

DADD

International Centre for Theoretical Physics

Light in a Twist: **Orbital Angular Momentum**

Miles Padgett Kelvin Chair of Natural Philosophy

ROVAL SOCIETY

Se.

The Leverhulme Trust

The talk today

- Orbital Angular Momentum, what is it?
- What has been done with OAM
- A couple of example of what we have done and doing!

A question

- A photon carries a spin angular momentum of \hbar
- So how does a multi-pole transition (ΔJ > ħ) conserve angular momentum?

Linear momentum at a radius exerts a torque

ħk

$\hbar k \times r$ -> multipole transition

PROCEEDINGS THE ROYAL A

Providing the lever is long enough, a fixed linear momentum can exert an arbitrary high torque

Notes on the Theory of Radiation

C. G. Darwin

Proc. R. Soc. Lond. A 1932 136, 36-52

Getting started on Orbital Angular Momentum of Light

• 1992, Allen, Beijersbergen, Spreeuw and Woerdman

PHYSICAL REVIEW A

VOLUME 45, NUMBER 11

1 JUNE 1992

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands (Received 6 January 1992)

• 1994, Les meets Miles at dinner.....

Orbital Angular Momentum from helical phase fronts

Angular momentum in terms of photons

- Spin angular momentum
 - Circular polarisation
 - $\sigma\hbar$ per photon
- Orbital angular momentum
 - Helical phasefronts
 - $\ell\hbar$ per photon

Optical vortices, Helical phasefronts, Angular momentum

- Intensity, $I \ge 0$
- Phase, $2\pi \ge \phi \ge 0$
 - ℓ = 0, plane wave
 - ℓ = 1, helical wave
 - ℓ = 2, double helix ℓ = 3, pasta fusilli etc.

 ℓ = vortex charge

Orbital angular momentum from Skew rays

Making helical phasefronts with holograms

Screw dislocations in light wavefronts

V. YU. BAZHENOV, M. S. SOSKIN and M. V. VASNETSOV Institute of Physics, Academy of Sciences of Ukraine, 252650 Kiev, Prospect Nauki 46, Ukraine

(Received 14 June 1991; revision received 8 January 1992)

JOURNAL OF MODERN OPTICS, 1992, VOL. 39, NO. 5, 985-990

Making OR measuring phasefronts with holograms

Richard Bowman

A gift for all the family.....

App Store > Education > Richard Bowman

Free App 🔻

This app is designed for both iPhone and iPad

Category: Education Released: 14 October 2010 Version: 1.0 1.0 0.2 MB Language: English Developer: Richard Bowman © Richard Bowman

Rated 4+

Requirements:Compatible with iPhone 3GS, iPhone 4, iPod touch (3rd generation), iPod touch (4th generation) and iPad. Requires iOS 3.2 or later.

iHologram

Description

iHologram creates beautiful patterns by rendering the Fraunhofer holograms used in Holographic Optical Tweezers iPhone/iPad graphics chip. Use it to learn about diffraction and holography, or just to make pretty pictures!

Richard Bowman Web Site > iHologram Support >

Screenshots IPhone

And the point of shaping the spot is.....

A double-start helix (ℓ =2)

Chambord castle (chateaux de la Loire)

OAM in optical manipulation

VOLUME 75, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JULY 1995

Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop Department of Physics, The University of Queensland, Brisbane, Queensland, Australia Q4072 (Received 28 November 1994; revised manuscript received 4 April 1995)

He et al. PRL 1995

15 June 2002

OPTICS COMMUNICATIONS

Optics Communications 207 (2002) 169-175

www.elsevier.com/locate/optcom

Dynamic holographic optical tweezers Jennifer E. Curtis, Brian A. Koss, David G. Grier*

Curtis et al. Opt Commun. 2002

OAM in quantum optics

Entanglement of the orbital angular momentum states of photons

......

Alois Mair*, Alipasha Vaziri, Gregor Welhs & Anton Zeilinger

Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria

Entangled quantum states are not separable, regardless of the spatial separation of their components. This is a manifestation of an aspect of quantum mechanics known as quantum nonlocality^{1,2}. An important consequence of this is that the measurement of the state of one particle in a two-particle entangled state defines the state of the second particle instantaneously, whereas neither particle possesses its own well-defined state before the

Mair et al. Nature 2001

OAM in imaging

Spiral interferometry

Severin Fürhapter, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte Division of Biomedical Physics, Innsbruck Medical University, Müllerstrasse 44, A-6020 Innsbruck, Austria

Fürhapter et al. Opt. Lett. 2005

Astronomical demonstration of an optical vortex coronagraph

Grover A. Swartzlander, Jr.,^{1,*} Erin L. Ford,¹ Rukiah S. Abdul-Malik,¹ Laird M. Close,² Mary Anne Peters,² David M. Palacios,³ and Daniel W. Wilson³

Swartzlander et al. Opt. Express 2008

OAM in communication

New Journal of Physics

Encoding many channels on the same frequency through radio vorticity: first experimental test

Fabrizio Tamburini^{1,2,8}, Elettra Mari³, Anna Sponselli¹, Bo Thidé^{4,5}, Antonio Bianchini¹ and Filippo Romanato^{6,7}

Tamburini et al. New J Phys. 2012

|--|

Terabit free-space data transmission employing orbital angular momentum multiplexing

Jian Wang^{1,2}*, Jeng-Yuan Yang¹, Irfan M. Fazal¹, Nisar Ahmed¹, Yan Yan¹, Hao Huang¹, Yongxiong Ren¹, Yang Yue¹, Samuel Dolinar³, Moshe Tur⁴ and Alan E. Willner¹*

Wang et al. Nature Photon 2012

OAM in not just light

PRL 100, 024302 (2008)

PHYSICAL REVIEW LETTERS

An and a Manual to Matter from A counting Worthous in Free Sec.

Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space

Karen Volke-Sepúlveda,1 Arturo O. Santillán,2,* and Ricardo R. Boullosa2

Volke-Sepulveda et al. PRL 2008

Vol 467|16 September 2010|doi:10.1038/nature09366

week ending 18 JANUARY 2008

nature

LETTERS

Production and application of electron vortex beams

J. Verbeeck¹, H. Tian¹ & P. Schattschneider²

Verbeeck et al. Nature 2010

Graham Gibson, Johannes Courtial, Miles J. Padgett Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland 1 November 2004 / Vol. 12, No. 22 / OPTICS EXPRESS 5448

The OAM communicator

Miles Padgett's corkscrew laser beam creates a ring of light with a dark centre

Optical Vortices before Angular Momentum

Proc. R. Soc. Lond. A. 336, 165–190 (1974) Printed in Great Britain

Dislocations in wave trains

BY J. F. NYE AND M. V. BERRY H. H. Wills Physics Laboratory, University of Bristol

Quantised Singularities in the Electromagnetic Field

P. A. M. Dirac

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 133, No. 821. (Sep. 1, 1931), pp. 60-72.

Fractality and Topology of Light's darkness

Kevin O'Holleran Florian Flossmann

Mark Dennis (Bristol)

Vortices are ubiquitous in nature

- Whenever *three* (or more) plane waves interfere optical vortices are formed
 - Charge one vortices occur wherever there is diffraction or scattering

 2π

Map out the vortex position in different planes

 Either numerically or experimentally one can map the vortex positions in different planes

The tangled web of speckle

Entanglement of OAM states

Entanglement of the orbital angular momentum states of photons NATURE | VOL 412 | 19 JULY 2001 |

Alois Mair*, Alipasha Vaziri, Gregor Weihs & Anton Zeilinger

VOLUME 93, NUMBER 5 PH	YSICAL	REVIEW	LETTERS	week ending 30 JULY 2004
------------------------	--------	--------	---------	-----------------------------

Measuring Entangled Qutrits and Their Use for Quantum Bit Commitment

N. K. Langford,* R. B. Dalton, M. D. Harvey, J. L. O'Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White

Quantum entanglement with spatial light modulators

Jonathan Leach Barry Jack Sonja Franke-Arnold (Glasgow)

Steve Barnett and Alison Yao (Strathclyde)

Bob Boyd Anand Jha (Rochester)

VOLUME 56, NUMBER 5

NOVEMBER 1997

Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett

OAM in second harmonic generation

- Poynting vector "cork screws", azimuthal skew angle is
 - $\theta = \ell/kr$
- Does this upset a co-linear phase match? -No
- Frequency & *l*-index both double
- "Path" of Poynting vector stays the same
 - phase matching maintained

Correlations in angular momentum

Orbital anglular momentum measurements

Correlations in angle

Angular EPR

Correlations in complimentary basis sets -> demonstrates EPR for Angle and Angular momentum

$$\left[\Delta \left(\ell_{\rm s} \left|\ell_{\rm i}\right\rangle \hbar\right]^2 \left[\Delta \left(\phi_{\rm s} \left|\phi_{\rm i}\right\rangle\right)^2 = 0.00475\hbar^2 << 0.25\hbar^2$$

Entanglement of OAM states

Proc. R. Soc. Lond. A. 349, 423-439 (1976) Printed in Great Britain

Rotary 'aether drag'

BY R. V. JONES, F.R.S.

Department of Natural Philosophy, University of Aberdeen, Scotland

Optical Activity /Faraday effect for OAM

Sonja Franke-Arnold Graham Gibson Emma Wisniewski-Barker

Bob Boyd

Poincaré-sphere equivalent for light beams containing orbital angular momentum

M. J. Padgett and J. Courtial

Poincaré Sphere for OAM

The (Magnetic) Faraday Effect

 Rotation of plane polarised light

 $\Delta \theta_{pol} = BLV$

- V Verdet constant
- OR treat as phase delay of circularly polarised light $\Delta \phi = \sigma BLV$

But the magnetic Faraday effect does NOT rotate an Image

Proc. R. Soc. Lond. A. 349, 423-439 (1976) Printed in Great Britain

Rotary 'aether drag'

BY R. V. JONES, F.R.S.

Department of Natural Philosophy, University of Aberdeen, Scotland

 Photon drag, gives Polarisation rotation

$$\Delta\theta = \frac{\Omega L}{c} \left(n_g - \frac{1}{n_{\phi}} \right)$$

$$\Delta \phi = \frac{\sigma \Omega L}{c} \left(n_g - \frac{1}{n_{\phi}} \right)$$

 Mechanical Faraday Effect

PHYSICAL REVIEW A

VOLUME 46, NUMBER 11

1 DECEMBER 1992

Magnetic and mechanical Faraday effects

G. Nienhuis, J. P. Woerdman, and I. Kuščer*

Journal of Modern Optics Vol. 54, No. 4, 10 March 2007, 487-491

Equivalent geometric transformations for spin and orbital angular momentum of light

L. ALLEN*†‡ and MILES PADGETT†

- SAM -> Polarisation rotation
- OAM-> Image rotation
- Look through a Faraday isolator (Δθ≈45°), is the "world" rotated - NO
 - SAM and OAM are not equivalent in the Magnetic Faraday effect
 - SAM and OAM are not equivalent in the optical activitiy

Enhancing the effect.....

- Plug in "sensible numbers" and get a micro-radian rotation...
- Increase the group index to enhance the effect

$$\Delta\theta_{image} = \frac{\Omega L}{c} \left(n_g - \frac{1}{n_{\phi}} \right)$$

Rotary Photon Drag Enhanced by a Slow-Light Medium

Sonja Franke-Arnold,¹* Graham Gibson,¹ Robert W. Boyd,^{2,3} Miles J. Padgett¹

SCIENCE VOL 333 1 JULY 2011

≈25Hz clockwise <-> anticlockwise

A beam splitter for OAM

Martin Lavery

Gregorius Berkhout (Leiden)

Johannes Courtial

- Spin angular momentum
 - Circular polarisation
 - $\sigma\hbar$ per photon
- Orbital angular momentum
 - Helical phasefronts
 - $\ell\hbar$ per photon

Measuring spin AM

- Polarising beam splitter give the "perfect" separation of orthogonal (linear) states
 - Use quarter waveplate to separate circular states
 - Works for classical beams AND single photons

Measuring Orbital AM

 OAM beam splitter give the "perfect" separation of orthogonal states

- But how?

It works for plane waves

- A "plane-wave" is focused by a lens
- A phase ramp of 2π displaces the spot

It works for plane waves

Х

- Image transformation
 - ϕ -> x and r -> y
 - i.e. $L_z \rightarrow p_x$

Replacing the SLMs

- The principle works
- But the SLMs are inefficient (≈50% x 2)
- Use bespoke optical elements (plastic)
 - Prof. David J
 Robertson
 - Prof. Gordon Love

Doughnut to hot-dog

- The principle works
- But the SLMs are inefficient (≈50% x 2)
- Use bespoke optical elements (glass/ plastic)
 - Prof. David J Robertson
 - Prof. Gordon Love

The output

Evolution in time c.f. translation and rotation

Linear vs. Rotational Doppler shifts

31 MARCH 1997

Rotational Frequency Shift

Iwo Bialynicki-Birula Center for Theoretical Physics Latników 32/46 02-668 Warsaw Poland Zofia Bialynicka-Birula

Doppler effect induced by rotating lenses

Gerard Nienhuis ium, Riksuniversiteit Leiden, Posthus 9504, 2300 RA Leiden, The Netherland Received 8 February 1996: accepted 24 April 1996

Rotational (angular) Doppler shift

- For pure OAM states a rotation of frame between source and observer give a frequency shift
 - $\Delta \omega_{\ell} = \Omega \ell$
- Rotation of the state "looks-like" an advance in time, but...
- The rotational symmetry stays the VOLUME 81, NUMBER 22 same....

PHYSICAL REVIEW LETTERS

Rotational Frequency Shift of a Light Beam

J. Courtial, D.A. Robertson, K. Dholakia, L. Allen, and M.J. Padgett

Where shall we start?

- Light scattered by a moving body is shifted in both energy (ħω) and linear momentum (ħk).
 - Doppler Shift
- Doppler shift is used to remotely detect the movement of a distant body
- How might we use the OAM, what might it detect?

Doppler shift from a moving surface

$\Delta \omega = 2\cos \alpha \omega_0 v/c$

when $\alpha = \pi/2$, $\Delta \omega = 0$

Doppler shift from translating surface

Doppler velocimetry (frequency domain)

modulation, $\Delta \omega_{a,b}$

$$\Delta \omega = 2 \sin \alpha \omega_0 v/c$$

Illuminate on-axis, detect off-axis

Doppler velocimetry (time domain) – projected fringes

$$\Lambda = \lambda/2 \sin \alpha$$

Scattering centres move across the fringe pattern give intensity modulation of scattered light, $\Delta \omega_{\Lambda}$

 $\Delta \omega_{\Lambda} = 2\pi v/\Lambda$

Illuminate off-axis, detect on-axis

 $\Delta \omega_{a,b} = \Delta \omega_{\Lambda}$

Orbital angular momentum -> Skew rays, $\alpha \neq 0$

Doppler shift from a SPINNING surface

Ω

sinα≈ℓ/kr & v=Ωr

 $\Delta \omega_{\ell,-\ell} = 2\Omega \ \ell$

Experimental arrangement

Martin Lavery

The Rotational Frequency shift of Scattered Light

Making/Measuring OAM

Diffraction grating (hologram) to make/ measure $\ell=3$

Diffraction grating (hologram) to make/ measure $\ell = -3$

Diffraction grating (hologram) to make/ measure $\ell = \pm -3$

Illuminate with OAM at +/- ℓ and measure $\Delta\omega$

С

Illuminate with $\approx \ell = 0$, detect OAM at +/- ℓ and measure $\Delta \omega$

Rotational Doppler shift in scattered light

Thank you to you and my Group

If you would like a copy of this talk please ask me

www.gla.ac.uk/schools/physics/research/groups/optics/

