Understanding large-scale atmospheric and oceanic flows with layered rotating shallow water models

V. Zeitlin

¹Laboratory of Dynamical Meteorology, ENS, Paris, France

ICTP, Trieste, May 2013

・ロト ・四ト ・ヨト ・ヨト

훈

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Plan

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet Comparison of the evolution of dry and moist instabilities

Conclusions

Literature

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

▲ロト▲舂▶▲臣▶▲臣▶ 臣 のの(

General problematics

Importance of moisture in the atmosphere: obvious. Influences large-scale dynamics via the latent heat release, due to condensation and precipitation. Atmospheric circulation modeling: equation of state of the moist air extremely complex. Discretization/averaging: problematic.

Current parametrizations of precipitations and latent heat release:

relaxation to the equilibrium (saturation) profile of humidity \Rightarrow threshold effect \Rightarrow essential nonlinearity Consequences: no linear limit; linear thinking: modal decomposition, linear stability analysis, etc impossible \Rightarrow problems in quantifying predictability of moist - convective dynamical systems. Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

<ロ> < 部> < き> < き> < き > うへ

Aims and method I

Aim:

Understanding the influence of condensation and latent heat release upon large-scale dynamical processes

Reminder:

- Simplest model for large-scale motions: rotating shallow water.
- Link with primitive equations: vertical averaging
- Baroclinic effects: 2 (or more) layers.

Problem with this approach for moist air: averaging of essentially nonlinear equation of state.

・ロト ・回 ト ・ ヨト ・ ヨト

ъ.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Aims and method II

Our approach

- Combine (standard) vertical averaging of primitive equations between the isobaric surfaces with that of Lagrangian conservation of moist enthalpy
- Allow for convective fluxes (extra vertical velocity) across the isobars
- Link these fluxes to condensation
- Use relaxation parametrization in terms of bulk moisture in the layer for the condensation/precipitation

・ロト ・回 ト ・ ヨト ・ ヨト

.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Aims and method III

Advantages:

- Simplicity, qualitative analysis of basic phenomena straightforward
- Fully nonlinear in the hydrodynamic sector
- Well-adapted for studying discontinuities, in particular precipitation fronts
- Efficient numerical tools available (finite-volume codes for shallow water)

ヘロト 人間 とくほとくほとう

.

- Various limits giving known models
- Inclusion of topography (gentle or steep) straightforward

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Primitive equations in pseudo-height coordinates

$$\begin{aligned} \frac{d}{dt} \mathbf{v} + f\mathbf{k} \times \mathbf{v} &= -\nabla\phi \\ \frac{d}{dt} \theta &= 0 \\ \nabla \cdot \mathbf{v} + \partial_z \mathbf{w} &= 0 \\ \partial_z \phi &= g \frac{\theta}{\theta_0} \end{aligned}$$

 $\mathbf{v} = (u, v)$ and w - horizontal and vertical velocities, $\frac{d}{dt} = \partial_t + \mathbf{v} \cdot \nabla + w \partial_z$, *f* - Coriolis parameter, θ - potential temperature, ϕ - geopotential. Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

<ロ> < 部> < き> < き> = のへ(

Moisture and moist enthalpy

Condensation turned off: conservation of specific humidity of the air parcel:

$$\frac{d}{dt}q=0.$$

Condensation turned on: θ and q equations acquire source and sink. Yet the moist enthalpy $\theta + \frac{L}{c_p}q$, where L latent heat release, c_p - specific heat, is conserved for any air parcel on isobaric surfaces:

$$rac{d}{dt}\left(heta+rac{L}{c_{
ho}}q
ight)=0,$$

・ロト ・回 ト ・ ヨト ・ ヨト

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Vertical averaging with convective fluxes

3 material surfaces:

・ロト ・回 ト ・ ヨト ・ ヨト

Mean-field + constant mean $\theta \rightarrow$

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

æ -

Averaged momentum and mass conservation equations:

$$\begin{cases} \partial_{t} \mathbf{v}_{1} + (\mathbf{v}_{1} \cdot \nabla) \mathbf{v}_{1} + f \mathbf{k} \times \mathbf{v}_{1} = -\nabla \phi(z_{1}) + g \frac{\theta_{1}}{\theta_{0}} \nabla z_{1}, \\ \partial_{t} \mathbf{v}_{2} + (\mathbf{v}_{2} \cdot \nabla) \mathbf{v}_{2} + f \mathbf{k} \times \mathbf{v}_{2} = -\nabla \phi(z_{2}) + g \frac{\theta_{2}}{\theta_{0}} \nabla z_{2} + \frac{\mathbf{v}_{1} - \mathbf{v}_{2}}{h_{2}} \\ \begin{cases} \partial_{t} h_{1} + \nabla \cdot (h_{1} \mathbf{v}_{1}) = -W_{1}, \\ \partial_{t} h_{2} + \nabla \cdot (h_{2} \mathbf{v}_{2}) = +W_{1} - W_{2}, \end{cases} \\ \end{cases}$$

$$\begin{cases} \text{Model} \\ \text{Limiting equations and relation to the model} \\ \text{Conservation laws} \\ \text{Characteritics and roots} \\ \text{Example wave on a moster to the root of the model} \\ \text{Conservation laws} \\ \text{Moist vs dry} \\ \text{Barcelinic} \\ \text{Conservation of the evolution of the e$$

Lecture 2: An example of atmosphereic application: moist-convective RSW

Constructing the

Linking convective fluxes to precipitation I

Bulk humidity: $Q_i = \int_{z_{i-1}}^{z_i} q dz$. Precipitation sink:

 $\partial_t Q_i + \nabla \cdot (Q_i \mathbf{v}_i) = -P_i.$

In precipitating regions ($P_i > 0$), moisture is saturated $q(z_i) = q^s(z_i)$ and the temperature of the air-mass $W_i dt dx dy$ convected due to the latent heat release $\theta(z_i) + \frac{L}{c_p} q^s(z_i)$, is the one of the upper layer: θ_{i+1} . We assume "dry" stable background stratification:

$$heta_{i+1} = heta(z_i) + rac{L}{c_{
ho}}q(z_i) pprox heta_i + rac{L}{c_{
ho}}q(z_i) > heta_i,$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

with constant $\theta(z_i)$ and $q(z_i)$.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Integrating the moist enthalpy we get

$$W_i = \beta_i P_i$$

with a positive-definite coefficient

$$eta_i = rac{L}{c_{p}(heta_{i+1} - heta_i)} pprox rac{1}{q(z_i)} > 0.$$

Last step: relaxation formula with relaxation time τ .

$${m P}_i = rac{{m Q}_i - {m Q}_i^s}{ au} {m H} ({m Q}_i - {m Q}_i^s)$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

where H(.) is the Heaviside (step) function.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

2-layer model with a dry upper layer

Vertical boundary conditions: upper surface isobaric $z_2 = \text{const}$, geopotential at the bottom constant (ground) $\phi(z_0) = \text{const}$, $Q_2 = 0$, $Q_1 = Q$:

$$\begin{cases} \partial_t \mathbf{v}_1 + (\mathbf{v}_1 \cdot \nabla) \mathbf{v}_1 + f \mathbf{k} \times \mathbf{v}_1 = -g \nabla (h_1 + h_2), \\ \partial_t \mathbf{v}_2 + (\mathbf{v}_2 \cdot \nabla) \mathbf{v}_2 + f \mathbf{k} \times \mathbf{v}_2 = -g \nabla (h_1 + \alpha h_2) + \frac{\mathbf{v}_1 - \mathbf{v}_2}{h_2} \beta P, \\ \partial_t h_1 + \nabla \cdot (h_1 \mathbf{v}_1) = -\beta P, \\ \partial_t h_2 + \nabla \cdot (h_2 \mathbf{v}_2) = +\beta P, \\ \partial_t Q + \nabla \cdot (Q \mathbf{v}_1) = -P, \quad P = \frac{Q - Q^s}{\tau} H(Q - Q^s) \end{cases}$$

・ロト ・回 ト ・ ヨト ・ ヨト

.

 $\alpha = \frac{\theta_2}{\theta_1}$ - stratification parameter.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Sketch of the model

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

> Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

◆□▶◆□▶◆臣▶◆臣▶ 臣 の父

Immediate relaxation limit

$$\tau \to 0, \Rightarrow P = -Q^{s}\nabla \cdot \mathbf{v}_{1} \text{ (Gill, 1982), and}$$

$$\partial_{t}\mathbf{v}_{1} + (\mathbf{v}_{1} \cdot \nabla)\mathbf{v}_{1} + f\mathbf{k} \times \mathbf{v}_{1} = -g\nabla(h_{1} + h_{2}),$$

$$\partial_{t}\mathbf{v}_{2} + (\mathbf{v}_{2} \cdot \nabla)\mathbf{v}_{2} + f\mathbf{k} \times \mathbf{v}_{2} = -g\nabla(h_{1} + \alpha h_{2})$$

$$-\frac{\mathbf{v}_{1} - \mathbf{v}_{2}}{h_{2}}\beta Q^{s}\nabla \cdot \mathbf{v}_{1},$$

$$\partial_{t}h_{1} + \nabla \cdot (h_{1}\mathbf{v}_{1}) = +\beta Q^{s}\nabla \cdot \mathbf{v}_{1},$$

$$\partial_{t}h_{2} + \nabla \cdot (h_{2}\mathbf{v}_{2}) = -\beta Q^{s}\nabla \cdot \mathbf{v}_{1},$$

humidity staying at the saturation value: $Q = Q^s$.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

▲□▶▲御▶▲臣▶▲臣▶ 臣 の()

Baroclinic reduction

Rewriting the model in terms of baroclinic and barotropic velocities:

$$\mathbf{v}^{bt} = rac{h_1 \, \mathbf{v}_1 + h_2 \, \mathbf{v}_2}{h_1 + h_2}, \ \mathbf{v}^{bc} = \mathbf{v}_1 - \mathbf{v}_2,$$

and linearizing in the hydrodynamic sector gives:

$$\left\{ \begin{array}{l} \partial_t \boldsymbol{v}^{bc} + f \boldsymbol{k} \times \boldsymbol{v}^{bc} = -g_{\boldsymbol{e}} \nabla \eta, \\ \partial_t \eta + H_{\boldsymbol{e}} \nabla \cdot \boldsymbol{v}^{bc} = -\beta \boldsymbol{P}, \\ \partial_t Q + Q_{\boldsymbol{e}} \nabla \cdot \boldsymbol{v}^{bc} = -\boldsymbol{P}, \end{array} \right.,$$

where $g_e = g(\alpha - 1)$, $Q_e = \frac{H_e}{H_1} Q^s$, η - perturbation of the interface, H_e - equivalent height. Model first proposed by Gill (1982) and studied by Majda *et al* (2004, 2006, 2008).

<ロ> <四> <四> <四> <四> <四> <四</p>

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Quasigeostrophic limit

In the small Rossby number limit on the β -plane Lapeyre & Held (2004) model follows:

$$\frac{d_1^{(0)}}{dt}(\nabla^2\psi_1 + y - \frac{\eta_1}{D_1}) = \frac{\beta P}{D_1},\\ \frac{d_2^{(0)}}{dt}(\nabla^2\psi_2 + y - \frac{\eta_2}{D_2}) = -\frac{\beta P}{D_2},$$

Here $\frac{d_i^{(0)}}{dt} = \partial_t + (\mathbf{v}_i^{(0)} \cdot \nabla)$, $\mathbf{k} \times \mathbf{v}_i^{(0)} = -\nabla \psi_i$, $D_i = \frac{H_i}{H_0}$, and $\psi_{1,2}$ (geostrophic streamfunctions) are related to the free-surface (η_2) and interface (η_1) perturbations as:

$$\psi_1 = \eta_1 + \eta_2, \quad \psi_2 = \eta_1 + \alpha \eta_2$$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

1-layer moist-convective RSW

In the limit $H_1/(H_1 + H_2) \rightarrow 0$ the reduced-gravity one-layer moist-convective shallow water follows (Bouchut, Lambaerts, Lapeyre & Zeitlin, 2009):

$$\begin{cases} \partial_t \mathbf{v}_1 + (\mathbf{v}_1 \cdot \nabla) \mathbf{v}_1 + f \mathbf{k} \times \mathbf{v}_1 = -\nabla \eta, \\ \partial_t \eta + \nabla \cdot \{\mathbf{v}_1 (1+\eta)\} = -\beta \mathbf{P}, \\ \partial_t \mathbf{Q} + \nabla \cdot (\mathbf{Q} \mathbf{v}_1) = -\mathbf{P}, \end{cases}$$

(Nondimensional equations, η - free-surface perturbation)

ヘロア 人間 アメヨアメヨア

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the paroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Horizontal momentum

$$\begin{aligned} (\partial_t + \mathbf{v}_1 \cdot \nabla)(\mathbf{v}_1 h_1) + \mathbf{v}_1 h_1 \nabla \cdot \mathbf{v}_1 + f \mathbf{k} \times (\mathbf{v}_1 h_1) \\ &= -g \nabla \frac{h_1^2}{2} - g h_1 \nabla h_2 - \mathbf{v}_1 \beta \mathbf{P}, \\ (\partial_t + \mathbf{v}_2 \cdot \nabla)(\mathbf{v}_2 h_2) + \mathbf{v}_2 h_2 \nabla \cdot \mathbf{v}_2 + f \mathbf{k} \times (\mathbf{v}_2 h_2) \\ &= -\alpha g \nabla \frac{h_2^2}{2} - g h_2 \nabla h_1 + \mathbf{v}_1 \beta \mathbf{P}, \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

э

Red: moist convection drag. Total momentum: $\mathbf{v}_1 h_1 + \mathbf{v}_2 h_2$ is not affected by convection.

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Energy

Energy densities of the layers:

$$\begin{cases} e_1 = h_1 \frac{\mathbf{v}_1^2}{2} + g \frac{h_1^2}{2}, \\ e_2 = h_2 \frac{\mathbf{v}_2^2}{2} + g h_1 h_2 + \alpha g \frac{h_2^2}{2}, \end{cases}$$

For the total energy $E = \int dx dy (e_1 + e_2)$ we get:

$$\partial_t \mathbf{E} = -\int d\mathbf{x} \ \beta P\left(gh_2(1-\alpha) + \frac{(\mathbf{v}_1 - \mathbf{v}_2)^2}{2}\right).$$

1st term: production of PE (for stable stratification); 2nd term destruction of KE.

・ロト ・四ト ・ヨト ・ヨト

.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Potential vorticity

$$(\partial_t + \mathbf{v}_1 \cdot \nabla) \frac{\zeta_1 + f}{h_1} = \frac{\zeta_1 + f}{h_1^2} \beta \mathbf{P},$$

$$(\partial_t + \mathbf{v}_2 \cdot \nabla) \frac{\zeta_2 + f}{h_2} = -\frac{\zeta_2 + f}{h_2^2} \beta \mathbf{P} + \frac{\mathbf{k}}{h_2} \cdot \left\{ \nabla \times \left(\frac{\mathbf{v}_1 - \mathbf{v}_2}{h_2} \beta \mathbf{F} \right) \right\}$$

where $\zeta_i = \mathbf{k} \cdot (\nabla \times \mathbf{v}_i) = \partial_x \mathbf{v}_i - \partial_y u_i$ (*i* = 1, 2)- relative vorticity.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

.

PV in each layer is not a Lagrangian invariant in precipitating regions.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

imiting equations nd relation to the sown models

eneral properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the paroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Moist enthalpy and moist PV

Moist enthalpy in the lower layer: $m_1 = h_1 - \beta Q$ and is always locally conserved:

$$\partial_t m_1 + \nabla \cdot (m_1 \mathbf{v}_1) = 0.$$

Conservation of the moist enthalpy in the lower layer allows to derive a new Lagrangian invariant, the moist PV:

$$(\partial_t + \mathbf{v}_1 \cdot \nabla) \frac{\zeta_1 + f}{m_1} = 0.$$

・ロト ・四ト ・ヨト ・ヨト

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

> Dry) linear stability of the paroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

Ð.

Quasilinear form and characteristic equations

1-d reduction: $\partial_y(...) = 0$, \Rightarrow quasilinear system:

 $\partial_t \boldsymbol{f} + \boldsymbol{A}(\boldsymbol{f}) \partial_x \boldsymbol{f} = \boldsymbol{b}(\boldsymbol{f}).$

Characteristic equation: $det(\mathbf{A} - c\mathbf{I}) = 0$

"Dry" characteristic equation

$$\mathcal{F}(c) = \left\{ (u_1 - c)^2 - gh_1 \right\} \left\{ (u_2 - c)^2 - \alpha gh_2 \right\} - gh_1 gh_2$$

• "Moist" characteristic equation (au
ightarrow 0)

$$\mathcal{F}^m(c) = \mathcal{F}(c) + ((u_1 - u_2)^2 - (\alpha - 1)gh_2)g\beta Q^s = 0.$$

・ロト ・四ト ・ヨト ・ヨト

Ξ.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the paroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Characteristic velocities about the rest state

"Dry" characteristics:

$$\mathcal{C}_{\pm} = \mathcal{g}(\mathcal{H}_1 + lpha \mathcal{H}_2) rac{1 \pm \sqrt{\Delta}}{2},$$

"Moist" characteristics:

$$C_{\pm}^{m} = g(H_1 + \alpha H_2) \frac{1 \pm \sqrt{\Delta^{m}}}{2}.$$

Here $C = c^2$ and

$$\Delta = 1 - \frac{4H_1H_2(\alpha - 1)}{(H_1 + \alpha H_2)^2} = \frac{(H_1 - \alpha H_2)^2 + 4H_1H_2}{(H_1 + \alpha H_2)^2}$$
$$\Delta^m = \Delta + \frac{4(\alpha - 1)\beta Q^s H_2}{(H_1 + \alpha H_2)^2}.$$

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

◆ロト ◆御 と ◆ 臣 と ◆ 臣 と ○ 臣 ・ の)

Moist vs dry characteristic velocities

 c^m is real for positive moist enthalpy of the lower layer in the state of rest : $M_1 = H_1 - \beta Q^s > 0$, and

$$C_{-}^{m} < C_{-} < \frac{g(H_{1} + \alpha H_{2})}{2} < C_{+} < C_{+}^{m},$$

・ロト ・四ト ・ヨト ・ヨト

for $0 < M_1 < H_1 \Rightarrow$ moist internal (mainly baroclinic) mode propagates slower than the dry one, consistent with observations.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the paroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Discontinuities in dependent variables (no rotation)

Rankine-Hugoniot (RH) conditions (immediate relaxation):

$$\begin{cases} -s[v_1h_1 + v_2h_2] + [u_1v_1h_1 + u_2v_2h_2] = 0, \\ -s[m_1] + [m_1u_1] = 0, \\ -s[h_2] + [h_2u_2 + \beta Q^s u_1] = 0. \end{cases}$$

s - propagation speed of the discontinuity. Remark: mass conservation \rightarrow moist enthalpy conservation in the lower layer.

Due to $\lim_{x_s \to a} \lim_{b \to x_s} \int_a^b P = 0$, *P* does not enter RH conditions for u, v, h.

・ロト ・回 ト ・ ヨト ・ ヨト

.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Discontinuities in derivatives

RH conditions linearized about the rest state:

$$\begin{cases} (s^2 - C_+)(s^2 - C_-)[\partial_x u_1] = -(\alpha - 1)gH_2g\beta[P], \\ (s^2 - C_+^m)(s^2 - C_-^m)[\partial_x u_1] = -s(\alpha - 1)gH_2g\beta[\partial_x Q]. \end{cases}$$

For a configuration where it rains at the right side of the discontinuity, $P_{-} = 0$ and $P_{+} = -Q^{s} \partial_{x} u_{1+} > 0$, there exist five types of precipitation fronts:

ヘロア 人間 アメヨアメヨア

.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Precipitation fronts

- 1. the dry external fronts, $\sqrt{C_+} < s < \sqrt{C_+^m}$,
- 2. the dry internal subsonic fronts, $\sqrt{C_{-}^{m}} < s < \sqrt{C_{-}}$,
- 3. the moist internal subsonic fronts, $-\sqrt{C_{-}^m} < s < 0$,
- 4. the moist internal supersonic fronts,

$$-\sqrt{\mathcal{C}_+} < \mathbf{s} < -\sqrt{\mathcal{C}_-},$$

5. the moist external fronts, $s < -\sqrt{C_+^m}$.

This result confirms previous studies within a linear baroclinic model (Frierson *et al*, 2004).

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

> Dry) linear stability of the paroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

<ロ> <部> <き> <き> <き> <き> <き</p>

Wave scattering on a moisture front: setting

Localized internal simple wave centred at $x_P = 2$ and moving eastward:

$$u_{1}(x,0) = \begin{cases} \sigma(x-x_{P})^{2} + U_{0} & \text{if } -\sqrt{\frac{U_{0}}{\sigma}} \le x - x_{P} \le \sqrt{\frac{U}{\sigma}} \\ 0 & \text{otherwise, } U_{0} = 0.01, \sigma = -\frac{1}{2} \end{cases}$$
(1)

Stationary moisture front at $x_M = 5$, saturated air at the east, unsaturated at the west:

$$Q(x,0) = Q^{s} \{1 + q_{0} \tanh(x - x_{M})H(-x + x_{M})\}, q_{0} = 0.05.$$
(2)

Strong downflow convergence in the lower layer $\rightarrow P > 0$ near the moisture front.

ヘロト 人間 とくほとくほと

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Wave scattering on a moisture front: baroclinic velocity and moisture

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

> Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

◆ロ▶★舂▶★≧▶★≧▶ 差 のの

Wave scattering on a moisture front: condensation zone I

Dry and moist internal Riemann invariants. $s_{1,2}$ - precipitation fronts (dry subsonic and moist supersonic).

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Ory) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

▲ロ▶▲御▶★臣▶★臣▶ 臣 のの

Characteristics and fronts in the condensation zone

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

_imiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Evaporation and its parametrizations

In the presence of evaporation source E

$$\partial_t Q + \nabla \cdot (Q \mathbf{v}_1) = E - P$$

Hence:

$$\partial_t m_1 + \nabla \cdot (m_1 \boldsymbol{v}_1) = -\beta \boldsymbol{E}$$

Simple parametrizations of *E* (may be combined):

► Relaxational: $E = \frac{\hat{Q} - Q}{\tau_E} H(m_1)$, where \hat{Q} - equilibrium value.

• Dynamic:
$$E = \alpha_E |\mathbf{v}_1| H(m_1)$$

 m_1 should stay positive (plays a role of static stability)

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

Baroclinic Bickley jet

Geostrophically balanced upper-layer jet on the *f*-plane. non-dimensional profiles of velocity and thikness perturbations:

$$\bar{u}_1 = 0, \quad \bar{\eta}_1 = \frac{1}{\alpha - 1} \tanh(y),$$

 $\bar{u}_2 = \operatorname{sech}^2(y), \quad \bar{\eta}_2 = \frac{-1}{\alpha - 1} \tanh(y).$

No deviation of the free surface: $\bar{\eta}_1 + \bar{\eta}_2 = 0$. Parameters: Ro = 0.1, Bu = 10 - typical for atmospheric jets.

・ロト ・回 ト ・ ヨト ・ ヨト

ъ.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Bickley jet: zonal velocity \bar{u}_i , thickness deviation $\bar{\eta}_i$ and PV anomaly. Lower (upper) layer: solid black (dashed gray).

< ロ > < 部 > < き > < き >

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Linear stability diagram

Phase velocity (top) and growth rate (bottom)

Lecture 2: An example of atmosphereic application: moist-convective RSW

Comparison of the evolution

Conclusions

iterature

▲□▶▲□▶▲□▶▲□▶ ■ のQの

The most unstable mode

Most unstable mode of the upper-layer Bickley jet. Upper(top) and lower (bottom) layer- geostrophic streamfunctions and velocity (arrows) fields. Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

Early stages: evolution of moisture

Evolution of the moisture anomaly $Q - Q_0$ with superimposed lower-layer velocity. Black contour: condensation zones.

Lecture 2: An example of atmosphereic application: moist-convective RSW

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

▲ロト▲御と▲注と▲注と 注 のの()

Early stages: growth rates

Red: moist, blue: dry simulations. \Rightarrow Transient increase in the growth rate due to condensation. Lecture 2: An example of atmosphereic application: moist-convective RSW

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

Cyclone-anticyclone asymmetry

Skewness of relative vorticity. Red: moist, blue: dry simulations.

Lecture 2: An example of atmosphereic application: moist-convective RSW

Constructing the model Limiting equations and relation to the known models General properties of the model Conservation laws

Example: scattering of a

simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

How condensation enhances cyclones: 1-layer model

For $Ro \rightarrow 0$ and $Bu \sim O(1)$, close to saturation $\psi \sim \tilde{q} << 1$:

$$(\partial_t + \boldsymbol{v}^{(0)} \cdot \nabla) \left[\nabla^2 \psi - \psi \right] = \beta \boldsymbol{P}, \qquad (3)$$

$$(\partial_t + \mathbf{v}^{(0)} \cdot \nabla) \left[\tilde{q} - Q_s \nabla^2 \psi \right] = -P,$$
 (4)

 $\mathbf{v}^{(0)} = (-\partial_y \psi, \partial_x \psi)$ - geostrophic velocity, $\psi = \bar{\eta} + \eta$, and \tilde{q} is moisture anomaly with respect to Q_s . \Rightarrow PV of the fluid columns which pass through the precipitating regions increases. For $\tau \to 0 \ \tilde{q} \approx 0$, and:

$$Q_s(\partial_t + \mathbf{v}^{(0)} \cdot \nabla) \left[\nabla^2 \psi \right] \approx P_{\tau \to 0} > 0,$$
 (5)

<ロ> <四> <四> <四> <四> <四> <四</p>

 \Rightarrow increase of geostrophic vorticity in the precipitation regions.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

> Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Dry vs moist simulations: evolution of relative vorticity

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction Methodology Constructing the model Limiting equations and relation to the known models General properties of the model Conservation laws Characteritics and fronts Example: scattering of a simple wave on a moisture front Introducing evaporation

baroclinic instability

> Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

Lower layer: colors, upper layer: contours. Condensation: solid black.

< □ > < □ > < □ > < □ > < □ > . □ = .

Dry vs moist simulations: formation of secondary zonal jets at late stages

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws Characteritics and fronts Example: scattering of a simple wave on a moisture

Introducing evaporation

Moist vs dry baroclinic instability

> Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

・ロト・団・・ヨ・・ヨ・ つんで

Unbalanced (aheostrophic) motions: baroclinic divergence

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature.

Moist baroclinic instability in Nature

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws Characteritics and fronts Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

(Dry) linear stability of the baroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

iterature

<ロト < 部 > < き > < き > き の(

Conclusions 1

The model

- Physically and mathematically consistent
- Simple, physics transparent
- Efficient high-resolution numerical schemes available

・ロト ・四ト ・ヨト ・ヨト

Ξ.

Benchmarks: good

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

Conclusions 2

Moist vs dry baroclinic instability

- local enhancement of the growth rate of the moist-convective instability at the precipitation onset,
- significant increase in intensity of ageostrophic motions during the evolution of the moist instability,
- substantial cyclone anticyclone asymmetry, which develops due to the moist convection effects.
- substantial differences in the structure of zonal jets resulting at the late stage of saturation.

・ロト ・回 ト ・ ヨト ・ ヨト

ъ.

Lecture 2: An example of atmosphereic application: moist-convective RSW

ntroduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions

References

Presentation based on:

- Lambaerts J.; Lapeyre G.; Zeitlin V. and Bouchut F.
 "Simplified two-layer models of precipitating atmosphere and their properties" *Phys. Fluids* 23, 046603, 2011.
- Lambaerts J.; Lapeyre G. and Zeitlin V. "Moist versus Dry Baroclinic Instability in a Simplified Two-Layer Atmospheric Model with Condensation and Latent Heat Release" *J. Atmos. Sci.* 69, 1405-1426, 2012.

イロト イヨト イヨト イヨト

Lecture 2: An example of atmosphereic application: moist-convective RSW

Introduction

Methodology

Constructing the model

Limiting equations and relation to the known models

General properties of the model

Conservation laws

Characteritics and fronts

Example: scattering of a simple wave on a moisture front

Introducing evaporation

Moist vs dry baroclinic instability

> Dry) linear stability of the aroclinic jet

Comparison of the evolution of dry and moist instabilities

Conclusions