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Development of robust, reliable and low computational cost numerical tools for
the simulation of geophysical flows and the prediction of emergency situations
such as river flooding or oil spills, tsunamis, debris avalanches ...
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Goals

Edanya: Main Goals

Development of robust, reliable and low computational cost numerical tools for
the simulation of geophysical flows and the prediction of emergency situations
such as river flooding or oil spills, tsunamis, debris avalanches ...

Ingredients
@ Depth averaged models: Shallow-water type systems.

@ Numerical schemes: High order path-conservative finite volume schemes.

@ HySEA: High Performance Cloud Computing software to simulate
geophysical flows.




Mathematical models

One-layer shallow water system
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0,

o w= (h, qx;, q}')T,
@ 1 is the water depth,
"[ "’ @ g = (gx,qy), is the mass flow,
0

‘ I” ® u= (u,u,) = % is the mean velocity,

@ H is the bathymetry,
@ g is the acceleration of gravity,

@ Sy (w), i = 1,2, parametrize the friction
terms.



Mathematical models

One-layer shallow water system
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@ Manning:
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Mathematical models

One-layer shallow water system
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@ J.F. Gerbeau, B. Perthame.

Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation.
Discrete and continuous dynamical systems- Series B 1 (1):89-102, 2001.



Mathematical models

Shallow water-Exner equations
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Reference level

Oz OH
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h is the water depth, z, the sediment
layer depth;

@ ¢q = (¢x,qy), is the mass flow;

H is the non-erodible bathymetry;
& =1/(1 — po) and py is the porosity of
the sediment;

(gb,x(W), q»,y(w)) the solid transport
discharge.



Mathematical models

Shallow water-Exner equations

Oh  Oq.  Oqy
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20 20

where 7, represents the mean value of the thickness of the sediment layer.
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Shallow water-Exner equations

Oh  Oq.  Oqy
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20
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with p; is the density of the sediment, p; the density of the fluid, d; is the mean sediment grain
diameter, n is the Manning coefficient and 7. . is the non-dimensional critical shear stress (
Tu,e R 0.047).
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Shallow water-Exner equations

Oh  Oq.  Oqy
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@ M. Castro Diaz, E. Fernandez-Nieto, A. Ferreiro.
Sediment transport models in shallow water equations and numerical approach by high order
finite volume methods, Computers & Fluids 37:299-316, 2008.

@ A. C. Fowler, N. Kopteva, C. Oakley.
The formation of river channels, SIAM Journal on Applied Mathematics 67:1016—1040, 2007.

@ S. Cordier, M. Le, T. Morales de Luna.

Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can)
help. Advances in Water Resources 34: 980-989, 2011.
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Two-layer shallow-water model
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hj, is the layer depth, i = 1, 2;

4; = (4i,x» 9i,y), is the mass flow at each layer, i = 1, 2;

r = py/py is the ratio of the constant densities of the layers (p; < pj);
Sil(w)'[ =1, - , 4, parametrize the friction terms between the two
layers;

Sfl (w), 1 = 1, 2 parametrize the friction terms between the second layer and
the bottom topography.
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Two-layer shallow-water model
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Mathematical models

2D (Simplified) Two-layer Savage-Hutter shallow-water model

@ We consider an stratified media composed by a non viscous and homogeneous fluid with constant density p; (water) and a
granular material with density p5 and porosity <. We suppose the mean density of the granular material is given by:

P2 = (1 = ¥Pg)ps + Popi-

@ Fluid and granular material are immiscible.

Layer 1

\

Layer2 ™.
hoeyt)

hi(xy.t)

H(xy)

Reference Level
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D (Simplified) Two-layer Savage-Hutter shallow-water model
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h;, is the layer depth, i = 1, 2,
q; = (qi,xs 4i,y), is the mass flow at each layer, i = 1, 2,

T
w=(h1,q91 % 91,5, 12, @2,x:92,y) "

Siy(w), 1 =1, ..., 4, parametrize the friction between the layers,

7(w) = (7x(w), 7y(w)) parametrize the Coulomb friction term.
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D (Simplified) Two-layer Savage-Hutter shallow-water model
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D (Simplified) Two-layer Savage-Hutter shallow-water model
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@ E. Fernandez Nieto, F. Bouchut, D. Bresch, M.J. Castro, A. Mangeney.

A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comp. Phys., 227:
7720-7754, 2008.

@ F. Bouchut, M. Westdickenberg.

Gravity driven shallow water models for arbitrary topography. Comm. in Math. Sci. 2: 359-389, 2004
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General framework

General formulation
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Mathematical models

General framework

General formulation

B 0+ S0+ Ba) 5 Baln) B = 51(0) G+ Sa(w) -+ Sr),

w(x,1): D x (0,T) — w C R", the vector of unknowns,

D bounded domain of R?; w convex subset of R”,

Fi: w— R", i = 1,2, regular and locally bounded functions,

Bi: Q — Mnyxn(R), i = 1,2 regular and locally bounded matrix-valued functions,
Si,Sp: w— R" i = 1,2, regular and locally bounded functions,

H:D C R%: — R known function.



Mathematical models

General framework

General formulation

ow  OF; OF, ow

= 8x( )+f(w)+B (w)f+B( )6—y_51( )*+52(W)8—+SF( ),

Nonconservative products

The nonconservative products B;(w) 2%, S;(w) 2, i = 1,2, a = x,y do not make sense
in general within the framework of distributions. Here, we follow the theory developed by
[Dal Maso, LeFloch and Murat] to give a sense to these products as Borel measures.
This theory is based on the choice of a family of paths.




Mathematical models

General Formulation: Nonconservative Form

General formulation




Mathematical models

General Formulation: Nonconservative Form

General formulation

Ow OH OH
+ By(w) — = S1(w) — + Sr(w) — + Sp(w)
ady Ox ady

ow  OF, OF,
a2 == B
o + o (w) + o (w) + Bi(w)

ow

Ox

[LeFloch] Introducing the trivial equation 9;H = 0 and taking H as a new unknown

W= [wH]T GRN,N:n—i-l,jk(w):?and
w

Ay

B )
_ [+ k(W)} L) | e=1,2 € My,



Mathematical models

General Formulation: Nonconservative Form

General formulation

ow OH OH
+Bo(w) == = S1(w) o= + S2(w) o= + Sr(w)
ady Ox ady

ow  OF, OF,
a2 == B
o + o (w) + o (w) + Bi(w)

ow

Ox

[LeFloch] Introducing the trivial equation 9;H = 0 and taking H as a new unknown
OF
W:=[wHT eRV,N=n+1, Ji(w) = a—" and
w

Ay , k=1,2 € Myxn,

_ [LTw) + Bi(w) | —Si(w)
- 0 0

the system can be written as follows:



Mathematical models

General Formulation: Nonconservative form

Given a unitary vector n = (11, m,) € R?:
AW, n) = A (W)m + A (W)na.

We assume that the system is strictly hyperbolic, i.e.,
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AW, n) = A (W)m + A (W)na.
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Mathematical models

General Formulation: Nonconservative form

Given a unitary vector n = (11, m,) € R?:
AW, n) = A (W)m + A (W)na.

We assume that the system is strictly hyperbolic, i.e.,

o YW e QCRNandVn e S, the matrix A(W,n) has N real eigenvalues:
M(W,n) <...< An(W,n), being Ri(W,n),j=1,...,N the associated
eigenvectors.

@ A(W,n) is diagonalizable.
AW, m) = K(W,m)L(W, )K" (W,m),

L(W,n) diagonal matrix whose coefficients are the eigenvalues of A(W, n),

K(W,n) matrix whose columns are the eigenvectors.



Mathematical models

General Formulation: Nonconservative form

A family of paths (Dal Maso, LeFloch, Murat) in @ C R" is a locally Lipschitz map
P [O,I]XQXQXSIHQ,
where S' C R? denotes the unit sphere, that satisfies some regularity conditions and
Q@ ©(0; W, Wg,m) = W, and &(1; Wy, Wg, m) = Wi, forany Wy, Wg € Q,n € S'.
Q O(s; Wi, Wr,m) = (1 — s; Wg, Wy, —m), forany W, Wr € Q,s € [0,1],m € S'.
Q ®(s;W,W,n) =W, foranys € [0,1], 7 € S.



Mathematical models

General Formulation: Nonconservative form

A family of paths (Dal Maso, LeFloch, Murat) in @ C R" is a locally Lipschitz map
®:[0,1]xQ2x QxS - Q,
where S' C R? denotes the unit sphere, that satisfies some regularity conditions and
Q@ ©(0; W, Wg,m) = W, and &(1; Wy, Wg, m) = Wi, forany Wy, Wg € Q,n € S'.
Q O(s; Wi, Wr,m) = ®(1 — 5; W, W, —m), forany W, Wg € Q,s € [0,1],n € S".
Q ®(s;W,W,n) =W, foranys € [0,1], 7 € S.
A piecewise regular function W is a weak solution if and only if the two following conditions
are satisfied:
(i) W is a classical solution where it is smooth.
(i) At every point of a discontinuity W satisfies the jump condition
/0] (O‘I — A(P(s; W, wt, 7]),77)) Z—f(s; wo,wt, m)ds =0, (1)

where Z is the identity matrix; o, the speed of propagation of the discontinuity; n a unit
vector normal to the discontinuity at the considered point; and W, W, the lateral
limits of the solution at the discontinuity.



Mathematical models

General Formulation: Nonconservative form

A family of paths (Dal Maso, LeFloch, Murat) in @ C R" is a locally Lipschitz map
®:[0,1]xQ2x QxS - Q,

where S' C R? denotes the unit sphere, that satisfies some regularity conditions and
Q@ ©(0; W, Wg,m) = W, and &(1; Wy, Wg, m) = Wi, forany Wy, Wg € Q,n € S'.
Q @(s; Wi, Wr,m) = ®(1 — 53 Wg, W, —m), forany Wy, We € Q,s € [0,1], 7 € S".
Q ®(s;W,W,n) =W, foranys € [0,1], 7 € S.
@ The choice of the family of paths is important because it determines the speed of

propagation of discontinuities.

@ It has to be based on the physical background of the problem: limit of viscous profiles
..., but in practice can be very difficult.

@ From the mathematical point of view, some hypotheses concerning the relation of the
paths with the integral curves of the characteristic fields can be imposed.



Numerical schemes

High order numerical schemes

Develop high order finite volume schemes for problems that can be written under the
form:

ow ow ow

-5 TA (W)*+A2( )ay =0,




Numerical schemes

High order numerical schemes

Develop high order finite volume schemes for problems that can be written under the
form:

oW 10)/4 10)/4
f-i-.A(W)f-i-Az( )— =0,
ot dy

@ Shock capturing property: the solutions of this kind of systems may generate
discontinuities in finite time, even for very regular initial conditions. The appearance
and subsequent propagation of these shocks has to be correctly simulated.

@ High accuracy in areas where the solution is regular.

@ Well-balanced property: in cases where regular non-trivial stationary solutions exist,
the schemes must be able to solve these solutions (or some of them) exactly or at
least with an enhanced accuracy.




Numerical schemes

High order numerical schemes

Develop high order finite volume schemes for problems that can be written under the
form:

ow ow ow

-5 TA (W)*+A2( )ay =0,

Basic idea

@ Split the computational domain into subsets of simple geometry called cells or finite
volumes.

@ Define a reconstruction operator of the unknowns W on each cell.

@ Combine with your favourite first order finite volume scheme for nonconservative
systems (path-conservative schemes).




Numerical schemes

Notation

@ D is decomposed into subsets (closed polygons) called cells of finite volumes,
V; C Rz;

@ N is the set of indexes j such that V; is a neighbor of V;;

@ E; is the common edge to two neighbor cells V; and V;, and |E;;| represents its
length;

@ 7n; = (1%, My,y) is the normal unit vector of the edge E;; pointing towards the cell
Vii

@ Ax is the maximum of the diameters of the cells;

@ W will represent the constant approximation of the averaged solution in the cell V;
at time " provided by the numerical scheme:

1
Wi~ / W(x,")dx.
Vil Jv,




Numerical schemes

High order reconstruction operators

e p;: Reconstruction operator over cell V; such as, given the averages of W at a
given stencil of cell V;, P; provides high order point values approximation of W at the
cell v;.
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High order reconstruction operators

e p;: Reconstruction operator over cell V; such as, given the averages of W at a
given stencil of cell V;, P; provides high order point values approximation of W at the
cell v;.

o P; depends on a family of values {W; };c5;, where
B; = {Set of indexes of neighbor cells of V;}.

e If P; depends on time we note P!



Numerical schemes

High order reconstruction operators

e P;: Reconstruction operator over cell V; such as, given the averages of W at a

given stencil of cell V;, P; provides high order point values approximation of W at the
cell v;.

o P; depends on a family of values {W; };c5;, where
B; = {Set of indexes of neighbor cells of V;}.
e If P; depends on time we note P!
o Ifs € Ej, Wy (s, 1), W,.j+ (s, 1), are the limit of P! (P]’.) when x tends to s through V; (V):

: ! — W : t —wt
xlins Pi(x) = W (s,1), xlins Pi(x) = W (s,1).

x - m < ki x - n;j > ki



Numerical schemes

High order reconstruction operators

H1 It is conservative, i.e.

W, 1/P()d
| = — i(x)dx
l ‘Vi‘ Vil

H2 lt is of order p at the edges of the cell.
H3 Order ¢ inside V;, i.e.,

Pi(x) = W(x) + O(Ax?), Vx € int(V;)

H4 WV P; approximation of order m of the gradient of VW inside V;.



Numerical schemes

High order state reconstruction operators: examples

4
B

H. J. Schroll and F. Svensson.
A Bihyperbolic Finite Volume Method for Quadrilateral Meshes. SIAM: J. Sci.
Comput., 26(2):237-260, 2006.

M. Dumbser, M. Késer.
Arbitrary high order non-oscillatory finite volume schemes on unstructured
meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693-723,2007.

José M. Gallardo, Sergio Ortega, Marc de la Asuncion and José Miguel Mantas
Two-dimensional compact third-order polynomial reconstructions. Solving
nonconservative hyperbolic systems using GPUs. J. Sci. Comput., 2011, DOI:
10.1007/s10915-011-9470-x.




Numerical schemes

Third order compact polynomial reconstruction operator

Properties:
e Third order of accuracy on the whole cell = third order scheme.
e Compact stencil (nine cells) = robustness.
e Low computational cost.
e Easy to implement.

The method can be applied on non-uniform quadrilateral meshes.

Idea:
e Reconstruction on the central cell:
Vs.
. \4 14
e A second order polynomial Pg(x) ¢ )
is associated to each point pg, for :
R N,S,E,W}.
6{77 7.} V]p“ V4 P,
e The polynomials Pg(x) are then
combined using a WENO »
procedure. v, v,
e The result is a third order

conservative reconstruction
operator on the cell V,.




Numerical schemes

Third order compact polynomial reconstructions: procedure

Let F(x) be the function to be reconstructed on the central cell V.

ForR € {N,S,E,W}:
e Consider a second-order Taylor expansion of F(x) around the point pg.
o Approximate the coefficients (i.e., the derivatives of F(x)) in such a way that the
corresponding polynomial Pg(x) provides a third order approximation to F(x) on V
and it is conservative.

Remarks:

— For general non-uniform quadrilateral meshes, the approximations to the
derivatives can be obtained by solving linear systems that only depend on the
points pr and the mesh; thus, they can be calculated and stored in a
pre-processing step.

— The choice of appropriate stencils is fundamental to assure that each linear
system possesses an unique solution.



Numerical schemes

Third order compact polynomial reconstructions: procedure

Stencils used to approximate the second order derivatives:

\% v, Ve Vs v, v
Py
V] V4 VS V3 Vl V5
Py
V0 Vl V2 VD VI VZ
v, v, \4 A \% § v, v,
VJ V4 Py V5 V3 by, V4 Vs
VO Vl VZ VD Vl VZ




Numerical schemes

Third order compact polynomial reconstructions: procedure

e ForR € {N,S,E, W}, build the smoothness indicators
Br = / / AxAy([0yPr(x)]* + [9yPr(x)]?)dx.
|4

o If some B > tol = A? then redefine Pr(x) to be a linear function providing a
second order conservative approximation to F(x) on V.

o Apply the WENO idea: define the nonlinear weights wg as

ag AR

wpg= ————, ag=——.
K™ oy +as+ag + aw K (e +Br)"

The linear weights \g are given the value 1/4, as they are not chosen to improve

the accuracy. Typically, e = 107> and r = 4.
o Finally, define the reconstruction operator P(x) as

P(X) = wyN PN(X) + wg Ps(X) —+ wg PE(X) =+ ww Pw(X)
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High Order 2D scheme: conservative systems

Let us consider the conservative system
oW  OF, OF,

w
ot + 8x( )+ dy

and let W;(¢) denotes the cell average over the cell V; at time t.

(W) =0,
The equation satisfies by W;(¢) is the following

W, (1) S [ FWen) mgay | (1)
i (£ 1, o mn)

EN;
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High Order 2D scheme: conservative systems

A first order method and a reconstruction operator is used to approach the
values of fluxes at the edges:

Wi (1) = 1), W (v, 1),my) dy (1)
i (S e wonmn).

being W;(t) the approximation to W;(¢) and Wl.ji (v, 1) the reconstruction at
A E,‘j.
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High Order 2D scheme: conservative systems

Using the divergence theorem, the previous semi-discrete numerical scheme
can be rewritten as follows:

Wi = Wil zj\:,/ G(Wy (7,0), Wi (7,1),my) 7F(Wij_(%’))-n,«j) iy
Jj€
1 —
7ﬂ/§ﬁ /E/ (FO¥; o) )

“”Z/ GV (1), Wi (1)) = FW; (3,0) ;) dy

—H]/—i‘/vv - (F o PY)(x)) dx

- |Vlz/ (GWy (o), W (1o ).my) — FOWy (1,0) - my) doy

JEN;

! ! Pt ! i
o7 . (e G+ irio G ) a
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High Order 2D scheme for nonconservative systems

WO = [Z/ . 0, WE (1), m;)dy
J

EN;

= [ (Ao G + e o)) o

where Diji(Wijf (7, 1), W,.f (v,1),m;;) is a path-conservative first order finite volume
scheme.

In order to obtain a fully discrete numerical scheme:
@ Use a quadrature formulae to approximate the integrals.
@ Use a high order TVD Runge-Kutta numerical scheme for time integration.

@ M. Castro, E.D. Fernandez, A. Ferreiro, J.A. Garcia and C. Parés.

High order extensions of Roe schemes for two dimensional nonconservative
hyperbolic systems. J. Sci. Comput., 39: 67-114, 2009.
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Path-conservative schemes

We consider Path-conservative schemes in the sense introduced by Parés, 2006

"]
D (W, Wr,m),
where D~ and DT are two Lipschitz continuous functions from Q x Q x S! to Q
satisfying:
DE(W,W,n) =0, VWeQ,vnes!, 1)
and

o forevery Wy, Wz € Q,and n € S!

1 oP
Di(WL»WRy""I)+ID+(WL7WR777):/ A(2(s; WL,WR,TI),TI)E(S; Wi, Wg,m) ds.
0
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Path Conservative schemes: Convergence

@ In Castro, LeFloch, Mufoz and Parés, 2008 and Parés-Mufoz, 2009 has been
proved that the numerical solutions provided by finite difference/volumes
path-conservative numerical scheme converge to functions which solve a
perturbed system in which an error source-term appear on the right hand side
(which is a measure supported on the discontinuities). This problem is common to
any numerical scheme that introduces numerical diffusion.

@ In order to overcome this difficulty, one can use viscosity-free methods based on
Random Choice, as Glimm’s method or control de entropy production of the
numerical scheme: LeFloch, Coquel, Berthon, Entropy stable path-conservative
schemes (SINUM 2012).

@ In Munoz-Parés, 2010 is shown that in certain situations this error vanishes for
finite difference/volumes methods: this is the case of systems of balance laws.
Moreover, in Castro et all, 2012 (M2AN) is shown that given any jump conditions
related to a particular choice of paths then, it gives a third order approximation of
the physically correct ones.

@ In N. Chalmers and E. Lorin, 2012 is shown that if the numerical viscosity matrix
commutes with A, then shock curves associated to different numerical schemes
are closed among them.
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1D Model problem

Lets consider the system

wi + F(w)y 4+ B(w) - wy = S(w)H,, 2

@ w(x,?) takes values on an open convex set O C RY,
@ Fis a regular function from O to RV,
@ Bis a regular matrix function from O to Myxn(R),
@ Sis a function from © to R", and
@ His a function from R to R.
By adding to (2) the equation H; = 0, the system (2) can be rewritten under the form

W, + A(W) - Wy =0, (3)

W is the augmented vector

W:{Z]eQ:OXRCRN“
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1D Model problem

Lets consider the system

wi + F(w)y 4+ B(w) - wy = S(w)H,, 2

w(x, t) takes values on an open convex set O C RY,
F is a regular function from O to RY,

B is a regular matrix function from O to Myxn(R),
S is a function from © to RV, and

®© 6 6 ¢ ¢

H is a function from R to R.
By adding to (2) the equation H; = 0, the system (2) can be rewritten under the form

W, + A(W) - Wy =0, (3)

A(W) is the matrix whose block structure is given by:

aw) = [AGH =S

A(w) =J(w) + B(w), beingJ(w) = Z—i(w)
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Roe linearization |

Here, we consider numerical schemes defined using a generalized Roe matrix for (3)

as defined by Toumi 1992:
Given a family of paths ® = [®,,, ®y]”, a function Ag: Q x Q Mwsnyx 1) (R) is
called a Roe linearization if it verifies the following properties:

o forany W, Wg € Q, Ag (Wi, Wg) has N + 1 distinct real eigenvalues,

o forevery W € Q,
Ap (W, W) = A(W); 4)

o forany W,, Wy € Q,

1
Ag(Wr, Wg) - (Wg — W) = /0 A(D(s; Wi, WR))aa—f(s; Wi, WR) ds. (5)
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Roe-based schemes |

The following Roe linearizations Ag (W, Wg) for system (2) are considered
(Parés-Castro 2004):

Ag(we, wr) | —Sa(wr, wr)

Ag (W, Wr) = 0 | 0 ,

where
Aq;(WL, WR) = J(WL, WR) + Bq;(wL, WR).

Here, J(wr, wr) is @ Roe matrix of the Jacobian of the flux F in the usual sense:

J(wr,wr) - (wr —wr) = F(wg) — F(wL);

Dy,

1 1o}
Bay (w, we) - (g — wr) = / B(®y (55 Wi, Wr)) ¥ (53 W, W) dis;
0

Os
2%

2 (s Wr, Wg) ds.

Os

It can be easily shown that, the resulting matrix is a Roe linearization provided it has
N + 1 different real eigenvalues.

1
Sq>(wL,wR)(HR—HL):/O S(®w (5: Wi, W)
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Roe-based schemes Il

*

1/2 CAN be defined:

Once the Roe linearization has been chosen, D

pE

1+
i+1/2 = A<1> (Winvwin-Q-I) . (Vvln+l - Wzn)v

being R R
A (Wr, Wr) = AL (W, W) + Ag (W, W)

is any decomposition of the Roe linearization of the form:
~ 1
/‘%(WL, Wg) = 3 (Ao (W, Wr) £ Qa (W, Wg)),

where Qg (W., Wg) can be interpreted as a numerical viscosity matrix.
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Roe-based schemes Il

DfH/z can be re-written in terms of w, F, B, S and H as follows

1
2= 5 (F(wig1) — Fwi) + Biyp1 o(Wi1 — wi) — Siy1 /0 (Hipr — Hy) )

£ Qitip(Wig1 —wi —Agl,/25i+1/2(Hi+1 - Hi))) ;

DE

being
@ Biyi/2 = Bo(Wi, Wit1),
@ Siy1/2 = So (Wi, Wit1),

° Ai+l/2 = Ag (Wi, Wiy1) and
@ Qi11/2 = Qa(W;, Wit1) @ numerical viscosity matrix obtained from Qg (W;, Wi 1)
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Roe-based schemes Il

DfH/z can be re-written in terms of w, F, B, S and H as follows

(F(wir1) = F(wi) + Bip1j2(Wig1r — wi) = Siy1y2(Hiyr — Hi) )

N | =

+ _
Di+1/2 =

£ Qitip(Wig1 —wi _A,-:_1|/25i+1/2(Hi+1 - Hi))) ;

Conservative systems

If the system is conservative and

F(w;) + F(w; 1
Fiv12 = M = EQi+l/2(Wi+] — wi)

is a conservative flux, where Q;  /, is defined in terms of J; », then

Ditip=Firip— F(w;) D,-JfH/z = F(Wit1) — Fig12-
v
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Roe-based schemes Il

DfH/z can be re-written in terms of w, F, B, S and H as follows

(F(wir1) = F(wi) + Bip1j2(Wig1r — wi) = Siy1y2(Hiyr — Hi) )

N | =

+ _
Di+1/2 =

£ Qitip(Wig1 —wi _A,-:_1|/25i+1/2(Hi+1 - Hi))) ;

Different numerical schemes can be obtained for different definitions of 0,
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Roe-based schemes IV

@ Roe scheme corresponds to the choice
Qo (WL, Wr) = |Aa (WL, Wr)|,

@ Lax-Friedrichs scheme:
Ax

Qg (W, Wg) = Ar

i,

being Id the identity matrix.
@ Lax-Wendroff scheme:

At
Qo (WL, Wg) = EA%}(WL’ Wr),

@ FORCE and GFORCE schemes are presented in the bibliography as a convex
combination of Lax-Friedrichs and Lax-Wendroff scheme:
ﬁ At

Id + w—A% (WL, Wg),

Q@(WL,WR):(I—W)AZ Ax

withw =0.5andw = H%a respectively, being « the CFL parameter.
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Roe-based schemes V

We propose a class of finite volume methods defined by

Oit1/2 :f(Ai-H/Z):

where f : R — R and A; |, a Roe matrix.

Qi11/2 has the same eigenvectors than 4, |, and if A\, , ; is an eigenvalue of
Ait1/2, thenf(X\ii /5 ) is an eigenvalue of 0, ».

Some properties of f

@ f(x) > 0 and smooth.

® f(Ait1/2) should be easy to evaluate: no spectral decomposition of A; |, must
be performed,

@ L linear stability:

Ax
v > f(Nig1/2,0) 2 [Nigiy2,415

forall \; 1/, ; eigenvalue of A,y ;.
@ f(x) should be as close as possible to |x|.
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PVM methods

One possible choice is to set

being P;(x) a polynomial of degree I,

Jj=0
In this case
Qit172 = Pi(Aiy1)2)-
Thatis, Qi1 is & Polynomial Viscosity Matrix (PVM). See Castro-Fernandez 2012.

Some well-known solvers as Lax-Friedrichs, Rusanov, FORCE/GFORCE, HLL,
Roe, Lax-Wendroff, ... can be recovered as PVM methods

We use the following notation: PVM-I(Sy, - - - , Sx), where the parameters Sy, - - - , S will
be related to the approximations of some wave speeds.
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PVM-0(Sy) methods: Rusanov, Lax-Friedrichs and modified
Lax-Friedrichs schemes

Po(x) = So,

Ax
and S7od = o ==,
LF =N

Ax

So € {Skus, SLF, SPPY,  Skus = max [N it1/2]s Ser = v

@ Rusanov scheme corresponds to the choice Sy = Sgus,
@ Lax-Friedrichs with Sy = S;r
@ modified Lax-Friedrichs with Sa = §7%4.

PVM-0(S)

H . . M
A Az A; AN B
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PVM-2(S,) methods or FORCE type methods

Py(x) = o + apx?, such as Py(Sy) = So, P5(So) = 1, So € {Skus, SLr, e},
Remarks
@ If Sy = S.r then we obtain FORCE method.
@ GFORCE scheme can be obtained by imposing

2c
1+«

)

Py(SpR!) = Sipt, Py(SiRY) =

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
‘ ‘ ‘ L 1
M A2 A; xS



Numerical schemes
0000000000e00000

PVM-1U(S,, Sg) or HLL method

Let S, (respectively Sg) be an approxi-
mation of the minimum (respectively maximum) wave speed, we consider de polynomial

Pl(x):ao—l—oqx such félSPl(SL):‘Sd7 Pl(SR):|SR‘.

Qiv1/2 = aold + Ay 2

PVM-1U(S .S,
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PVM-1U(S,, Sg) or HLL method

The usual HLL scheme coincides with PVM-1U(Sy, Sg) in the case of conservative
systems.

Let us suppose that the system is conservative. Then, the conservative flux associated
to PVM-1U(S.,Sr) is Fiy1/2 = D;l/z + F(w;). Taking into account that

SrISL) — SiISk] ISk| — ISe
0 = , o1 =
SR—SL SR—SL

then

F(wi)(Sr + [Sr| = S — |ISL]) + F(wit1)(Sk — ISk — St + |SL])
28g — 281,

Fit1)2

(SRISL] — SLISR]) (Wit1 — wi)
28g — 281

Sg F(wi) = Sp F(wig1) + (Sg S ) (wi1 — wi)
S¢ =S

which is a compact definition of the HLL flux, being S,? = max(Sg, 0) and
S, = min(S,0).
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PVM-2U(S., Sg) method

Py(x) = ap 4+ agx + anx?,

such as
Py(Sm) = ISml, P2(Sm) = |Sul, P5(Sm) = sgn(Sm),
where

Sr if S| > |Sk|, _f Sg if|SL| > |8kl
SM - Sm

Sgif |SL| < |SR|. S if |SL‘ < |SR|.

\. PYM-2U(S.S;) ]

o

i
I

I

I

I

I

I

i <

I . o
! “~

I ‘. e
I S

I

I

I

I

I

I

I

I

I

I

I

I

St M Ag Aj AN Sk
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PVM-2U(S,, Sk, Sin;) method or IFCP method

Py(x) = o + ax + apx?,

1 s, 8 ap Sc
1 Sr SIZQ (&3] = ISR‘ ’
1 S S,-Zm [e%) |Sint|

S1. (respectively Sg) is an approximation of the minimum (respectively maximum) wave
speed and
Sint = Sevmax(|Sa], ..., [Sn—11),

S = sgn(SL =+ SR), if (SL —+ SR) # 07
R S otherwise.
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PVM-(N-1)(Ay, - -+, Ay) or Roe method

Py_1(N) = 1INl j=1,---,N.
N—1

Qa (wr, wr) = |Ag (we, wr)| = adly (wi, wg),
=0

where o, j =0,--- ,N — 1 are the solution of the following linear system:

D VI N o [Ai]
| D PR a Az
DY W an—1 [An]

A1, -+, Ay are the eigenvalues of the matrix A, /5.
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PVM-Chebyshev method

@ Chebyshev polynomials provide optimal approximation to the absolute value function in [—1, 1]:
u|f+z ——ﬁi—%m»xaqm
1)(2k + 1)
where the Chebyshev polynomials of even degree T (x) are recursively defined as
To(x) =1, To(x) =2 —1, Tu(x) = 2T>(x)Tou—2(x) — To—s(x).
@ The polynomial

2 P4 (—1)kt!
sz(x)_;+;;mT2k(x), x € [-1,1],

verifies the equality

1
el = 2o @lloe = 5,

which is optimal in L>° (—1, 1) (see Bernstein 1913).
°

1
Qivi/2 = Pyp(Aiy1/2) = [Amax|T2p (ﬁAiHﬂ) = |Aiy1/2ls
max

where Ay is the eigenvalue of A; 1, /, with maximum absolute value.
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PVM-Chebyshev method

1.0
0.8F
A
0.6F
\
/
N\ ;
AN
0.4t
e
\ /.
A\ / —
. G
0.2r \ i Ty () [
N T T(e)
Y - @)
005 —0.5 0.0 0.5

Figure : The Chebyshev approximations 7, (x) for p = 2,3, 4.

@ Notice that 7, (x) do not strictly satisfy the stability condition 7,(x) > |x|. This drawback can be avoide
by substituting 7, (x) by 73, (x),such that 7, (x) > |x].
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Implementation on GPUs

What is a GPU?

GPU (Graphics Processing Unit)

GPUs are specialized circuits designed to rapidly manipulate the building of images in
a frame buffer intended for output to a display. Driven by the insatiable market demand
for realtime, high-definition 3D graphics, the programmable Graphic Processor Unit or
GPU has evolved into a highly parallel, multithreaded, many-core processor with
tremendous computational power and very high memory bandwidth

GPGPU (General-purpose computation on GPU)

It is the technique of using a GPU to perform computations in applications traditionally
handled by the CPU. It is made possible by the addition of programmable stages and
higher precision arithmetic to the rendering pipelines, which allows software developers
to use stream processing on non-graphics data.

There are some parallel computing architectures that allows this: Brook++, OPENCL,
Cg, CUDA.
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CPU vs GPU architectures

Control ALU ALU

ALU ALU

CPU GPU

@ GPUs are specialized for compute-intensive highly parallel computations.

@ GPU are especially well-suited to address problems that present a high
data-parallel paradigm.

@ The same program is executed for each data element in GPUs, so the flow control
of the code is simple.

@ The code it is executed on many data elements in GPUS, so the memory access
latency can be hidden with calculations instead of big data caches.
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Implementation‘on GPUs

@ GPUs

@ GeForce FX 5900: 450 MHz, 256 MB
@ GForce 8800 GTX: 128 Cores, 575 MHz, 728 MB

@ GeForce GTX 580: 512 Cores, 1544 MHz, 1546 MB
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Code Example

GPU Code
CPU Code

int N = ...

int N = ... //global variable J/ Kernel definition

__global__ void MatAdd(float A[N]J[N], £loat B[N]J[N],

void MatAdd(float A[NJ[N], float B[N][N], Tloat CINIIND)
{

float C[N][N])

Eor (int i = 0; i<N, i++) i::: jl : m;::g:gi;y
) . L if(i<N && j<N

A (ne = 03 JN: ) CLITLIT = ALIILIT + BLI[il:

CLIILIT = ALIT[IT + BLil[i1; ¥
} } int main()
}
) . // Kernel invocation with one block of N« N threads
int main()

int numBlocks = 1;
dim3 threadsPerBlock (N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>A, B, C);

float AIN][N], BIN][N], G[N][NI; )

MatAdd(A, B, C); // C= A + B
}
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GPU Code Example

@ Input data in CPU. CPU

Input data

v GPU

Build data structure

Process
“edges

‘ While (t<t_) >

Compute At,
for each volume

Get minimum At

Compute W™!

for each volume

—
L t=t+At [
|
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GPU Code Example

@ Input data in CPU. CPU
@ Build data structure as arrays in CPU. ot o
nput daf
v
r{ Build data structure GPU
[ While (=) > PC'S;:S
Compute At,

for each volume

Get minimum At

Compute W™!

—
=t+ <
[ for each volume
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GPU Code Example

@ Input data in CPU. CPU
@ Build data structure as arrays in CPU. ot o
nput dal
© Loop in time.
P - GPU
Build data structure
| While (i<t,,) > e
Compute At,

for each volume

Get minimum At

Compute W™!

—
=t+ <
[ for each volume
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GPU Code Example

@ Input data in CPU.
@ Build data structure as arrays in CPU.
© Loop in time.

@ Copy CPU arrays in GPU arrays.

Data is stored in GPU in float4 textures.

CPU

Input data

v

GPU

Process

r{ Build data structure
‘ While (t<t_)

__edges

Compute At,
for each volume

Get minimum At

Compute W™!

—
L t=t+At [
|

for each volume
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GPU Code Example

@ Input data in CPU.
@ Build data structure as arrays in CPU.
© Loop in time.

@ Copy CPU arrays in GPU arrays.
Data is stored in GPU in float4 textures.

@ Calculate and copy the contributions DT , and
=2

D~ to float4 arrays.
i+5

CPU

Input data

v

GPU

Process

r{ Build data structure
‘ While (t<t_)

__edges

Compute At,
for each volume

Get minimum At

Compute W™!

:
L t=t+At [
|

for each volume
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GPU Code Example

@ Input data in CPU.
@ Build data structure as arrays in CPU.
© Loop in time.

@ Copy CPU arrays in GPU arrays.
Data is stored in GPU in float4 textures.

@ Calculate and copy the contributions DT , and
=2
D~ to float4 arrays.
r+§

© Compute Ay for each volume.

CPU

Input data

v

GPU

Process

r{ Build data structure
‘ While (t<t_)

__edges

Compute At,
for each volume

Get minimum At

Compute W™!

:
L t=t+At [
|

for each volume
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GPU Code Example

@ Input data in CPU.
@ Build data structure as arrays in CPU.
© Loop in time.

@ Copy CPU arrays in GPU arrays.
Data is stored in GPU in float4 textures.

@ Calculate and copy the contributions D' | and
=3
D~ to float4 arrays.
it+3
© Compute Ay for each volume.

@ Get the minimum of At;.

CPU

Input data

v

GPU

Process

r{ Build data structure
‘ While (t<t_)

__edges

Compute At,
for each volume

Get minimum At

Compute W™!

—
L t=t+At [
|

for each volume
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GPU Code Example

@ Input data in CPU.
@ Build data structure as arrays in CPU.
© Loop in time.

@ Copy CPU arrays in GPU arrays.
Data is stored in GPU in float4 textures.

@ Calculate and copy the contributions DT , and
)
D~ to float4 arrays.
r+§
© Compute Ay for each volume.
@ Get the minimum of At;.
O Calculate W't = w' —

At (pt -
A"(D[—% + DH»%)'

CPU

Input data

v

GPU

Process

r{ Build data structure
‘ While (t<t_)

P edees

Compute At,
for each volume

Get minimum At

Compute W™!

:
L t=t+At [
|

for each volume
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GPU Code Example

@ Input data in CPU.
@ Build data structure as arrays in CPU.
© Loop in time.

@ Copy CPU arrays in GPU arrays.
Data is stored in GPU in float4 textures.

©

Calculate and copy the contributions D , and
)
D~ to float4 arrays.
r+§
Compute Aty for each volume.
Get the minimum of At;.
Calculate W/t = wy —

At (pt -
A"(D[—% + DH»%)'

© O 0 o

Next step in time.

CPU

Input data

v

GPU

Process

r{ Build data structure
‘ While (t<t_)

P edees

Compute At,
for each volume

Get minimum At

Compute W™!

:
L t=t+At [
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for each volume
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Implementation on GPUs

An example: First order PVM scheme for the two-layer shallow-water
system

For each PVM method:

@ Two implementations in CPU using C++ and the Eigen library: one for one
thread and another for 4 threads using OpenMP. Both programs use double
precision.

@ One implementation in GPU using CUDA and single precision.
@ Computer: Intel Core i7 920, 4 GB RAM.
@ Graphics card: GeForce GTX 570.



Implementation on GPUs

An example: First order PVM scheme for the two-layer shallow-water
system

@ |Initial state:
H(x,y) =5
W (x,y) = ((x,y), 0, 0, h(x,y), 0, 0)7

P v
hl(x,y):{4 if /22432 > 1.5

0.5 otherwise
hy(x,y) =5 — hi(x,y)
@ Wall boundary conditions

@ Time interval [0, 0.1]
@ v =0.9,r=0.998

@ Different mesh sizes, up to 5760000
volumes



Implementation on GPUs

An example (Two-layer shallow-water system

4 PVMIFCP +-PVM Rusanov ¥-PVM FORCE 8 PVM-1U
>PWM2U  <PVM4 *Roe

250

4 PVMIFCP PVM Rusanov -¥PVM FORCE -8 PVM-1U
SPWM2U < PVMA

200

Speedup vs CPU 1 core
Speedup vs CPU 4 cores

0 0
[ 1500000 3000000 4500000 6000000 0 1500000 3000000 4500000 6000000
Volumes Volumes

4 PVM IFCP +PVM Rusanov ¥-PVM FORCE & PVM-1U
>PWM2U  <PVM-4 +Roe

GFLOPS
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Implementation on GPUs

An example (Two-layer shallow-water system)

Speedup vs CPU 1 core

GFLOPS

4 PVMIFCP +-PVM Rusanov ¥-PVM FORCE 8 PVM-1U
>PWM2U  <PVM4 *Roe

250

200

0
[ 1500000 3000000 4500000 6000000
Volumes

4 PVM IFCP +PVM Rusanov ¥-PVM FORCE & PVM-1U
>PWM2U  <PVM-4 +Roe

0 1500000 3000000 4500000 6000000
Volumes

4 PVMIFCP PVM Rusanov -¥PVM FORCE -8 PVM-1U
SPWM2U < PVMA

Speedup vs CPU 4 cores

0
0 1500000 3000000 4500000 6000000
Volumes

@ PVM methods have been 1.9 times faster than
Roe method on a GTX 570.

@ Roe method has reached more GFLOPS than
PVM methods.



Implementation on GPUs
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Multi-GPU Implementation

@ The triangular mesh is divided into submeshes.
Each submesh is assigned to a CPU process,
which uses a GPU to perform its computations.

@ Volume indexation:

o Non-communication volumes.
e Comm. volumes of the submesh.

0 Comm. volumes of adjacent submeshes.

@ The communication volumes of the submesh must
be reordered, overlapping the sendings.




Implementation on GPUs
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Multi-GPU Implementation

42 Tesla C2050 -2 Tesla C2050 *¥-2 Tesla C2050 + 2 GTX 2 Tesla C2050 +
Non-Overlap  Overlap 570 Non-Overlap 2 GTX 570 Overlap

0
0 256576 1001898 2000608 3000948
Volumes

@ Two implementations:
@ One with blocking MPI sends and receives.
@ One that overlaps MPI communication with CPU-GPU memory transfers and kernel
computation.
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Hysea web platform

HySEA: interdisciplinary platform

@ Models based on geophysical flows with applications in:

Physical Oceanography
Marine Geology
Tsunami Research

°
°
°
o Civil Engineering



Hysea web platform

HySEA: how to make more accessible our codes?

@ Hardware:
@ No need to have a large computational infrastructure.
@ Codes have to be accessible from any architecture.
@ Software:
o No need to install specific libraries, compilers, etc.
@ Models have to be independent from the operative system.
o Easy update process for code changes.
o Updated documentation.



Hysea web platform

HySEA: making accessible our codes.

@ Hardware:

@ We have a supercomputer (CPU’s and GPU’s): cires.uma.es
@ Numerical Methods Laboratory of the University of Malaga.

@ Software:
@ The interface between the researcher and Cires is a web browser.



Hysea web platform
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Hysea web platform
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Dambreak problem: Limonero Dam (close to Malaga (Spain))

Resolution 5 m x 5 m.

Number of cells: 1052224.

Real simulated time: 20 min.

Used scheme: Second order HLL or PVM-1U(S,Sg).

Positivity of the water height is ensured.

Graphics card: GeForce GTX 570. Speedup: 230 (1 Intel Core i7 920).
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Dambreak problem: Limonero Dam (close to Malaga (Spain))
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Monai valley: Location

)
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Monai valley: Laboratory Experiment

Matsuyama and Tanaka (2001)
@ Maximum run-up height at Monai zone in Okushiri Island (1993)
@ Scale1:400
@ 3.4 m wide, 205 m long flume
@ Maximum depth 6 m.
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Monai valley: Benchmark problem

@ Synolakis et al. (2007). NOAA Technical Memorandum. Standards, criteria, and
procedures for NOAA evaluation of tsunami numerical models

@ Liu et al. (2008). Third Int. Workshop on Long-Waves Runup models.

@ http://isec.nacse.org/workshop/2004 cornell/bmark2.html
(Inundation Science & Engineering Cooperative)

@ http://nctr.omel.noaa.gov/benchmark/Laboratory/Laboratory MonaiValley/
(NOAA Center for Tsunami Research)
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Monai valley: Computational domain

@ Rectangle 5.488m x 3.402m i ) e I
@ Minimum depth: -0.125m (land) N\ L.
@ Maximum depth: 0.13535m i f - i

@ Grid size: 0.014m

005

1005

0.1
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Monai valley: Input wave

Boundary conditions

@ West: input wave

@ Time domain: 0-22.5 sec
o Time step: 0.05 sec

@ North, East and South: solid wall

0.015

0.01

0.005

Height (m)
o

-0.005

-0.01

-0.015 =

-0.02

Time (s)



Monai valley: Numerical Experiments

Applications
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Spatial resolution

[ Grid [ Ax=Ay(cm) [ #volumes [ Comput. Time (s-(min)) |
393 x 244 0.014 95,892 91.54618 (1.52)
785 x 487 0.007 382,295 538.0129 (8.96)
1569 x 973 0.0035 1,526,637 3,693.026 (61.55)
3137 x 1945 | 0.00175 6,101,465 28,255.71 (470.92)
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Monai valley: Time series at laboratory gauges
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Monai valley: Physical model - Numerical simulation comparison

still water level
— bottom
a- . : — laboratory
— simulation

Surface elevation (cm)

Time (s)
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Monai valley: Physical model - Numerical simulation comparison

still water level
— bottom
— laboratory
— simulation

Surface elevation (cm)

0 10 20 30 40 50 60
Time (s)
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Monai valley: Physical model - Numerical simulation comparison

Surface elevation (cm)

— bottom
— laboratory
— simulation

still water level

20

Time (s)

60
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Monai valley: checking convergence

still water level
— bottom
a4 . : — laboratory
— resolution 1
— resolution 2
— resolution 3
resolution 4

Surface elevation (cm)

0 10 20 30 40 50 60
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Monai valley: Video

!

\
\
.



http://file://localhost/Users/ChiaraSimeoni/Desktop/./movies/overhead.avi

Monai valley: Frontal wave location

Applications
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Physical model (Frame 10) - Numerical simulation (Time 15 s)
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Monai valley: Frontal wave location

Physical model (Frame 25) - Numerical simulation (Time 15.5 s)

0.0165

0.0125

0.0084

0.0043

0.0003

00,0038

0,0078

0.0119

0.0159

0.0200
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Monai valley: Frontal wave location

Physical model (Frame 4 Numerical simulation
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Monai valley: Frontal wave location

Physical model (Frame 55) - Numerical simulatio




Applications
000000000000000(

Monai valley: Frontal wave location

Physical model (Frame 70) - Numerical simulatio
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Monai valley: Maximal run-up height

Time 16.3 s - At point (5.15592356688,1.88961190965) - Max heigth: 0.0891 (0.08958)
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Monai valley: Video
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Tsunami generated by a landslide

Number of cells: 640000.

r = 0.4, Coulomb friction angle 25°

Real simulated time: 8 sec.

Used scheme: PVM-2U(S;,Sk,Si) or IFCP

Positivity of the water height is ensured.

Graphics card: GeForce GTX 570. Speedup: 190 (1 Intel Core i7 920).
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Tsunami generated by a landslide
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Tsunami at the Alboran Sea |
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Tsunami at the Alboran Sea |

Sistema cafén-
abanico submarino
Al Borani
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Tsunami at the Alboran Sea Il: Bathymetry reconstruction

Batimetria
actual
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Tsunami at the Alboran Sea llI: initial condition
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Tsunami at the Alboran Sea llI: initial condition
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Tsunami at the Alboran Sea IV: simulation
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Tsunami at the Alboran Sea IV:simulation
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Tsunami at the Alboran Sea V: simulation

P1 (generation zone) - P2 (SE - open sea)

. P7 %

oP4

3Je
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Tsunami at the Alboran Sea V: simulation

Puntos P3 (NO - open sea) - P4 (Tres Forcas)

: 1
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Tsunami at the Alboran Sea V: simulation

P5 (Melilla) - P2 (Adra)
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Tsunami at the Alboran Sea V: simulation

P7 (Torre del Mar) - P8 (Malaga)
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Tsunami at the Alboran Sea V: simulation

P7 (Torre del Mar) - P8 (Malaga)
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Lituya Bay description

@ Lituya bay is T-shaped, about 12
kilometres long and from 1.2t0 3
kilometres wide (except at the
entrance, which is only 300m
wide).

@ Two glaciated inlets at the head,
Gilbert Inlet and Crillon Inlet.

@ Narrow and shallow entrance.
@ High mountains with large slopes
near the head of the bay.

@ High tides in this area (about 3 m
height).
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Lituya Bay: Earthquake & Landslide

@ At 10:16pm (local time) on July
10, 1958. M,, 8.3 earthquake.

@ Southwest sides and bottoms of
Gilbert and Crillon inlets moved
northwestward and relative to the
northeast shore at he head of the
bay, on the opposite side of the
Fairweather fault.

@ Shaking lasted about 4 minutes. \
Estimated total movements of \
6.4m horizontally and 1 m {
vertically. L

@ About 2 minutes after the
beginning of the earthquake the
landslide was triggered.

@ Slide volume estimated by Miller,
1960 in 30.6 x 106 m?.

ituya Bay

Picture from Weiss et. al., 2009



Lituya Bay: Effects of the 1958 tsunami
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Lituya Bay: Tsunami source: reconstruction of the slide

Landslide setup
@ Determine the slide perimeter.

@ Surface centroid located at 610 m
elevation.

@ Volume of reconstructed slide:
30.625 x 106 m3.
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Lituya Bay: Tsunami source: reconstruction of the slide

Landslide setup
@ Determine the slide perimeter.

@ Surface centroid located at 610 m
elevation.

@ Volume of reconstructed slide:
30.625 x 106 m3.
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Lituya Bay: Tsunami source: reconstruction of the slide

Landslide setup

@ Determine the slide perimeter.

@ Surface centroid located at 610 m
elevation.

@ Volume of reconstructed slide:
30.625 x 106 m3.
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Lituya Bay: Topo-bathymetry reconstruction

Gilbert Inlet Glacier front reconstruction

@ Prior to the 1958 low deltas of gravel had built out into Gilbert Inlet at the
southwest and northeast margins of the Lituya Glacier front.

@ After the 1958 tsunami the delta on the northeast side of Gilbert Inlet completely
disappeared, and the delta on the southwest side was much smaller.

@ According to [Miller, 1960], the glacier surface for several hundred feet from the
front was severely crevassed.

Head of Lituya Bay, showing changes in shoreline and glacier fronts over time from [Miller, 1960].
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Lituya Bay: Topo-bathymetry reconstruction

Gilbert Inlet Glacier front reconstruction

@ Prior to the 1958 low deltas of gravel had built out into Gilbert Inlet at the
southwest and northeast margins of the Lituya Glacier front.

@ After the 1958 tsunami the delta on the northeast side of Gilbert Inlet completely
disappeared, and the delta on the southwest side was much smaller.

@ According to [Miller, 1960], the glacier surface for several hundred feet from the

front was severely crevassed.
—_———— "
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Lituya Bay: Topo-bathymetry reconstruction

Gilbert Inlet Glacier front reconstruction

@ Prior to the 1958 low deltas of gravel had built out into Gilbert Inlet at the
southwest and northeast margins of the Lituya Glacier front.

@ After the 1958 tsunami the delta on the northeast side of Gilbert Inlet completely
disappeared, and the delta on the southwest side was much smaller.

@ According to [Miller, 1960], the glacier surface for several hundred feet from the
front was severely crevassed.
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Lituya Bay: Topo-bathymetry reconstruction

Gilbert Inlet Glacier front reconstruction

@ Prior to the 1958 low deltas of gravel had built out into Gilbert Inlet at the
southwest and northeast margins of the Lituya Glacier front.

@ After the 1958 tsunami the delta on the northeast side of Gilbert Inlet completely
disappeared, and the delta on the southwest side was much smaller.

@ According to [Miller, 1960], the glacier surface for several hundred feet from the
front was severely crevassed.

1000 1000

6.5085|

900 900

800 800
6508

700 700

7

00 6.5075| 00

500 500
6507,

400 400

00 6.5065] 00

200 200
6506,

100 100

N 6.5055] N

052 3525 383 3595 354 3545 055 058 356 2885 057 052 3525 353 3595 354 3545 055 056 356 2885 057

Gilbert Inlet shoreline and glacier front before and after the1958 tsunami.
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Lituya Bay: reconstruction of the bathymetry

Bathymetric data (National Ocean Service (USA)

@ Hydrographic Survey ID: H08492 (Digital sounding), 1959.
@ Hydrographic Survey ID: H04608, 1926.

x10°m

Gilbert Inlet bathymetries and shorelines before and after 1958.
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Lituya Bay: reconstruction of the bathymetry

Bathymetric data (National Ocean Service (USA)

@ Hydrographic Survey ID: H08492 (Digital sounding), 1959.
@ Hydrographic Survey ID: H04608, 1926.

x10°m

Gilbert Inlet bathymetries and shorelines before and after 1958.
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Lituya Bay: Model setup

Model setup

@ Initially water is at rest.
@ Initial water level is set to 1.52 m (datum approximate mean sea level).

@ A4 m x 7.5 mrectangular grid with 3,650 x 1,271 = 4,639, 150 cells has been
designed in order to perform the simulation.

@ A high efficient GPU based implementation of the model has been developed to
be able to compute high accuracy simulations in reasonable computational time.

@ The numerical simulation presented here lasts for 10 min.

@ 14,516 time iterations were required to obtain the 10 minutes simulation, requiring
about 1,296.5 seconds in nVidia GTX 580 card. This means that over 51.9 % 10°
cell are processed per second.
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Lituya Bay: Parameter sensitivity analysis

Parameters to be considered
@ Coulomb friction angle o € [10, 16] degrees).
@ Ratio of densities between water and the mean density of the slide r € [0.3,0.5].
@ Friction between layers m; € [0.001,0.1].
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Lituya Bay: Parameter sensitivity analysis

Criteria selected in order to get the optimal parameters:

@ the runup on the spur southwest of Gilbert Inlet had to be the closest to the
optimal 524 m,

@ the wave moving southwards towards the main stem of Lituya bay had a peak
close to 208 m in the vicinity of Mudslide Creek,

@ the simulated wave had run over through the Cenotaph Island, opening a narrow
channel through the trees [Miller, 1960],

@ the trimline maximum distance of 1,100 m from high-tide shoreline at Fish Lake
had to be reached.
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Lituya Bay: Parameter sensitivity analysis

Criteria selected in order to get the optimal parameters:

@ the runup on the spur southwest of Gilbert Inlet had to be the closest to the
optimal 524 m,

@ the wave moving southwards towards the main stem of Lituya bay had a peak
close to 208 m in the vicinity of Mudslide Creek,

@ the simulated wave had run over through the Cenotaph Island, opening a narrow
channel through the trees [Miller, 1960],

@ the trimline maximum distance of 1,100 m from high-tide shoreline at Fish Lake
had to be reached.
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Parameter sensitivity analysis

Optimal parameters found:

a = 13 degrees,
roo= 044,
mg = 0.08.

v

@ Simulated time: 10 min.
Mesh resolution: 3650x1271 = 4639150 volumes (4m x 7.5m).
CFL: 0.9
Ratio of densities: r = 0.44
Coulomb angle of repose: 13°.
Coef. Friction between layers: 0.08.
Coef. Friction water-bottom: 2 - 10—3.
Velocity of impact sediment/water 110 m/s.

A
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Lituya Bay: Model results

t = 8 s. The giant wave reaches 272.4m height
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Lituya Bay: Model results

t = 10 s. The giant wave reaches 251.1m height
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Lituya Bay: Model results

t = 20 s. Maximum wave height reaches 161.5m height
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Lituya Bay: Model results

t = 30 s. Giant wave hits the spur southwest of Gilbert Inlet
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Lituya Bay: Model results

t = 39 s. Maximum runup: 523.9 m
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Lituya Bay: Model results
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Lituya Bay: Model results

Time: 70.00000

40.0000
31.8841
|5 23.7681
15.6522
7.5362
\ -0.5797
N {-e.6057
L 1.16.8116
-24.9275
‘ -33.0435

2000 4000 6000 8000 10000 12000 14000

t = 1m 10 s. Waves amplitude.



Lituya Bay: Model results

t=2ml0s.

Time: 130.00000

8000[:
600034
4000

2000}

2000 4000 6000 8000 10000 12000 14000

Waves amplitude.
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Lituya Bay: Model results

Time: 270.00000

40.0000
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8000}

> 2 23.7681
15.6522

6000
7.5362

7 Q -0.5797

-8.6957

4000

-16.8116

2000 -24.9275

-33.0435

2000 4000 6000 8000 10000 12000 14000

t = 4 m30s. Waves amplitude.



Lituya Bay: Model results

Time: 420.00020

40.0000

31.8841
8000[:
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15.6522
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4000 -8.6957
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2000 £ -24.9275
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t = 7 m. Waves amplitude.
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Lituya Bay: Model results

Total inundation areas and trimline




Thanks
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Webpage:
http://edanya.uma.es
Youtube Channel:

http://youtube.com/grupoedanya


http://edanya.uma.es
http://youtube.com/grupoedanya
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