$)

Chambord castle (chateaux de la Loire)

OAM in optical manipulation

Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity
H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop

Depariment of Plysics. The Universify of Qurensland, Brishane, Qwernsland. Amsirulia Q4072
(Received 28 November 1994; revised manuscript received 4 April 1995)
He et al. PRL 1995

Dynamic holographic optical tweezers
Jennifer E. Curtis, Brian A. Koss, David G. Grier*
Curtis et al. Opt Commun. 2002

University of Glasgow

OAM in quantum optics

Entanglement of the orbital angular momentum states of photons

Alals Malr', AIgasha Vaxirl, Cregor Weilhs \& Anton Zellinger

Iestitut für Experiwentiliplysk, Universit: Wien, Boltzwanngosse S, 1000 Wien Anstria

Entangled quantum states are not separable, regardless of the spatial separation of their components. This is a manifestation of an aspect of quantum mechanics known as quantum nonlocality ${ }^{12}$. An important consequence of this is that the measure ment of the state of one particle in a two-particle entangled state defines the state of the second partide instantancously, whereas neither particle possesses its own well-defined state before the

Mair et al. Nature 2001

OAM in imaging

Spiral interferometry

Severin Fürhapter, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte Division of Biomedical Physics, Innsbruck Medical University, Müllerstrasse 44, A-6020 Innsbruck, Austria

Fürhapter et al. Opt. Lett. 2005

Astronomical demonstration of an optical vortex coronagraph

Swartzlander et al. Opt. Express 2008

OAM in communication

New Journal of Physics

Encoding many channels on the same frequency through radio vorticity: first experimental test

Fabrizio Tamburini ${ }^{1,2,8}$, Elettra Mari ${ }^{3}$, Anna Sponselli ${ }^{1}$, Bo Thide ${ }^{4,5}$, Antonio Bianchini ${ }^{1}$ and Filippo Romanato ${ }^{6,7}$

Tamburini et al. New J Phys. 2012

Terabit free-space data transmission employing orbital angular momentum multiplexing
Jian Wang12*, Jeng-Yuan Yang', Iffan M. Fazal', Nisar Ahmed', Yan Yan', Hao Huang', Yongxiong Ren' Yang Yue', Samuel Dolinar ${ }^{3}$, Moshe Tur ${ }^{4}$ and Alan E. Willner ${ }^{1 \star}$

Wang et al. Nature Photon 2012
of Glasgow

OAM in not just light

Volke-Sepulveda et al. PRL 2008

Production and application of electron vortex beams
J. Verbeeck ${ }^{1}$, H. Tian ${ }^{1}$ \& P. Schattschneider ${ }^{2}$

Verbeeck et al. Nature 2010

The OAM communicator

Optical Vortices before Angular Momentum

Proc. R. Soc. Lond. A. 336, 165-190 (1974)
Printed in Great Britain

Dislocations in wave trains
By J. F. Nye and M. V. Berry
H. H. Wills Physics Laboratory, University of Bristol

Quantised Singularities in the Electromagnetic Field
P. A. M. Dirac

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 133, No. 821. (Sep. 1, 1931), pp. 60-72.

Fractality and Topology of Light's darkness

Kevin O'Holleran
Florian Flossmann

Mark Dennis (Bristol)

Vortices are ubiquitous in nature

- Whenever three (or more) plane waves interfere optical vortices are formed
- Charge one vortices occur wherever there is diffraction or scattering

Map out the vortex position in different planes

- Either numerically or experimentally one can map the vortex positions in different planes

gunamiy
ygctisw
The tangled web of speckle

Entanglement of OAM states

Entanglement of the orbital angular momentum states of photons NATURE |VOL 412 |19 gULY 2001|

Alois Mair', Allpasha Vazirl, Gregor Weihs \& Anton Zeilinger

VoLume 93, NUMBER 5 PHYSICAL REVIEW LETTERS \quad week ending

Measuring Entangled Qutrits and Their Use for Quantum Bit Commitment
N. K. Langford, ${ }^{*}$ R. B. Dalton, M. D. Harvey, J. L. O'Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White of Glasgow

Quantum entanglement with spatial light modulators

Jonathan Leach Barry Jack Sonja Franke-Arnold (Glasgow)

Steve Barnett and Alison Yao (Strathclyde)

Bob Boyd
Anand Jha (Rochester)

OAM in second harmonic generation

- Poynting vector "cork screws", azimuthal skew angle is

2 infra red
photons

$$
\ell=\ell_{0}
$$

Correlations in angular momentum

Near perfect (anti) Correlations in angular momentum

Correlations in angle

Angle measurements

Near perfect
Correlations in angle

Angular EPR

Correlations in complimentary basis sets
-> demonstrates EPR for Angle and Angular momentum

$$
\left[\Delta\left(\ell_{\mathrm{s}} \mid \ell_{\mathrm{i}}\right) \hbar\right]^{2}\left[\Delta\left(\phi_{\mathrm{s}} \mid \phi_{\mathrm{i}}\right)\right]^{2}=0.00475 \hbar^{2} \ll 0.25 \hbar^{2}
$$

Entanglement of OAM states

Proc. R. Soc. Lond. A. 349, 423-439 (1976)
Printed in Great Britain

Rotary 'aether drag'
By R. V. Jones, F.R.S.
Department of Natural Philosophy, University of Aberdeen, Scotland

Optical Activity /Faraday effect for OAM

Sonja Franke-Arnold Graham Gibson
Emma Wisniewski-Barker

Bob Boyd

Poincaré-sphere equivalent for light beams containing orbital angular momentum

M. J. Padgett and J. Courtial

Poincaré Sphere

Poincaré Sphere for OAM

The (Magnetic) Faraday Effect

- Rotation of plane polarised light

$$
\Delta \theta_{p o l}=B L V
$$

- V Verdet constant
- OR treat as phase delay of circularly
 polarised light

$$
\Delta \phi=\sigma B L V
$$

$$
\Delta \theta=\Delta \phi_{+\sigma,-\sigma} / \Delta \sigma
$$

Proc. R. Soc. Lond. A. 349, 423-439 (1976)
Printed in Great Britain

Rotary 'aether drag'
By R. V. Jones, F.R.S.
Department of Natural Philosophy, University of Aberdeen, Scotland

- Photon drag, gives Polarisation rotation

$$
\begin{aligned}
& \Delta \theta=\frac{\Omega L}{c}\left(n_{g}-1 / n_{\phi}\right) \\
& \Delta \phi=\frac{\sigma \Omega L}{c}\left(n_{g}-1 / n_{\phi}\right)
\end{aligned}
$$

- Mechanical Faraday Effect

Equivalent geometric transformations for spin and orbital angular momentum of light
L. ALLEN* $\dagger \ddagger$ and MILES PADGETT \dagger

- SAM -> Polarisation rotation
- OAM-> Image rotation
- Look through a Faraday isolator $\left(\Delta \theta \approx 45^{\circ}\right)$, is the "world" rotated - NO
- SAM and OAM are not equivalent in the Magnetic Faraday effect
- SAM and OAM are not equivalent in the optical activitiy

Enhancing the effect.....

- Plug in "sensible numbers" and get a micro-radian rotation...

$$
\Delta \theta_{\text {image }}=\frac{\Omega L}{c}\left(n_{g}-1 / n_{\phi}\right)
$$

- Increase the group index to enhance the effect

Rotary Photon Drag Enhanced by a Slow-Light Medium

Sonja Franke-Arnold, ${ }^{1 *}$ Graham Gibson, ${ }^{1}$ Robert W. Boyd, ${ }^{2,3}$ Miles J. Padgett ${ }^{1}$
SCIENCE VOL 3331 JULY 2011

- Shine an elliptical laser beam ($\approx L G, \Delta \ell=2$) @ 532nm through a spinning Ruby bar.

Camera

Spinning rod of ruby

- Spin angular momentum
- Circular polarisation
- of per photon

$$
\sigma=+1
$$

- Orbital angular momentum
- Helical phasefronts
- lћ per photon

001

$$
\ell=0
$$

$\ell=1$

$\ell=2$

$\ell=3$
etc

Measuring spin AM

- Polarising beam splitter give the "perfect" separation of orthogonal (linear) states
- Use quarter waveplate to separate circular states
- Works for classical beams AND single photons

Measuring Orbital AM

- OAM beam splitter give the "perfect" separation of orthogonal states
- But how?


```
It works for plane waves
```

- A "plane-wave" is focused by a lens
- A phase ramp of 2π displaces the spot

of Glasgow
It works for plane waves
- Image transformation
- ϕ-> x and r -> y
- i.e. $L_{z}->p_{x}$

Replacing the SLMs

- The principle works
- But the SLMs are inefficient ($\approx 50 \% \times 2$)
(a)

(b)

reformater
(c)

(d)

phase corrector
- Prof. Gordon Love

Doughnut to hot-dog

- The principle works
- But the SLMs are inefficient ($\approx 50 \% \times 2$)
- Use bespoke optical elements (glass/ plastic)
- Prof. David J Robertson
- Prof. Gordon Love

The output
|=-15
of Glasgow

Evolution in time c.f. translation and rotation

$$
\Phi=f(k z+\omega t)
$$

$\ell=0$ time c.f. translation

$\Phi=f(k z+\omega t+\ell \theta)$
$\ell>0$ time c.f. rotation

Linear vs. Rotational Doppler shifts

Rotational (angular) Doppler shift

- For pure OAM states a rotation of frame between source and observer give a frequency shift

Rotational Doppler observed along B, where linear Doppler (A) is zero

- $\Delta \omega_{\ell}=\Omega \ell$
- Rotation of the state "looks-like" an advance in time, but...
- The rotational symmetry stays the

Where shall we start?

- Light scattered by a moving body is shifted in both energy ($\hbar \omega$) and linear momentum ($\hbar \mathrm{k}$).
- Doppler Shift
- Doppler shift is used to remotely detect the movement of a distant body
- How might we use the OAM, what might it detect?

Doppler shift from a moving surface

$\Delta \omega=2 \cos \alpha \omega_{0} \mathrm{v} / \mathrm{c}$

when $\alpha=\pi / 2, \quad \Delta \omega=0$

Doppler shift from translating surface

$\Delta \omega=\sin \alpha \omega_{0} \mathrm{v} / \mathrm{c}$

Basis of Doppler velocimetry

Doppler velocimetry (frequency domain)

Frequency difference is manifest as intensity modulation, $\Delta \omega_{\mathrm{a}, \mathrm{b}}$

$\Delta \omega=2 \sin \alpha \omega_{0} \mathrm{v} / \mathrm{c}$

Illuminate on-axis, detect off-axis

$\Lambda=\lambda / 2 \sin \alpha$

Scattering centres move across the fringe pattern give intensity modulation of scattered light, $\Delta \omega_{\Lambda}$

$$
\Delta \omega_{\Lambda}=2 \pi v / \Lambda
$$

Illuminate off-axis, detect on-axis

$$
\Delta \omega_{\mathrm{a}, \mathrm{~b}}=\Delta \omega_{\Lambda}
$$

Orbital angular momentum -> Skew rays, $\alpha \neq 0$

Doppler shift from a SPINNING surface

Experimental arrangement

Making/Measuring OAM

Diffraction grating (hologram) to make/ measure $\ell=3$

Diffraction grating (hologram) to make/ measure $\ell=-3$

Diffraction grating (hologram) to make/ measure $\ell=+/-3$

Illuminate with OAM at $+/-\ell$ and measure $\Delta \omega$

Illuminate with $\approx \ell=0$, detect OAM at $+/-\ell$ and measure $\Delta \omega$

 of Glasgow

Rotational Doppler shift in scattered light

Observed power spectrum for structured dection of $\ell= \pm 18$

c.f. Speckle velocimetry? Albeit, in this case, angular
(5) University

Thank you to you and my Group

If you would like a copy of this talk please ask me
www.gla.ac.uk/schools/physics/research/groups/optics/

Miles Padgett: Optical tweezers and twisted beams of light

