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Oceanic currents : Gulfstream
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Gulfstream (left) and related vortices (right). Velocity
follows isopleths of the height anomaly in the first

approximation.
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Destabilizing coastal flow

Instability of a coastal current in the Weddell sea.

Lecture 1:
Derivation of the
model(s),
properties &
numerical
schemes

Large-scale
atmospheric and
oceanic flows




Main features of the large-scale flows

Large-scale atmospheric and oceanic flows are :

» rotating and stratified
» close to hydrostatic equilibrium

» having typical horizontal scale L and typical vertical
scale H,L>H

Yet,
L <« R, the Earth’s radius — tangent plane
approximation.
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Mean oceanic stratification
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Primitive equations : ocean

Hydrostatics
gp+0,P =0, (1)

P = P0+PS(Z)+7T(Xayvz;t))
p = P0+PS(Z)+U(Xay72?t)7 po > ps >0

Incompressibility

V-V=0, V=,+2w. (2)
Euler : .
8Vh I N = =
ﬁJrv-Vvthszvh:—thb. (3)
¢ = % - geopotential.
Continuity :

Op+V-Vp=0. (4)
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Mean atmospheric stratification
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Primitive equations : atmosphere,
pseudo-height vertical coordinate

i:+?-ﬁ*h+f2Avh:—ﬁh¢,
0 9
—gef‘i‘g—o,
g(jﬂ?ﬁa_o V-v=0.

Identical to oceanic ones with o — —#, potential

temperature.

Vertical coordinate : pseudo-height, P - pressure.

z

(-

Ps

5
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Equivalence of the primitive equations

A key fact of geophysical Fluid Dynamics

Under clever changes of variables ocean and atmosphere
primitive equations are equivalent : incompressible
stratified fluid on the rotating plane in hydrostatic
equilibrium.
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Fluid layers beteen material surfaces

A
Z
9 /2

T~

w2=dz2/dt 4 —
T —— Z2

7 wl=dzi/dt | —
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Vertical averaging and RSW models Dervaton f the

model(s),

» Take horizontal momentum equation in conservative ety
form : schemes

(pU)t + (pUP)x + (pvu)y + (pwu)z — fpv = —px, (9)

and integrate between a pair of material surfaces
Z12 .

Vertical averaging
and RSW models

Zi
Wla = dr =

» Use Leibnitz formula and get :

OeZi + UdxZj + VayZ,', i=1,2. (10)

22 22
Ot dzpu + 8x/ dz,ou2—|—8y/ dzpuv —
Zq Z4q

Z2
f dzpvy = —8X/ azp — Oxz1 Pl,, + Ox22 Pl -
Z1

(analogously for v).



» Use continuity equation and get

22 22 Z2
at/ de+<9x/ deu+8y/ dzpv =0. (11)

» Introduce the mass- (entropy)- averages :

/ dzpF, p= / azp.

and obtain averaged equations :

(12)

01 (1(u)) + B ((U?)) + By (sfuv)) = Frdv)

22
= —8X/ azp — Oxz4 p\21 + Ox 2o p\zZ,
Z1

(13)

O (V) + Ox (uluv)) + By ((v?)) + Fdu)

22
= _a,V/ dzp - 8}/21 p’z1 + 6}’22 p|22 ’
Z1

Ot + Ox (u(u)) + 9y (u(v)) = 0.

(14)

(15)
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Lecture 1:
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P(va,zat)%_95(2—21)"‘17’21~ (16)

» Use the mean-field (= columnar motion)
approximation :

(uv) = (up(v), (1%) = (u){u), (v®) = (v)(v). (17) Vertcal veraging

and get master equation for the layer :
p(z2 —21)(OVvh + V- Vv +fZ A V) =

(22 — 2¢)?
- i (002 v -2 pL, )

— Vhzi Plz, + VhZz P, - (18)

» Pile up layers, with lowermost boundary fixed by
topography, and uppermost free or fixed.



1-layer RSW, z; =0,z =h

v+v-Vv+fzAv+gVh=0,

= 2d barotropic gas dynamics + Coriolis force.
In the presence of nontrivial topography b(x, y) :
h — h— bin the second equation.

Lecture 1:
Derivation of the
model(s),
properties &

numerical
(1 9) schemes

Vertical averaging
and RSW models



2-layer rotating shallow water model with a
free surface : z1 =0, zo = hy, zZ3 = hy + ho

8tV2—|—V2-VV2+f2/\V2:—V(h1 +h2) (21)
OVi+ Vi -V + 2 A vy = =V(rh + hy),  (22)
8th1,2 + V. (V1,2h1,2) =0, (23)

where r = p—; < 1 - density ratio, and h » - thicknesses of
the layers.

Y
=
l a

vz

I /2
———
he hoz
L ———

vi rho1

N
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Useful notions

Balanced vs unbalanced motions
Geostrophic balance : balance between the Coriolis force
and the pressure force. In shallow-water model :

f2=—gVh (24)

Valid at small Rossby numbers : Ro = U/fL, where U, L -
characteristic velocity and horizontal scale.

Balanced motions at small Ro : vortices.

Unbalanced motions : inertia-gravity waves.

Relative, absolute and potential vorticity

Relative vorticity in layered models : ( = 2 -V A v.
Absolute vorticity e + f. Potential vorticity (PV) :

qi2 = <+
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Dynamical actors in RSW : vortices & waves  oeiionof e
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Conservation laws in RSW (no topography)

Equations in conservative form (momentum & mass)

2
d¢(hu) + dx(hu?) + 0y, (huv) — fhv + gaxf; =

h2
d(hv) + dx(huv) + 0, (hv?) + fhu + 90y 5 =

Oth + ox(hu) + 0y(hv) =

Energy is locally conserved :

2 2 2
E:/dxdye:/dxdy <hu ZV +gl72>,

ate + V . fe - 0
Lagrangian conservation of potential vorticity :
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Reminder

RSW system :

>

Equivalent to 2d barotropic gas dynamics (if no
topography and rotation).

Hyperbolic (except at resonant points (crossing of
eigenvalues of the characteristic matrix).

Rotation - stiff source.

Weak solutions «++» Rankine-Hugoniot conditions.
Selection : energy decrease across shocks
(equivalent to entropy increase in gas dynamics).

Natural numerical method : finite-volume,
shock-capturing
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Lecture 1:

1-dimensional SW with topography : Derivation o the

model(s),

Equations in conservative form, where Z(x)/g - properties &
topography : ehomes
(hu)¢ + (hu? 4 gh? /2)x + hZ, = 0,

Convex entropy (energy) :
e = hu?/2 + gh?/2 + ghZ

with entropy flux (e + gh?/2) u.
Numerical difficulties :
» keeping h > 0,
» maintaining steady states at rest ("well-balanced" s e
property u = 0, gh+ Z = const
» treatment of drying h — 0,
» satisfying a discrete entropy inequality.



Lecture 1:

First-order three-point finite-volume schemes  oeionof e

model(s),
properties &
numerical

Discretization : schemes
Grid Xiy1 /2, I € Z, cells (finite volumes)

Ci = (Xi—1/2, Xiy1/2), centers X; = (Xi_1/2 + Xj+1/2)/2,

Iengths AX; = Xit1/2 — Xji—1/2-

Discrete data (U, Z;), U" — approximation of U = (h, hu).

Evolution :

At
urtt — U + E(E‘H/L — Fi—1/24) =0, (26)

Z; does not evolve,

Fiv1/o— = Fi(U;, Uiy1, AZi 1 )2), Fipt/o4 = Fr(Uj, Uip1, AZi42),
(27)
with AZ; 42 = Zjy1 — 4.
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Numerical fluxes F; and F, must satisfy two consistency
properties.

» consistency with the conservative term :
Fi(U,U,0) = F(U,U,0) = F(U) = (hu, hu?+gh?/2),
(28)
» consistency with the source :
Fr(U, U, AZ)—Fi(U), Uy, AZ) = (0, —hAZ)+0(AZ),

(29)
as U, U, — Uand AZ — 0. -,



Well-balancing and mass conservation Dervaton f the

model(s),
properties &

numerical

schemes

A required global property is the conservation of mass,

FI(U, U, AZ) = F(U, U, AZ) = F(UL Uy, AZ).
(30)
The property for the scheme to be well-balanced is that

Fiv1/o— = F(Uj) and Fiyq /o1 = F(Uiy1)
whenever u; = uj 1 = 0 and ghiyy — ghj + AZ; 1, = 0.
(31)

Conceptual example



Hydrostatic reconstruction scheme ( Audusse  oenaionof

Derivation of the

et al, 2003) model(s),

properties &
numerical
schemes

* * 0
F/(U/,Ur,AZ):f(U/,Ur)+< g >
2

Fi(Un, Up, AZ) = F(U U + ( 0

where U} = (hy, hi.up), Uf = (b, hriur), and

h, = max(0, h — max(0,AZ/g)),
hr. = max(0, h — max(0,—AZ/g)).

F is any entropy satisfying consistent numerical flux for
the problem with Z = cst. Multiple choices for F in the

literature - approximate Riemann solvers (Roe, HLL,
HLLC,...).

Hydrostatic reconstruction



Rotation as an apparent topography

1.5d shallow water with topography and Coriolis force

ht —|— (hu)x —
(hu)e + (hu? + ghz/z) +hZ—fhv=0, (33
(hv)t + (huv)x + fhu = 0,

where Z = Z(x), f = f(x). Solutions at rest are given by

u=0, fv = (gh+ Z)x. The trick is to identify the two first
equations in (33) as (25) with a new topography Z + B,
where By = —fv. As v depends on time while B should be
time-independent, so take B]] = —fv" and solve (25) on
the time interval (5, t,,1) with topography Z + B".
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H H Lecture 1:
Dlscretlzed 1 . 5d RSW Derivation of the
model(s),
properties &
numerical
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At
h/(’“ —hi' + (F/+1/2 Fih—1/2) =0,

AT hnun+7(’:,+1/2— Fi/2) =0, (34)

A
A YTty T A (F,+1/2— Fj24) =0,

1
with

(I:i,-7|-1/27 I:/'T1/27) = fl1d(hi7 uj, hi+1 y Ui, AZI'—|—1/2 + Abf.ﬂ/g)a
f f ‘Fr‘ld(hia uj, hf+1 y Ui, AZi+1/2 + Ab,'n_H/Q)a
(35)
n + n

Abln-i-1/2 == *f,‘+1/2T1AX,+1/2/g (36) Rotation as apparent

topogrpahy

(Fi+1/27 Fi-£1/2+) =

and F'9 and 79 - numerical hydrostatic reconstruction
fluxes of the 1d shallow water.



Transverse momentum fluxes

A natural discretization associated to the equivalent
conservation law (geostrophic momentum)

(h(v +Q)): + (hu(v + Q))x = 0, with Qx = f, which is

strongly related to the potential vorticity :

F/+1/2— {

hv
Fiis /24 =

with

A

F+1/2v, |fF+1/2>0

i

FiL1/2(Vi — AQ/+1/2) if Fl4,2 >0,
FlijpVier i FlLy 5 <0,

AQj 12 = fiy1/28X11)2.

(37)
(38)

(39)
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Second-order reconstruction - general Deriationof the

. del(s),
Reconstruction operator : (U, Z;) = Uit1/2—, Zit1/2- P

. . i numerical
Ui1/24s Zip1/24 fori € Z,in a way that it is schemes

» conservative in U :

Ui+ + Up1/2-
2

= Ui7 (40)

» second-order, i.e. that whenever for all J,

1 1
= Ax; /C,- U(x) dx, Zi = Ax /c,- Z(x) dx,
(41)

Ui

for smooth U(x), Z(x), then, for § = sup,;Ax;

Uir1j2- = UXip12) + O(6%),  Upprj24 = U(Xip1)2) +O(6%),
Zii1jo- = Z(Xis12) + O(6%),  Zip1jor = Z(Xis1/2) + O(6°):
( 42) Going second order
Possible reconstructions : minmod (respects max
principle), ENO (non-oscillatory), ...



Second-order scheme :

At
urtt — Ul + ax; Fivtre= = Ficijzr = F) =0,

with

Fi+1/2— =Fi Uilzﬂ/z—’ U,.'jr1/2+,Zi’jr1/2_,Z,’:L1/2+) ’

(43)

Fi+1/2+ =Fr Uir-l&-1/2—’ Uiqr1/2+a Zir-,i-1/2—vzi,-71-1/2+) )

Fi:]:c<Un

n
1240 Uj

n
i+1/2—> Z

n
i—1/2+> Z

i+1/2— )"
where the arguments are obtained from the
reconstruction operator applied to (U, Z"), and the
centered flux function F, to be chosen.

(44)
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2nd-order reconstruction for shallow water
(Ui, zi) = (hi, hiuj, ;)
Uit1/2+ = (Nigq /245 Dt /24 Ui 1 24 ) -reconstructed
values. Then
hi—1/24 + P12

= h;,
hi—1 /24 Ui—1 /24 + Pi1/2-Ujpq/2—
2

(45)

= h,'U,'.
Equivalent to

AX; AX;
hi_1/24 = hi — TID/?/, hiy1/2- = hi+ TID/?/,
Rt Ax;
i+1/2— AX; Du;

Uicjo4 = Ui = — 5
I
hi—1/21 AX;
Ujg1j2— = Uj+ — h-/ - TIDUi,
!

(46)
for some slopes Dhj, Du;. Minmod, ENO, ENO,, for them.
ENOy, for h + z variable.

Centered flux : Fo(U), Uy, Az) = (0, —@gAz).
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Second-order accuracy in time

The second-order accuracy in time can be obtained by
the Heun method. The second-order scheme in x can be

written as
U™ = U" 4+ Ato(U), (47)

where U = (U))jcz, and ¢ is a nonlinear operator
depending on the mesh. Then the second-order scheme
in time is B

U™ = U+ Ato(U),

yn+2 — gn+ —tAtd)(D”H), (48)
un + Un+2
—a
If the operator ® does not depend on At, this procedure
gives a fully second-order scheme in space and time. The
convex average in (48) enables to ensure the stability
without any further limitation on the CFL.

Un+1 —

Lecture 1:
Derivation of the
model(s),
properties &
numerical
schemes

Going second order



From 1- to 2-dimensions : Dervetionaf the
Our interest - systems of the form : pfgﬁgﬁ'iss)’l&
schemes

01U+0x(F1(U, 2))+0y(F2(U, 2))+B4 (U, £)0xZ+B(U, 2)9yZ = 0.
(49)
2d quasilinear system :

0rU + Ay Ud, U + A,Ud, U = 0. (50)

Consider planar solutions of the form U(t, x,y) = U(t, ()
with ¢ = xn' 4 yn? and (n', n?) is a unit vector, which

leads to
otU + Ap(U)ocU =0, (51)
with
AU = n'A(U) + iPAx(U). (52)
The notions introduced for one-dimensional systems can
be applied to (51), and one defines hyperbolicity, Going o gmensional

entropies, and other notions for (50) by defining them for
all directions n.



2-dimensional mesh :

Rectangles

Cij = (Xi—12, Xig1/2) X (Vj—1/2, Yjr1/2)s 1 €L, JEL,
(53)
with sides :

AXj = Xjp1/2 — Xi—172 > 0, Ayj = Yjy172 — Yj-172 > 0.

(54)
The centers of the cells : x;; = (x;, y;), with
Xi_ X; 12 +Y
=X 1/242F :+1/27 yj:y/ 1/22}’/+1/2' (55)
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Finite-volumes in 2 dimensions B .

model(s),
Goal : to approximate solution U(t, x, y) to (49) by S
discrete values U,-'] that are approximations of the mean SEEmeE
value of U over the cell C; at time t, = nAt,
U ~ /X:+1/2 y/+1/2 )d d (56)
i U(th, x,y) dxdy.
g AX’Ay/ Xi—1/2 Y VYj-1/2
A finite volume method for solving (49) takes the form
At At
Ut —Uj+ Axi v (Fip12— j—Fi- 1/2+/)+A7y/_(,:i,j+1/2—— ij—1/24+) =0
(57)
Exchange terms :
Fi+1/2¥,j = ]:/1 r(Uf/’ Ui+17j7Zi/a Zi+17j)v (58)

Fiji1j25 = Fii(Uj, Uijir, Zij, Zijia),

Going two-dimensional I

for some numerical fluxes 7, !, F?, F2.



Multi-layer 1-dimensional shallow-water

system with topography in conservative form

81/7]' + Ox (hjUj) =0,

k>j k<j

where h; > 0, j = 1,3, ...m - layer depths, u; - layer
velocities, z(x) - topography, and

layer densities. Convex entropy = energy.

(59)

N

Ot (hjUj) +0x (hjUjZ + gh/2/2> +ghj (Z + Z hyg + Z Qhk

(60)
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Equivalent 1-layer systems Dervaton of he
properion &
ehemes

Shallow-water systems for U/ = (h;, hju;) with effective
topography :

Z/—Z+th+zpkhk

k>j k</

Finite volume scheme with numerical fluxes 7, :

Ui U’+— (F,(U’ UL y.2l 2l q) - FiUL, UL 2y 2D =o.
(61)

For each j - effective shallow water = well-balancing,

hydrostatic reconstruction, apparent topography etc will

be applied.

Efficient scheme
for 2-layer RSW



Splitting vs sum methods, an example Dervaton of he

Consider an ODE oropertion &
numerical
dU schemes
o TAW) +BU) =o. (62)

Solving dU/dt + A(U) = 0, and dU/dt + B(U) = 0, resp. :

Ut — U™+ AtA(U™) = 0,
U™t — U+ AtB(U") = 0.

Splitting method :

U124 AtAUT) =
Un+1 - Un+1/2 + At B(un+1/2)

o o

- solving (61) successively.
Sum method

U™t — U + At (A(U") + B(U™)) = 0,
Efficient scheme
- SOIV|ng (61) Slmultaneously for 2-layer RSW



References, general + finite-volume
wall-balanced numerical schemes

General

V. Zeitlin, ed. "Nonlinear dynamics of rotating shallow
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391p.

Numerical schemes : 1-layer

F. Bouchut "Efficient numerical finite-volume schemes for
shallow water models", Ch. 4 in V. Zeitlin, ed. "Nonlinear
dynamics of rotating shallow water : methods and
advances", Springer, NY, 2007, 391p,

and references therein

Numerical scheme : Multi-layer

F. Bouchut and V. Zeitlin "A robust well-balanced scheme
for multi-layer shallow water equations”, Disc. Cont. Dyn.
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