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Development of robust, reliable and low computational cost numerical tools for
the simulation of geophysical flows and the prediction of emergency situations
such as river flooding or oil spills, tsunamis, debris avalanches . . .
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Goals

Edanya: Main Goals

Development of robust, reliable and low computational cost numerical tools for
the simulation of geophysical flows and the prediction of emergency situations
such as river flooding or oil spills, tsunamis, debris avalanches . . .

Ingredients

Depth averaged models: Shallow-water type systems.

Numerical schemes: High order path-conservative finite volume schemes.
HySEA: High Performance Cloud Computing software to simulate
geophysical flows.
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One-layer shallow water system
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w = (h, qx, qy)
T ,

h is the water depth,

q = (qx, qy), is the mass flow,

u = (ux, uy) =
q
h

is the mean velocity,

H is the bathymetry,

g is the acceleration of gravity,

Sfi (w), i = 1, 2, parametrize the friction
terms.
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One-layer shallow water system
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Quadratic:
Sf1 (w) = −cux�u� Sf2 (w) = −cuy�u�;

Chèzy:
Sf1 (w) = −

g
C2

ux�u� Sf2 (w) = −
g

C2
uy�u�;

Manning:

Sf1 (w) = −gh
n2

h4/3
ux�u� Sf2 (w) = −gh

n2

h4/3
uy�u�.
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One-layer shallow water system
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J.F. Gerbeau, B. Perthame.

Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation.
Discrete and continuous dynamical systems- Series B 1 (1):89-102, 2001.
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Shallow water-Exner equations






∂h
∂t

+
∂qx

∂x
+

∂qy

∂y
= 0

∂qx

∂t
+

∂

∂x

�
q2

x

h
+

g
2

h2

�
+

∂

∂y

�
qxqy

h

�
= −gh

∂zb

∂x
+ gh

∂H̃
∂x

+ Sf1 (w)

∂qy

∂t
+

∂

∂x

�
qxqy

h

�
+

∂

∂y

�
q2

y

h
+

g
2

h2

�
= −gh

∂zb

∂y
+ gh

∂H̃
∂y

+ Sf2 (w),

∂zb

∂t
+ ξ

�
∂qb,x

∂x
(w) +

∂qb,y

∂y
(w)

�
= 0

H(x) h(t, x)

z(t, x)

Reference level w = (h, qx, qy, zb)
T ;

h is the water depth, zb the sediment
layer depth;

q = (qx, qy), is the mass flow;

H̃ is the non-erodible bathymetry;

ξ = 1/(1 − ρ0) and ρ0 is the porosity of
the sediment;

(qb,x(w), qb,y(w)) the solid transport
discharge.
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Shallow water-Exner equations
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Fowler-Grass:
qb,x(w) = Ag

zb
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ux�u�2 qb,y(w) = Ag
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uy�u�2,

where z̄0 represents the mean value of the thickness of the sediment layer.
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Shallow water-Exner equations
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Fowler- Meyer-Peter &Müller:
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.

with ρs is the density of the sediment, ρf the density of the fluid, di is the mean sediment grain
diameter, n is the Manning coefficient and τ∗,c is the non-dimensional critical shear stress (
τ∗,c ≈ 0.047).
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Shallow water-Exner equations
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M. Castro Dı́az, E. Fernández-Nieto, A. Ferreiro.

Sediment transport models in shallow water equations and numerical approach by high order
finite volume methods, Computers & Fluids 37:299–316, 2008.

A. C. Fowler, N. Kopteva, C. Oakley.

The formation of river channels, SIAM Journal on Applied Mathematics 67:1016–1040, 2007.

S. Cordier, M. Le, T. Morales de Luna.

Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can)
help. Advances in Water Resources 34: 980–989, 2011.
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Two-layer shallow-water model
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w = (h1, q1,x, q1,y, h2, q2,x, q2,y)
T ;

hi , is the layer depth, i = 1, 2;

qi = (qi,x, qi,y), is the mass flow at each layer, i = 1, 2;

r = ρ1/ρ2 is the ratio of the constant densities of the layers (ρ1 < ρ2);

Sil
(w), l = 1, · · · , 4, parametrize the friction terms between the two

layers;

Sfl
(w), l = 1, 2 parametrize the friction terms between the second layer and

the bottom topography.
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2D (Simplified) Two-layer Savage-Hutter shallow-water model

Hypothesis

We consider an stratified media composed by a non viscous and homogeneous fluid with constant density ρ1 (water) and a
granular material with density ρs and porosity ψ0 . We suppose the mean density of the granular material is given by:
ρ2 = (1 − ψ0)ρs + ψ0ρ1 .

Fluid and granular material are immiscible.
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hi, is the layer depth, i = 1, 2,

qi = (qi,x, qi,y), is the mass flow at each layer, i = 1, 2,

w = (h1, q1,x, q1,y, h2, q2,x, q2,y)
T ,

Sil (w), l = 1, . . . , 4, parametrize the friction between the layers,

τ(w) = (τx(w), τy(w)) parametrize the Coulomb friction term.
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2D (Simplified) Two-layer Savage-Hutter shallow-water model
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+ Si4 (w) + τy(w),

τ(w) =






�
gh2(1 − r)

u2,x
�u� tan(δ0), gh2(1 − r)

u2,y
�u� tan(δ0)

�
if τ > σc

u2 = 0 otherwise
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2D (Simplified) Two-layer Savage-Hutter shallow-water model






∂h1

∂t
+

∂q1,x

∂x
+

∂q1,y

∂y
= 0

∂q1,x

∂t
+

∂

∂x

�
q2

1,x

h1
+

g

2
h2

1

�
+

∂

∂y

�
q1,xq1,y

h1

�
= −gh1

∂h2

∂x
+ gh1

∂H

∂x
+ Si1 (w)

∂q1,y

∂t
+

∂

∂x

�
q1,xq1,y

h1

�
+

∂

∂y




q2

1,y

h1
+

g

2
h2

1



 = −gh1
∂h2

∂y
+ gh1

∂H

∂y
+ Si2 (w)

∂h2

∂t
+

∂q2,x

∂x
+

∂q2,y

∂y
= 0

∂q2,x

∂t
+

∂

∂x

�
q2

2,x

h2
+

g

2
h2

2

�
+

∂

∂y

�
q2,xq2,y

h2

�
= −grh2

∂h1

∂x
+ gh2

∂H

∂x
+ Si3 (w) + τx(w)

∂q2,y

∂t
+

∂

∂x

�
q2,xq2,y

h2

�
+

∂

∂y




q2

2,y

h2
+

g

2
h2

2



 = −grh2
∂h1

∂y
+ gh2

∂H

∂y
+ Si4 (w) + τy(w),

E. Fernández Nieto, F. Bouchut, D. Bresch, M.J. Castro, A. Mangeney.

A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comp. Phys., 227:
7720-7754, 2008.

F. Bouchut, M. Westdickenberg.

Gravity driven shallow water models for arbitrary topography. Comm. in Math. Sci. 2: 359-389, 2004
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General framework

General formulation

∂w
∂t

+
∂F1

∂x
(w) +

∂F2

∂y
(w) + B1(w)

∂w
∂x

+ B2(w)
∂w
∂y

= S1(w)
∂H
∂x

+ S2(w)
∂H
∂y

+ SF(w),



Introduction Mathematical models Numerical schemes Implementation on GPUs Hysea web platform Applications

General framework

General formulation

∂w
∂t

+
∂F1

∂x
(w) +

∂F2

∂y
(w) + B1(w)

∂w
∂x

+ B2(w)
∂w
∂y

= S1(w)
∂H
∂x

+ S2(w)
∂H
∂y

+ SF(w),

w(x, t) : D × (0, T) �→ ω ⊂ Rn, the vector of unknowns,
D bounded domain of R2; ω convex subset of Rn,
Fi : ω �→ Rn, i = 1, 2, regular and locally bounded functions,
Bi : Ω �→ MN×N(R), i = 1, 2 regular and locally bounded matrix-valued functions,
Si, SF : ω �→ Rn, i = 1, 2, regular and locally bounded functions,
H : D ⊂ R2 : �→ R known function.
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General framework

General formulation

∂w
∂t

+
∂F1

∂x
(w) +

∂F2

∂y
(w) + B1(w)

∂w
∂x

+ B2(w)
∂w
∂y

= S1(w)
∂H
∂x

+ S2(w)
∂H
∂y

+ SF(w),

Nonconservative products

The nonconservative products Bi(w) ∂w
∂α , Si(w) ∂w

∂α , i = 1, 2, α = x, y do not make sense
in general within the framework of distributions. Here, we follow the theory developed by
[Dal Maso, LeFloch and Murat] to give a sense to these products as Borel measures.
This theory is based on the choice of a family of paths.
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General Formulation: Nonconservative Form

General formulation

∂w
∂t

+
∂F1

∂x
(w) +

∂F2

∂y
(w) + B1(w)

∂w
∂x

+ B2(w)
∂w
∂y

= S1(w)
∂H
∂x

+ S2(w)
∂H
∂y

+ SF(w)
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General Formulation: Nonconservative Form

General formulation

∂w
∂t

+
∂F1

∂x
(w) +

∂F2

∂y
(w) + B1(w)

∂w
∂x

+ B2(w)
∂w
∂y

= S1(w)
∂H
∂x

+ S2(w)
∂H
∂y

+ SF(w)

[LeFloch] Introducing the trivial equation ∂tH = 0 and taking H as a new unknown

W := [w H]� ∈ RN , N = n + 1, Jk(w) =
∂Fk

∂w
and

Ak =

�
Jk(w) + Bk(w) −Sk(w)

0 0

�
, k = 1, 2 ∈ MN×N ,
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General Formulation: Nonconservative Form

General formulation

∂w
∂t

+
∂F1

∂x
(w) +

∂F2

∂y
(w) + B1(w)

∂w
∂x

+ B2(w)
∂w
∂y

= S1(w)
∂H
∂x

+ S2(w)
∂H
∂y

+ SF(w)

[LeFloch] Introducing the trivial equation ∂tH = 0 and taking H as a new unknown

W := [w H]� ∈ RN , N = n + 1, Jk(w) =
∂Fk

∂w
and

Ak =

�
Jk(w) + Bk(w) −Sk(w)

0 0

�
, k = 1, 2 ∈ MN×N ,

the system can be written as follows:

∂W
∂t

+A1(W)
∂W
∂x

+A2(W)
∂W
∂y

= SF(W).
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General Formulation: Nonconservative form

Given a unitary vector η = (η1, η2) ∈ R2:

A(W,η) = A1(W)η1 +A2(W)η2.

We assume that the system is strictly hyperbolic, i.e.,
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General Formulation: Nonconservative form

Given a unitary vector η = (η1, η2) ∈ R2:

A(W,η) = A1(W)η1 +A2(W)η2.

We assume that the system is strictly hyperbolic, i.e.,

∀W ∈ Ω ⊂ RN and ∀ η ∈ S1, the matrix A(W,η) has N real eigenvalues:
λ1(W,η) < . . . < λN(W,η), being Rj(W,η), j = 1, . . . ,N the associated
eigenvectors.
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General Formulation: Nonconservative form

Given a unitary vector η = (η1, η2) ∈ R2:

A(W,η) = A1(W)η1 +A2(W)η2.

We assume that the system is strictly hyperbolic, i.e.,

∀W ∈ Ω ⊂ RN and ∀ η ∈ S1, the matrix A(W,η) has N real eigenvalues:
λ1(W,η) < . . . < λN(W,η), being Rj(W,η), j = 1, . . . ,N the associated
eigenvectors.

A(W,η) is diagonalizable.

A(W,η) = K(W,η)L(W,η)K−1(W,η),

L(W,η) diagonal matrix whose coefficients are the eigenvalues of A(W,η),

K(W,η) matrix whose columns are the eigenvectors.
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General Formulation: Nonconservative form

A family of paths (Dal Maso, LeFloch, Murat) in Ω ⊂ RN is a locally Lipschitz map

Φ : [0, 1] × Ω × Ω × S1 → Ω,

where S1 ⊂ R2 denotes the unit sphere, that satisfies some regularity conditions and
1 Φ(0; WL, WR,η) = WL and Φ(1; WL, WR,η) = WR, for any WL, WR ∈ Ω, η ∈ S1.

2 Φ(s; WL, WR,η) = Φ(1 − s; WR, WL,−η), for any WL, WR ∈ Ω, s ∈ [0, 1], η ∈ S1.

3 Φ(s; W, W,η) = W, for any s ∈ [0, 1], η ∈ S1.
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General Formulation: Nonconservative form

A family of paths (Dal Maso, LeFloch, Murat) in Ω ⊂ RN is a locally Lipschitz map

Φ : [0, 1] × Ω × Ω × S1 → Ω,

where S1 ⊂ R2 denotes the unit sphere, that satisfies some regularity conditions and
1 Φ(0; WL, WR,η) = WL and Φ(1; WL, WR,η) = WR, for any WL, WR ∈ Ω, η ∈ S1.

2 Φ(s; WL, WR,η) = Φ(1 − s; WR, WL,−η), for any WL, WR ∈ Ω, s ∈ [0, 1], η ∈ S1.

3 Φ(s; W, W,η) = W, for any s ∈ [0, 1], η ∈ S1.
A piecewise regular function W is a weak solution if and only if the two following conditions
are satisfied:

(i) W is a classical solution where it is smooth.

(ii) At every point of a discontinuity W satisfies the jump condition
� 1

0

�
σI − A(Φ(s; W−, W+,η),η)

�∂Φ
∂s

(s; W−, W+,η) ds = 0, (1)

where I is the identity matrix; σ, the speed of propagation of the discontinuity; η a unit
vector normal to the discontinuity at the considered point; and W−, W+, the lateral
limits of the solution at the discontinuity.
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General Formulation: Nonconservative form

A family of paths (Dal Maso, LeFloch, Murat) in Ω ⊂ RN is a locally Lipschitz map

Φ : [0, 1] × Ω × Ω × S1 → Ω,

where S1 ⊂ R2 denotes the unit sphere, that satisfies some regularity conditions and
1 Φ(0; WL, WR,η) = WL and Φ(1; WL, WR,η) = WR, for any WL, WR ∈ Ω, η ∈ S1.

2 Φ(s; WL, WR,η) = Φ(1 − s; WR, WL,−η), for any WL, WR ∈ Ω, s ∈ [0, 1], η ∈ S1.

3 Φ(s; W, W,η) = W, for any s ∈ [0, 1], η ∈ S1.

The choice of the family of paths is important because it determines the speed of
propagation of discontinuities.

It has to be based on the physical background of the problem: limit of viscous profiles
. . . , but in practice can be very difficult.

From the mathematical point of view, some hypotheses concerning the relation of the
paths with the integral curves of the characteristic fields can be imposed.
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High order numerical schemes

Goal

Develop high order finite volume schemes for problems that can be written under the
form:

∂W
∂t

+A1(W)
∂W
∂x

+A2(W)
∂W
∂y

= 0,
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High order numerical schemes

Goal

Develop high order finite volume schemes for problems that can be written under the
form:

∂W
∂t

+A1(W)
∂W
∂x

+A2(W)
∂W
∂y

= 0,

Properties:

Shock capturing property: the solutions of this kind of systems may generate
discontinuities in finite time, even for very regular initial conditions. The appearance
and subsequent propagation of these shocks has to be correctly simulated.
High accuracy in areas where the solution is regular.
Well-balanced property: in cases where regular non-trivial stationary solutions exist,
the schemes must be able to solve these solutions (or some of them) exactly or at
least with an enhanced accuracy.
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High order numerical schemes

Goal

Develop high order finite volume schemes for problems that can be written under the
form:

∂W
∂t

+A1(W)
∂W
∂x

+A2(W)
∂W
∂y

= 0,

Basic idea

Split the computational domain into subsets of simple geometry called cells or finite
volumes.
Define a reconstruction operator of the unknowns W on each cell.
Combine with your favourite first order finite volume scheme for nonconservative
systems (path-conservative schemes).
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Notation

D is decomposed into subsets (closed polygons) called cells of finite volumes,
Vi ⊂ R2;
Ni is the set of indexes j such that Vj is a neighbor of Vi;
Eij is the common edge to two neighbor cells Vi and Vj, and |Eij| represents its
length;
ηij = (ηij,x, ηij,y) is the normal unit vector of the edge Eij pointing towards the cell
Vj;
∆x is the maximum of the diameters of the cells;
Wn

i will represent the constant approximation of the averaged solution in the cell Vi
at time tn provided by the numerical scheme:

Wn
i
∼=

1
|Vi|

�

Vi

W(x, tn)dx.
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High order reconstruction operators

Pi: Reconstruction operator over cell Vi such as, given the averages of W at a
given stencil of cell Vi, Pi provides high order point values approximation of W at the
cell Vi.
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High order reconstruction operators

Pi: Reconstruction operator over cell Vi such as, given the averages of W at a
given stencil of cell Vi, Pi provides high order point values approximation of W at the
cell Vi.

Pi depends on a family of values {Wj}j∈Bi , where
Bi = {Set of indexes of neighbor cells of Vi}.
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High order reconstruction operators

Pi: Reconstruction operator over cell Vi such as, given the averages of W at a
given stencil of cell Vi, Pi provides high order point values approximation of W at the
cell Vi.

Pi depends on a family of values {Wj}j∈Bi , where
Bi = {Set of indexes of neighbor cells of Vi}.

If Pi depends on time we note Pt
i
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High order reconstruction operators

Pi: Reconstruction operator over cell Vi such as, given the averages of W at a
given stencil of cell Vi, Pi provides high order point values approximation of W at the
cell Vi.

Pi depends on a family of values {Wj}j∈Bi , where
Bi = {Set of indexes of neighbor cells of Vi}.

If Pi depends on time we note Pt
i

If s ∈ Eij, W−
ij (s, t), W+

ij (s, t), are the limit of Pt
i (Pt

j) when x tends to s through Vi (Vj):

lim
x → s

x · ηij < kij

Pt
i(x) = W−

ij (s, t), lim
x → s

x · ηij > kij

Pt
j(x) = W+

ij (s, t).
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High order reconstruction operators

H1 It is conservative, i.e.

Wi =
1
|Vi|

�

Vi

Pi(x)dx

.

H2 It is of order p at the edges of the cell.

H3 Order q inside Vi, i.e.,

Pi(x) = W(x) + O(∆xq), ∀x ∈ int(Vi)

.

H4 ∇Pi approximation of order m of the gradient of ∇W inside Vi.
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High order state reconstruction operators: examples

H. J. Schroll and F. Svensson.
A Bihyperbolic Finite Volume Method for Quadrilateral Meshes. SIAM: J. Sci.
Comput., 26(2):237–260, 2006.

M. Dumbser, M. Käser.
Arbitrary high order non-oscillatory finite volume schemes on unstructured
meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693-723,2007.

José M. Gallardo, Sergio Ortega, Marc de la Asunción and José Miguel Mantas
Two-dimensional compact third-order polynomial reconstructions. Solving
nonconservative hyperbolic systems using GPUs. J. Sci. Comput., 2011, DOI:
10.1007/s10915-011-9470-x.
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Third order compact polynomial reconstruction operator

Properties:
• Third order of accuracy on the whole cell ⇒ third order scheme.
• Compact stencil (nine cells) ⇒ robustness.
• Low computational cost.
• Easy to implement.

The method can be applied on non-uniform quadrilateral meshes.

Idea:
• Reconstruction on the central cell:

V4.
• A second order polynomial PR(x)

is associated to each point pR, for
R ∈ {N, S,E,W}.

• The polynomials PR(x) are then
combined using a WENO
procedure.

• The result is a third order
conservative reconstruction
operator on the cell V4.

p
S

p
E

p
N

p
W

V
0

V
1

V
2

V
3

V
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V
6

V
7

V
8

V
4
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Third order compact polynomial reconstructions: procedure

Let F(x) be the function to be reconstructed on the central cell V.

For R ∈ {N, S,E,W}:
• Consider a second-order Taylor expansion of F(x) around the point pR.
• Approximate the coefficients (i.e., the derivatives of F(x)) in such a way that the

corresponding polynomial PR(x) provides a third order approximation to F(x) on V
and it is conservative.

Remarks:
− For general non-uniform quadrilateral meshes, the approximations to the

derivatives can be obtained by solving linear systems that only depend on the
points pR and the mesh; thus, they can be calculated and stored in a
pre-processing step.

− The choice of appropriate stencils is fundamental to assure that each linear
system possesses an unique solution.
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Third order compact polynomial reconstructions: procedure

Stencils used to approximate the second order derivatives:
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Third order compact polynomial reconstructions: procedure

• For R ∈ {N, S,E,W}, build the smoothness indicators

βR =

��

V
∆x∆y

�
[∂yPR(x)]2 + [∂yPR(x)]2

�
dx.

• If some βR > tol = ∆2 then redefine PR(x) to be a linear function providing a
second order conservative approximation to F(x) on V.

• Apply the WENO idea: define the nonlinear weights ωR as

ωR =
αR

αN + αS + αE + αW
, αR =

λR

(ε+ βR)r .

The linear weights λR are given the value 1/4, as they are not chosen to improve
the accuracy. Typically, ε = 10−5 and r = 4.

• Finally, define the reconstruction operator P(x) as

P(x) = ωN PN(x) + ωS PS(x) + ωE PE(x) + ωW PW(x)
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High Order 2D scheme: conservative systems

Let us consider the conservative system

∂W
∂t

+
∂F1

∂x
(W) +

∂F2

∂y
(W) = 0,

and let Wi(t) denotes the cell average over the cell Vi at time t.

The equation satisfies by Wi(t) is the following

W
�

i (t) = −
1
|Vi|




�

j∈Ni

�

Eij

F(W(γ, t)) · ηij dγ



 . (1)
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High Order 2D scheme: conservative systems

A first order method and a reconstruction operator is used to approach the
values of fluxes at the edges:

W
�
i (t) = −

1
|Vi|




�

j∈Ni

�

Eij

G(W−
ij (γ, t),W+

ij (γ, t),ηij) dγ



 , (1)

being Wi(t) the approximation to Wi(t) and W±
ij (γ, t) the reconstruction at

γ ∈ Eij.
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High Order 2D scheme: conservative systems

Using the divergence theorem, the previous semi-discrete numerical scheme
can be rewritten as follows:

W�
i (t) = −

1
|Vi|

�

j∈Ni

�

Eij

�
G(W−

ij (γ, t),W+
ij (γ, t),ηij)− F(W−

ij (γ, t)) · ηij

�
dγ

−
1
|Vi|

�

j∈Ni

�

Eij

�
F(W−

ij (γ, t)) · ηij

�
dγ

= −
1
|Vi|

�

j∈Ni

�

Eij

�
G(W−

ij (γ, t),W+
ij (γ, t),ηij)− F(W−

ij (γ, t)) · ηij

�
dγ

−
1
|Vi|

�

Vi

∇ · (F ◦ Pt
i)(x)) dx

= −
1
|Vi|

�

j∈Ni

�

Eij

�
G(W−

ij (γ, t),W+
ij (γ, t),ηij)− F(W−

ij (γ, t)) · ηij

�
dγ

−
1
|Vi|

�

Vi

�
J1(Pt

i(x))
∂Pt

i
∂x

(x) + J2(Pt
i(x))

∂Pt
i

∂y
(x)

�
dx,
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High Order 2D scheme for nonconservative systems

W
�
i (t) = −

1
|Vi|




�

j∈Ni

�

Eij

D
−
ij (W

−
ij (γ, t),W+

ij (γ, t),ηij)dγ

+

�

Vi

�
A1(Pt

i(x))
∂Pt

i
∂x

(x) +A2(Pt
i(x))

∂Pt
i

∂y
(x)

�
dx

�

where D
±
ij (W

−
ij (γ, t),W+

ij (γ, t),ηij) is a path-conservative first order finite volume
scheme.
In order to obtain a fully discrete numerical scheme:

Use a quadrature formulae to approximate the integrals.
Use a high order TVD Runge-Kutta numerical scheme for time integration.

M. Castro, E.D. Fernández, A. Ferreiro, J.A. Garcı́a and C. Parés.
High order extensions of Roe schemes for two dimensional nonconservative
hyperbolic systems. J. Sci. Comput., 39: 67-114, 2009.



Introduction Mathematical models Numerical schemes Implementation on GPUs Hysea web platform Applications

Path-conservative schemes

We consider Path-conservative schemes in the sense introduced by Parés, 2006

D
±�

WL,WR,η
�
,

where D− and D+ are two Lipschitz continuous functions from Ω× Ω× S1 to Ω
satisfying:

D
±(W,W,η) = 0, ∀W ∈ Ω, ∀η ∈ S

1, (1)

and
for every WL,WR ∈ Ω, and η ∈ S1

D
−(WL,WR,η)+D

+(WL,WR,η) =

� 1

0
A
�
Φ(s;WL,WR,η),η

�∂Φ
∂s

(s;WL,WR,η) ds.
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Path Conservative schemes: Convergence

In Castro, LeFloch, Muñoz and Parés, 2008 and Parés-Muñoz, 2009 has been
proved that the numerical solutions provided by finite difference/volumes
path-conservative numerical scheme converge to functions which solve a
perturbed system in which an error source-term appear on the right hand side
(which is a measure supported on the discontinuities). This problem is common to
any numerical scheme that introduces numerical diffusion.
In order to overcome this difficulty, one can use viscosity-free methods based on
Random Choice, as Glimm’s method or control de entropy production of the
numerical scheme: LeFloch, Coquel, Berthon, Entropy stable path-conservative
schemes (SINUM 2012).
In Muñoz-Parés, 2010 is shown that in certain situations this error vanishes for
finite difference/volumes methods: this is the case of systems of balance laws.
Moreover, in Castro et all, 2012 (M2AN) is shown that given any jump conditions
related to a particular choice of paths then, it gives a third order approximation of
the physically correct ones.
In N. Chalmers and E. Lorin, 2012 is shown that if the numerical viscosity matrix
commutes with A, then shock curves associated to different numerical schemes
are closed among them.
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1D Model problem

Lets consider the system

wt + F(w)x + B(w) · wx = S(w)Hx, (2)

w(x, t) takes values on an open convex set O ⊂ RN ,
F is a regular function from O to RN ,
B is a regular matrix function from O to MN×N(R),
S is a function from O to RN , and
H is a function from R to R.

By adding to (2) the equation Ht = 0, the system (2) can be rewritten under the form

Wt +A(W) · Wx = 0, (3)

W is the augmented vector

W =

�
w
H

�
∈ Ω = O × R ⊂ RN+1
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1D Model problem

Lets consider the system

wt + F(w)x + B(w) · wx = S(w)Hx, (2)

w(x, t) takes values on an open convex set O ⊂ RN ,
F is a regular function from O to RN ,
B is a regular matrix function from O to MN×N(R),
S is a function from O to RN , and
H is a function from R to R.

By adding to (2) the equation Ht = 0, the system (2) can be rewritten under the form

Wt +A(W) · Wx = 0, (3)

A(W) is the matrix whose block structure is given by:

A(W) =

�
A(w) −S(w)

0 0

�
,

A(w) = J(w) + B(w), being J(w) =
∂F
∂w

(w).
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Roe linearization I

Here, we consider numerical schemes defined using a generalized Roe matrix for (3)
as defined by Toumi 1992:
Given a family of paths Φ = [Φw,ΦH ]T , a function AΦ : Ω× Ω �→ M(N+1)×(N+1)(R) is
called a Roe linearization if it verifies the following properties:

• for any WL,WR ∈ Ω, AΦ(WL,WR) has N + 1 distinct real eigenvalues,
• for every W ∈ Ω,

AΦ(W,W) = A(W); (4)

• for any WL,WR ∈ Ω,

AΦ(WL,WR) · (WR − WL) =

� 1

0
A(Φ(s;WL,WR))

∂Φ

∂s
(s;WL,WR) ds. (5)
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Roe-based schemes I

The following Roe linearizations AΦ(WL,WR) for system (2) are considered
(Parés-Castro 2004):

AΦ(WL,WR) =

�
AΦ(wL,wR) −SΦ(wL,wR)

0 0

�
,

where
AΦ(wL,wR) = J(wL,wR) + BΦ(wL,wR).

Here, J(wL,wR) is a Roe matrix of the Jacobian of the flux F in the usual sense:

J(wL,wR) · (wR − wL) = F(wR)− F(wL);

BΦ(wL,wR) · (wR − wL) =

� 1

0
B(Φw(s;WL,WR))

∂Φw

∂s
(s;WL,WR) ds;

SΦ(wL,wR)(HR − HL) =

� 1

0
S(Φw(s;WL,WR))

∂ΦH

∂s
(s;WL,WR) ds.

It can be easily shown that, the resulting matrix is a Roe linearization provided it has
N + 1 different real eigenvalues.
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Roe-based schemes II

Once the Roe linearization has been chosen, D±
i+1/2 can be defined:

D
±
i+1/2 = �A±

Φ (Wn
i ,Wn

i+1) · (W
n
i+1 − Wn

i ),

being
AΦ(WL,WR) = �A+

Φ(WL,WR) + �A−
Φ (WL,WR)

is any decomposition of the Roe linearization of the form:

�A±
Φ (WL,WR) =

1
2
(AΦ(WL,WR)±QΦ(WL,WR)) ,

where QΦ(WL,WR) can be interpreted as a numerical viscosity matrix.
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Roe-based schemes III

D
±
i+1/2 can be re-written in terms of w, F, B, S and H as follows

D±
i+1/2 =

1
2
�
F(wi+1)− F(wi) + Bi+1/2(wi+1 − wi)− Si+1/2(Hi+1 − Hi)

± Qi+1/2(wi+1 − wi − A−1
i+1/2Si+1/2(Hi+1 − Hi))

�
,

(6)

being
Bi+1/2 = BΦ(Wi,Wi+1),
Si+1/2 = SΦ(Wi,Wi+1),
Ai+1/2 = AΦ(Wi,Wi+1) and
Qi+1/2 = QΦ(Wi,Wi+1) a numerical viscosity matrix obtained from QΦ(Wi,Wi+1)
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Roe-based schemes III

D
±
i+1/2 can be re-written in terms of w, F, B, S and H as follows

D±
i+1/2 =

1
2
�
F(wi+1)− F(wi) + Bi+1/2(wi+1 − wi)− Si+1/2(Hi+1 − Hi)

± Qi+1/2(wi+1 − wi − A−1
i+1/2Si+1/2(Hi+1 − Hi))

�
,

(6)

Conservative systems

If the system is conservative and

Fi+1/2 =
F(wi) + F(wi+1)

2
−

1
2

Qi+1/2(wi+1 − wi)

is a conservative flux, where Qi+1/2 is defined in terms of Ji+1/2, then

D−
i+1/2 = Fi+1/2 − F(wi) D+

i+1/2 = F(wi+1)− Fi+1/2.
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Roe-based schemes III

D
±
i+1/2 can be re-written in terms of w, F, B, S and H as follows

D±
i+1/2 =

1
2
�
F(wi+1)− F(wi) + Bi+1/2(wi+1 − wi)− Si+1/2(Hi+1 − Hi)

± Qi+1/2(wi+1 − wi − A−1
i+1/2Si+1/2(Hi+1 − Hi))

�
,

(6)

Different numerical schemes can be obtained for different definitions of Qi+1/2
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Roe-based schemes IV

Roe scheme corresponds to the choice

QΦ(WL,WR) = |AΦ(WL,WR)|,

Lax-Friedrichs scheme:
QΦ(WL,WR) =

∆x
∆t

Id,

being Id the identity matrix.
Lax-Wendroff scheme:

QΦ(WL,WR) =
∆t
∆x

A2
Φ(WL,WR),

FORCE and GFORCE schemes are presented in the bibliography as a convex
combination of Lax-Friedrichs and Lax-Wendroff scheme:

QΦ(WL,WR) = (1 − ω)
∆x
∆t

Id + ω
∆t
∆x

A2
Φ(WL,WR),

with ω = 0.5 and ω = 1
1+α , respectively, being α the CFL parameter.
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Roe-based schemes V

We propose a class of finite volume methods defined by

Qi+1/2 = f (Ai+1/2),

where f : R �→ R and Ai+1/2 a Roe matrix.

Qi+1/2 has the same eigenvectors than Ai+1/2 and if λi+1/2,l is an eigenvalue of
Ai+1/2, then f (λi+1/2,l) is an eigenvalue of Qi+1/2.

Some properties of f

f (x) ≥ 0 and smooth.
f (Ai+1/2) should be easy to evaluate: no spectral decomposition of Ai+1/2 must
be performed,
L∞ linear stability:

ν
∆x
∆t

≥ f (λi+1/2,l) ≥ |λi+1/2,l|,

for all λi+1/2,l eigenvalue of Ai+1/2.
f (x) should be as close as possible to |x|.
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PVM methods

One possible choice is to set
f (x) = Pl(x),

being Pl(x) a polynomial of degree l,

Pl(x) =
l�

j=0

αi+1/2
j xj.

In this case
Qi+1/2 = Pl(Ai+1/2).

That is, Qi+1/2 is a Polynomial Viscosity Matrix (PVM). See Castro-Fernández 2012.

Some well-known solvers as Lax-Friedrichs, Rusanov, FORCE/GFORCE, HLL,
Roe, Lax-Wendroff, ... can be recovered as PVM methods

We use the following notation: PVM-l(S0, · · · , Sk), where the parameters S0, · · · , Sk will
be related to the approximations of some wave speeds.



Introduction Mathematical models Numerical schemes Implementation on GPUs Hysea web platform Applications

PVM-0(S0) methods: Rusanov, Lax-Friedrichs and modified
Lax-Friedrichs schemes

P0(x) = S0,

S0 ∈ {SRus, SLF, Smod
LF }, SRus = max

j
|λj,i+1/2|, SLF =

∆x
∆t

and Smod
LF = α

∆x
∆t

.

Rusanov scheme corresponds to the choice S0 = SRus,

Lax-Friedrichs with S0 = SLF

modified Lax-Friedrichs with S0 = Smod
LF .

λ1 λ2 λj
...

λN S

 

!"#!$%&'
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PVM-2(S0) methods or FORCE type methods

P2(x) = α0 + α2x2, such as P2(S0) = S0, P�
2(S0) = 1, S0 ∈ {SRus, SLF, Smod

LF }.

Remarks
If S0 = SLF then we obtain FORCE method.
GFORCE scheme can be obtained by imposing

P2(Smod
LF ) = Smod

LF , P�
2(S

mod
LF ) =

2α
1 + α

,

λ1 λ2 λj
...

λN S0

 

!"#!$%&
'
(
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PVM-1U(SL, SR) or HLL method

Let SL (respectively SR) be an approxi-
mation of the minimum (respectively maximum) wave speed, we consider de polynomial

P1(x) = α0 + α1 x such as P1(SL) = |SL|, P1(SR) = |SR|.

Qi+1/2 = α0Id + α1Ai+1/2

SL λ1 λ2 λj
...

λN SR

 

!"#!$%&'
(
)'
*
+
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PVM-1U(SL, SR) or HLL method

The usual HLL scheme coincides with PVM-1U(SL, SR) in the case of conservative
systems.
Let us suppose that the system is conservative. Then, the conservative flux associated
to PVM-1U(SL,SR) is Fi+1/2 = D−

i+1/2 + F(wi). Taking into account that

α0 =
SR|SL|− SL|SR|

SR − SL
, α1 =

|SR|− |SL|

SR − SL
,

then

Fi+1/2 =
F(wi)(SR + |SR|− SL − |SL|) + F(wi+1)(SR − |SR|− SL + |SL|)

2SR − 2SL

−
(SR|SL|− SL|SR|)(wi+1 − wi)

2SR − 2SL

=
S+R F(wi)− S−L F(wi+1) + (S+R S−L )(wi+1 − wi)

S+R − S−L

which is a compact definition of the HLL flux, being S+R = max(SR, 0) and
S−L = min(SL, 0).
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PVM-2U(SL, SR) method

P2(x) = α0 + α1x + α2x2,

such as
P2(Sm) = |Sm|, P2(SM) = |SM |, P�

2(SM) = sgn(SM),

where
SM =

�
SL if |SL| ≥ |SR|,
SR if |SL| < |SR|.

Sm =

�
SR if |SL| ≥ |SR|,
SL if |SL| < |SR|.

SL λ1 λ2 λj
...

λN SR

 

!"#!$%&'
(
)'
*
+
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PVM-2U(SL, SR, Sint) method or IFCP method

P2(x) = α0 + α1x + α2x2,



1 SL S2

L
1 SR S2

R
1 Sint S2

int








α0
α1
α2



 =




|SL|

|SR|

|Sint|



 ,

SL (respectively SR) is an approximation of the minimum (respectively maximum) wave
speed and

Sint = Sext max(|S2|, . . . , |SN−1|),

Sext =

�
sgn(SL + SR), if (SL + SR) �= 0,
1, otherwise.
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PVM-2U(SL, SR, Sint) method or IFCP method

!
1

!
N

"
int

... ...
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PVM-(N-1)(λ1, · · · ,λN) or Roe method

PN−1(λj) = |λj|, j = 1, · · · ,N.

QΦ(wL,wR) = |AΦ(wL,wR)| =
N−1�

j=0

αjA
j
Φ(wL,wR),

where αj, j = 0, · · · ,N − 1 are the solution of the following linear system:





1 λ1 . . . λN−1
1

1 λ2 . . . λN−1
2

...
...

. . .
...

1 λN . . . λN−1
N









α0
α1
...

αN−1




=





|λ1|
|λ2|

...
|λN |




,

λ1, · · · ,λN are the eigenvalues of the matrix Ai+1/2.
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PVM-Chebyshev method

Chebyshev polynomials provide optimal approximation to the absolute value function in [−1, 1]:

|x| =
2
π

+
∞�

k=1

4
π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1],

where the Chebyshev polynomials of even degree T2k(x) are recursively defined as

T0(x) = 1, T2(x) = 2x2 − 1, T2k(x) = 2T2(x)T2k−2(x) − T2k−4(x).

The polynomial

τ2p(x) =
2
π

+
p�

k=1

4
π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1],

verifies the equality

�|x| − τ2p(x)�∞ =
2
π

1
2p + 1

,

which is optimal in L∞(−1, 1) (see Bernstein 1913).

Qi+1/2 = P2p(Ai+1/2) = |λmax|τ2p

�
1

|λmax|
Ai+1/2

�
≈ |Ai+1/2|,

where λmax is the eigenvalue of Ai+1/2 with maximum absolute value.
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PVM-Chebyshev method

Figure : The Chebyshev approximations τ2p(x) for p = 2, 3, 4.

Notice that τ2p(x) do not strictly satisfy the stability condition τ2p(x) ≥ |x|. This drawback can be avoided
by substituting τ2p(x) by τ�

2p(x),such that τ�
2p(x) ≥ |x|.
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What is a GPU?

GPU (Graphics Processing Unit)

GPUs are specialized circuits designed to rapidly manipulate the building of images in
a frame buffer intended for output to a display. Driven by the insatiable market demand
for realtime, high-definition 3D graphics, the programmable Graphic Processor Unit or
GPU has evolved into a highly parallel, multithreaded, many-core processor with
tremendous computational power and very high memory bandwidth

GPGPU (General-purpose computation on GPU)

It is the technique of using a GPU to perform computations in applications traditionally
handled by the CPU. It is made possible by the addition of programmable stages and
higher precision arithmetic to the rendering pipelines, which allows software developers
to use stream processing on non-graphics data.
There are some parallel computing architectures that allows this: Brook++, OPENCL,
Cg, CUDA.
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CPU vs GPU architectures

GPUs are specialized for compute-intensive highly parallel computations.
GPU are especially well-suited to address problems that present a high
data-parallel paradigm.
The same program is executed for each data element in GPUs, so the flow control
of the code is simple.
The code it is executed on many data elements in GPUS, so the memory access
latency can be hidden with calculations instead of big data caches.
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Why GPUs?

CPUs

Northwood: 1(2 logical) Core(s), 2’2 GHz, 512 KB L2 Cache

Harpertown: 4 Cores, 3’4 GHz, 2x6 MB L2 Cache

Westmere: 6 (12 logical) Cores, 6x256 KB L2 Cache, 12 MB
L3 Cache

GPUs

GeForce FX 5900: 450 MHz, 256 MB

GForce 8800 GTX: 128 Cores, 575 MHz, 728 MB

GeForce GTX 580: 512 Cores, 1544 MHz, 1546 MB
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Code Example

CPU Code

int N = . . . / / g l oba l v a r i a b l e

void MatAdd (float A[N ] [ N] , float B[N ] [ N] ,
float C[N ] [ N ] )
{
for (int i = 0 ; i<N, i ++)
{

for (int j = 0 ; j<N; j ++)
{
C[ i ] [ j ] = A [ i ] [ j ] + B [ i ] [ j ] ;
}

}
}

int main ( )
{
. . .
float A[N ] [ N] , B [N ] [ N] , C[N ] [ N ] ;
. . .
MatAdd (A, B, C) ; / / C = A + B
}

GPU Code

int N = . . .

/ / Kernel d e f i n i t i o n
g l o b a l void MatAdd (float A[N ] [ N] , float B[N ] [ N] ,

float C[N ] [ N ] )
{
int i = th read Idx . x ;
int j = th read Idx . y ;
if ( i<N && j<N)

C[ i ] [ j ] = A [ i ] [ j ] + B [ i ] [ j ] ;
}

int main ( )
{
. . .
/ / Kernel i nvoca t i on wi th one block o f N ∗ N threads
int numBlocks = 1;
dim3 threadsPerBlock (N, N) ;
MatAdd<<<numBlocks , threadsPerBlock>>>(A, B, C) ;
}
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GPU Code Example

1 Input data in CPU.
2 Build data structure as arrays in CPU.
3 Loop in time.

1 Copy CPU arrays in GPU arrays.
Data is stored in GPU in float4 textures.

2 Calculate and copy the contributions D+

i− 1
2

and

D−
i+ 1

2
to float4 arrays.

3 Compute ∆ti for each volume.

4 Get the minimum of ∆ti.

5 Calculate Wn+1
i = Wn

i − ∆t
∆x (D+

i− 1
2
+ D−

i+ 1
2
).

6 Next step in time.
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i = Wn

i − ∆t
∆x (D+

i− 1
2
+ D−

i+ 1
2
).

6 Next step in time.
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An example: First order PVM scheme for the two-layer shallow-water
system

For each PVM method:

Two implementations in CPU using C++ and the Eigen library: one for one
thread and another for 4 threads using OpenMP. Both programs use double
precision.

One implementation in GPU using CUDA and single precision.

Computer: Intel Core i7 920, 4 GB RAM.

Graphics card: GeForce GTX 570.
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An example: First order PVM scheme for the two-layer shallow-water
system

Initial state:

H(x, y) = 5

W0
i (x, y) =

�
h1(x, y), 0, 0, h2(x, y), 0, 0

�T

h1(x, y) =

�
4 if

�
x2 + y2 > 1.5

0.5 otherwise
h2(x, y) = 5 − h1(x, y)

Wall boundary conditions

Time interval [0, 0.1]

γ = 0.9, r = 0.998

Different mesh sizes, up to 5760000
volumes
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An example (Two-layer shallow-water system)

PVM methods have been 1.9 times faster than
Roe method on a GTX 570.

Roe method has reached more GFLOPS than
PVM methods.
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Multi-GPU Implementation

The triangular mesh is divided into submeshes.
Each submesh is assigned to a CPU process,
which uses a GPU to perform its computations.
Volume indexation:

1 Non-communication volumes.

2 Comm. volumes of the submesh.

3 Comm. volumes of adjacent submeshes.

The communication volumes of the submesh must
be reordered, overlapping the sendings.
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Multi-GPU Implementation

Two implementations:
One with blocking MPI sends and receives.
One that overlaps MPI communication with CPU-GPU memory transfers and kernel
computation.
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HySEA: interdisciplinary platform

Models based on geophysical flows with applications in:
Physical Oceanography
Marine Geology
Tsunami Research
Civil Engineering
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HySEA: how to make more accessible our codes?

Hardware:
No need to have a large computational infrastructure.
Codes have to be accessible from any architecture.

Software:
No need to install specific libraries, compilers, etc.
Models have to be independent from the operative system.
Easy update process for code changes.
Updated documentation.
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HySEA: making accessible our codes.

Hardware:
We have a supercomputer (CPU’s and GPU’s): cires.uma.es
Numerical Methods Laboratory of the University of Málaga.

Software:
The interface between the researcher and Cires is a web browser.
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Dambreak problem: Limonero Dam (close to Málaga (Spain))

Resolution 5 m × 5 m.
Number of cells: 1052224.
Real simulated time: 20 min.
Used scheme: Second order HLL or PVM-1U(SL,SR).
Positivity of the water height is ensured.
Graphics card: GeForce GTX 570. Speedup: 230 (1 Intel Core i7 920).
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Dambreak problem: Limonero Dam (close to Málaga (Spain))
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Monai valley: Location
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Monai valley: Laboratory Experiment

Matsuyama and Tanaka (2001)

Maximum run-up height at Monai zone in Okushiri Island (1993)
Scale1:400
3.4 m wide, 205 m long flume
Maximum depth 6 m.
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Monai valley: Benchmark problem

Synolakis et al. (2007). NOAA Technical Memorandum. Standards, criteria, and
procedures for NOAA evaluation of tsunami numerical models

Liu et al. (2008). Third Int. Workshop on Long-Waves Runup models.

http://isec.nacse.org/workshop/2004 cornell/bmark2.html
(Inundation Science & Engineering Cooperative)

http://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory MonaiValley/
(NOAA Center for Tsunami Research)
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Monai valley: Computational domain

Rectangle 5.488 m × 3.402 m
Minimum depth: -0.125 m (land)
Maximum depth: 0.13535 m
Grid size: 0.014 m
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Monai valley: Input wave

Boundary conditions

West: input wave
Time domain: 0-22.5 sec
Time step: 0.05 sec

North, East and South: solid wall
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Monai valley: Numerical Experiments

Spatial resolution

Grid ∆x = ∆y (cm) # volumes Comput. Time (s-(min))
393 × 244 0.014 95,892 91.54618 (1.52)
785 × 487 0.007 382,295 538.0129 (8.96)
1569 × 973 0.0035 1,526,637 3,693.026 (61.55)

3137 × 1945 0.00175 6,101,465 28,255.71 (470.92)
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Monai valley: Time series at laboratory gauges
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Monai valley: Physical model - Numerical simulation comparison

Gauge 5
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Monai valley: Physical model - Numerical simulation comparison

Gauge 7
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Monai valley: Physical model - Numerical simulation comparison

Gauge 9

0 10 20 30 40 50 60
2

1

0

1

2

3

4

5

Time (s)

S
ur

fa
ce

 e
le

va
tio

n 
(c

m
)

 

 

 still water level
 bottom
 laboratory
 simulation



Introduction Mathematical models Numerical schemes Implementation on GPUs Hysea web platform Applications

Monai valley: checking convergence

Gauge 5
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Monai valley: Video

Haga click para visualizar la simulación

http://file://localhost/Users/ChiaraSimeoni/Desktop/./movies/overhead.avi
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Monai valley: Frontal wave location

Physical model (Frame 10) - Numerical simulation (Time 15 s)
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Monai valley: Frontal wave location

Physical model (Frame 25) - Numerical simulation (Time 15.5 s)
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Monai valley: Frontal wave location

Physical model (Frame 40) - Numerical simulation (Time 16 s)
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Monai valley: Frontal wave location

Physical model (Frame 55) - Numerical simulation (Time 16.5 s)
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Monai valley: Frontal wave location

Physical model (Frame 70) - Numerical simulation (Time 17 s)
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Monai valley: Maximal run-up height

Time 16.3 s - At point (5.15592356688,1.88961190965) - Max heigth: 0.0891 (0.08958)
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Monai valley: Video

Haga click para visualizar la simulación
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Tsunami generated by a landslide

Number of cells: 640000.
r = 0.4, Coulomb friction angle 25o

Real simulated time: 8 sec.
Used scheme: PVM-2U(SL,SR,Sint) or IFCP
Positivity of the water height is ensured.
Graphics card: GeForce GTX 570. Speedup: 190 (1 Intel Core i7 920).
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Tsunami generated by a landslide
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Tsunami at the Alboran Sea I
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Tsunami at the Alboran Sea I
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Tsunami at the Alboran Sea II: Bathymetry reconstruction
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Tsunami at the Alboran Sea III: initial condition
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Tsunami at the Alboran Sea III: initial condition



Introduction Mathematical models Numerical schemes Implementation on GPUs Hysea web platform Applications

Tsunami at the Alboran Sea IV: simulation
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Tsunami at the Alboran Sea IV:simulation
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Tsunami at the Alboran Sea V: simulation

P1 (generation zone) - P2 (SE - open sea)
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Tsunami at the Alboran Sea V: simulation

Puntos P3 (NO - open sea) - P4 (Tres Forcas)
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Tsunami at the Alboran Sea V: simulation

P5 (Melilla) - P2 (Adra)
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Tsunami at the Alboran Sea V: simulation

P7 (Torre del Mar) - P8 (Málaga)
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Tsunami at the Alboran Sea V: simulation

P7 (Torre del Mar) - P8 (Málaga)
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Lituya Bay description

Lituya bay is T-shaped, about 12
kilometres long and from 1.2 to 3
kilometres wide (except at the
entrance, which is only 300m
wide).
Two glaciated inlets at the head,
Gilbert Inlet and Crillon Inlet.
Narrow and shallow entrance.
High mountains with large slopes
near the head of the bay.
High tides in this area (about 3 m
height).
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Lituya Bay: Earthquake & Landslide

At 10:16pm (local time) on July
10, 1958. Mw 8.3 earthquake.
Southwest sides and bottoms of
Gilbert and Crillon inlets moved
northwestward and relative to the
northeast shore at he head of the
bay, on the opposite side of the
Fairweather fault.
Shaking lasted about 4 minutes.
Estimated total movements of
6.4m horizontally and 1 m
vertically.
About 2 minutes after the
beginning of the earthquake the
landslide was triggered.
Slide volume estimated by Miller,
1960 in 30.6 × 106 m3.

Picture from Weiss et. al., 2009
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Lituya Bay: Effects of the 1958 tsunami
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Lituya Bay: Tsunami source: reconstruction of the slide

Landslide setup

Determine the slide perimeter.
Surface centroid located at 610 m
elevation.
Volume of reconstructed slide:
30.625 × 106 m3.
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Lituya Bay: Tsunami source: reconstruction of the slide

Landslide setup

Determine the slide perimeter.
Surface centroid located at 610 m
elevation.
Volume of reconstructed slide:
30.625 × 106 m3.
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Lituya Bay: Topo-bathymetry reconstruction

Gilbert Inlet Glacier front reconstruction

Prior to the 1958 low deltas of gravel had built out into Gilbert Inlet at the
southwest and northeast margins of the Lituya Glacier front.
After the 1958 tsunami the delta on the northeast side of Gilbert Inlet completely
disappeared, and the delta on the southwest side was much smaller.
According to [Miller, 1960], the glacier surface for several hundred feet from the
front was severely crevassed.78 SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY 

FIQKJRE 19.-Map of Lituya Bay showing setting and effecta of giant wave that occurred in 1853 or 1854. 

shore in the vicinity of Mudslide Creek, in Gilbert Inlet 
and in Crillon Inlet. The valley of Mudslide Creek, 
and particularly the east wall of the valley, is an area 
of active sliding at the present time, and sliding in the 
past probably played an important part in the forma- 
tion of the valley. Photographs taken in 1894 by 
McArthur (nos. 105A and 128) show that the shape 
of the Mudslide Creek valley was similar to that shown 
on the 1948 verticaJ photographs, so any major sliding 
must have occurred before 1894. The sketch map of 
Lituya Bay made in 1874 and issued in 1875 as U.S. 
Coast Survey Chart 742 is almost identical to the La 
Perouse map in the part of the bay east of Cenotaph 
Island, indicating that little or no resurveying was 

done in the upper part of the bay. Hence a comparison 
of these maps gives no information on the possible oc- 
currence of a large slide at Mudslide Creek between 
1786 and 1874. The modern U.S. Coast and Geodetic 
Survey chart of Lituya Bay (no. 8505) shows a more 
pronounced bulge in the shoreline at Mudslide Creek 
than does the La Perouse map. The difference is slight 
and, in view of the small scale and questionable ac- 
curacy of the La Perouse map, only suggests but does 
not prove that a large slide occurred there sometime 
after 1786. 

No major earthquakes in the region adjoining Lituya 
Bay are known to have been reported between 1847 
(Dall, 1870, p. 342) and 1862 or 1863 (Musketov and 
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Fxausm 18.-Map of Lituya Bay, showing trimlines of one or more giant waves that occurred between 1864 and 1916. 

much of the new breakage had taken place along old entrance and who, with his assistant, caused tidal waves 
scarps. The few oblique photographs taken at the head by grasping the surface of the water and shaking it as 
of Lituya Bay at the turn of the century are not ade- if it were a sheet. De Laguna (written communication, 
quate to either prove or disprove the occurrence of Nov. 19, 1957) was told a story about a flood in Dry 
a rockslide in Crillon Inlet. Bay that killed a great many people, possibly between 

WAVE IN 1858 OR 1854 1850 and 1860, and also the story of a village near Dry 
Bay that was abandoned about 1850 because eight canoe 

EYEWITNESS ACCOUNTS loads of men from the village were lost in Lituya Bay 
Williams (1938, p. 19) related the formation of the 

oldest trimline in Lituya Bay to an old Indian story 
about the catastrophic destruction of a village near the 
entrance. The source of this legend was not cited. 
Emrnons (1911, p. 294-298) and de Laguna (1953, p. 
55) were told the story of the meeting between La 
Perouse and the Tlingit in Lituya Bay in 1786 by 
natives living at Yakutat, near Juneau, and at Angoon. 
Emmons (1911, p. 295) also recorded the Tlingit legend 
about a monster who dwelt in Lituya Bay near the 

when their canoes tipped over. W. A. Soboleff (oral 
communication, June 7, 1958) was unable to find any 
specific information about Lituya Bay among the 
people of Tlingit origin in the Juneau area, other than 
that the Indians had left the bay for an unknown reason 
and at an unknown date. These stories may indeed 
refer to the giant wave that formed a trimline in Lituya 
Bay in 1853 or 1854, but some of the stories might also 
refer to incidents related to the treacherous tidal cur- 
rent in the entrance or to an earlier or later wave. 
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EXPLANATION 

Trimline (upper limit of destruc- 
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ing appmximate altitude above 
mean sea level 
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Figure 17. Map of Lituya Bay showing setting and effects of 1936 giant waves. 

turbance of the water surface was noticed up to this ACCOUNTS OF BERNARD v- ALLEN AND JAMES EUsCBOFT 
- 

time. 
The first wave raised The Mine about 50 feet above 

normal water level; out of the lee of the island, to the 
north and south, the wave was possibly 50 feet higher. 
Immediately after the passing of the first wave the 
water surface fell below normal level. Huscroft's min- 
ing boat, anchored nearby in 48 feet of water, touched 
bottom. The first wave was followed at estimated 2- 
minute intervals by the second and third waves, each 
larger than the preceding one. The water surface 
receded below normal level after each of these waves 
also. Smaller wavm continued for about half an hour 
after the third large wave passed. The direction of 
wave movement was always toward the mouth of the 
bay; there was no sloshing of the water back and forth 
in the bay. Floating logs and ice appeared around the 
boat about half an hour after the third large wave 
passed. 

The more complete of two newspaper articlw based 
on the account of Allen (Alaska Daily Press, 1936) 
states that he and Huscroft were awakened at 7 :00 a.m. 
on October 27, 1936, by a roar like "the drone of 100 
airplanes at low altitude," to find the water already up 
to their cabin on Cenotaph Island. As seen from a 
higher, safer point on the island, the water is described 
by Allen as sweeping over the shore in 3 waves of in- 
creasing altitude, at an estimated velocity of about 20 
knots (23 miles per hour). I n  the published account 
the maximum height of the waves is given at 250 feet, 
but in a shorter account recorded in the log book of Osa 
Nolde (Caroline Jenssn, written communication, Dec. 
23,1958) Allen stated that the waves reached a height 
of from 150 to 200 feet. These accounts agree in most 
respects with the recollections of Fredrickson; in the 
log book, however, Allen described the weather in 

.pt

Head of Lituya Bay, showing changes in shoreline and glacier fronts over time from [Miller, 1960].
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Lituya Bay: Topo-bathymetry reconstruction

Gilbert Inlet Glacier front reconstruction

Prior to the 1958 low deltas of gravel had built out into Gilbert Inlet at the
southwest and northeast margins of the Lituya Glacier front.
After the 1958 tsunami the delta on the northeast side of Gilbert Inlet completely
disappeared, and the delta on the southwest side was much smaller.
According to [Miller, 1960], the glacier surface for several hundred feet from the
front was severely crevassed.
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Lituya Bay: Topo-bathymetry reconstruction

Gilbert Inlet Glacier front reconstruction

Prior to the 1958 low deltas of gravel had built out into Gilbert Inlet at the
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Lituya Bay: reconstruction of the bathymetry

Bathymetric data (National Ocean Service (USA)

Hydrographic Survey ID: H08492 (Digital sounding), 1959.
Hydrographic Survey ID: H04608, 1926.

Gilbert Inlet bathymetries and shorelines before and after 1958.
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Lituya Bay: Model setup

Model setup

Initially water is at rest.
Initial water level is set to 1.52 m (datum approximate mean sea level).
A 4 m × 7.5 m rectangular grid with 3, 650 × 1, 271 = 4, 639, 150 cells has been
designed in order to perform the simulation.
A high efficient GPU based implementation of the model has been developed to
be able to compute high accuracy simulations in reasonable computational time.
The numerical simulation presented here lasts for 10 min.
14, 516 time iterations were required to obtain the 10 minutes simulation, requiring
about 1, 296.5 seconds in nVidia GTX 580 card. This means that over 51.9 ∗ 106

cell are processed per second.
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Lituya Bay: Parameter sensitivity analysis

Parameters to be considered

Coulomb friction angle α ∈ [10, 16] degrees).
Ratio of densities between water and the mean density of the slide r ∈ [0.3, 0.5].
Friction between layers mf ∈ [0.001, 0.1].
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Lituya Bay: Parameter sensitivity analysis

Criteria selected in order to get the optimal parameters:

the runup on the spur southwest of Gilbert Inlet had to be the closest to the
optimal 524 m,
the wave moving southwards towards the main stem of Lituya bay had a peak
close to 208 m in the vicinity of Mudslide Creek,
the simulated wave had run over through the Cenotaph Island, opening a narrow
channel through the trees [Miller, 1960],
the trimline maximum distance of 1,100 m from high-tide shoreline at Fish Lake
had to be reached.
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Parameter sensitivity analysis

Optimal parameters found:

α = 13 degrees,
r = 0.44,
mf = 0.08.

Lituya Bay: Settings

Simulated time: 10 min.
Mesh resolution: 3650x1271 = 4639150 volumes (4m × 7.5m).
CFL: 0.9
Ratio of densities: r = 0.44
Coulomb angle of repose: 13◦.
Coef. Friction between layers: 0.08.
Coef. Friction water-bottom: 2 · 10−3.
Velocity of impact sediment/water 110 m/s.



Introduction Mathematical models Numerical schemes Implementation on GPUs Hysea web platform Applications

Lituya Bay: Model results
Giant wave generation

t = 0 s.
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Lituya Bay: Model results
Giant wave generation

t = 8 s. The giant wave reaches 272.4m height
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Lituya Bay: Model results
Giant wave generation

t = 10 s. The giant wave reaches 251.1m height
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Lituya Bay: Model results
Giant wave generation

t = 20 s. Maximum wave height reaches 161.5m height
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Lituya Bay: Model results
Giant wave generation

t = 30 s. Giant wave hits the spur southwest of Gilbert Inlet
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Lituya Bay: Model results
Giant wave generation

t = 39 s. Maximum runup: 523.9 m
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Lituya Bay: Model results
Wave evolution

Haga click para visualizar la simulación
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Lituya Bay: Model results
Wave evolution. Some snapshots

t = 1 m 10 s. Waves amplitude.
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Lituya Bay: Model results
Wave evolution. Some snapshots

t = 2 m 10 s. Waves amplitude.
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Lituya Bay: Model results
Wave evolution. Some snapshots

t = 4 m 30 s. Waves amplitude.
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Lituya Bay: Model results
Wave evolution. Some snapshots

t = 7 m. Waves amplitude.
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Lituya Bay: Model results
Inundation area and trimline comparison

Total inundation areas and trimline
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Thanks
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Webpage:

http://edanya.uma.es

Youtube Channel:

http://youtube.com/grupoedanya

http://edanya.uma.es
http://youtube.com/grupoedanya
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