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Motivation

Tensor product B-splines do not allow local mesh refinement, as in

T-spline Simplification and Local Refinement

Thomas W. Sederberg, David L. Cardon
G. Thomas Finnigan, Nicholas S. North

Brigham Young University

Jianmin Zheng
Nanyang Technological University

Tom Lyche
Oslo University

Abstract

A typical NURBS surface model has a large percentage of super-
fluous control points that significantly interfere with the design pro-
cess. This paper presents an algorithm for eliminating such su-
perfluous control points, producing a T-spline. The algorithm can
remove substantially more control points than competing methods
such as B-spline wavelet decomposition. The paper also presents
a new T-spline local refinement algorithm and answers two funda-
mental open questions on T-spline theory.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—curve, surface, solid and object rep-
resentations;

Keywords: NURBS surfaces, T-splines, subdivision surfaces, lo-
cal refinement, knot removal

1 Introduction

A serious weakness with NURBS models is that NURBS control
points must lie topologically in a rectangular grid. This means that
typically, a large number of NURBS control points serve no pur-
pose other than to satisfy topological constraints. They carry no
significant geometric information. In Figure 1.a, all the red NURBS
control points are, in this sense, superfluous.

Figure 1: Head modeled (a) as a NURBS with 4712 control points
and (b) as a T-spline with 1109 control points. The red NURBS
control points are superfluous.

T-splines [Sederberg et al. 2003] are a generalization of NURBS
surfaces that are capable of significantly reducing the number of
superfluous control points. Figure 1.b shows a T-spline control grid
which was obtained by eliminating the superfluous control points
from the NURBS model. The main difference between a T-mesh
(i.e., a T-spline control mesh) and a NURBS control mesh is that T-
splines allow a row of control points to terminate. The final control
point in a partial row is called a T-junction. The T-junctions are
shown in purple in Figure 1.b.

Figure 2: Car door modeled as a NURBS and as a T-spline.

Figure 2 shows another example in which the superfluous control
points in a NURBS are removed to create a T-spline. The T-spline
model is geometrically equivalent to the NURBS model, yet has
only 1/3 as many control points.

Figure 3: NURBS head model, converted to a T-spline.

Superfluous control points are a serious nuisance for designers,
not merely because they require the designer to deal with more data,
but also because they can introduce unwanted ripples in the surface
as can be seen by comparing the forehead in the NURBS model in
Figure 3.a with that of the T-spline model in Figure 3.b. Designers
can waste dozens of hours on models such as this in tweaking the
NURBS control points while attempting to remove unwanted rip-
ples. Figure 1.a shows a NURBS head model. Figure 1 shows the

(Courtesy of T. Sederberg)
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T−splines
B−splines
y = C N −1.5

exact solution u ≈ grad(r2/3 sin 2θ/3 sin(πz)) (by R. Vazquez)
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Motivation

Possible extensions:

Hierarchical splines [A.-V. Vuong, C. Giannelli, B. Juettler, B. Simeon, CMAME 2011] , . . .
PS-Bsplines [H. Speleers, C. Manni, F. Pelosi, M. L. Sampoli, CMAME, 2012] , . . .
T-splines [Sederberg, Cardon, Finnigan, North, Zheng, Lyche, 2004] , . . .
LR-splines [T. Dokken, T. Lyche, K. F. Pettersen, CAGD, 2013] , . . .
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Outline

Recalling again some definition on B-splines

Intro on T-splines for isogeometric analysis
Arbitrary degree T-splines
AS class
DC class and properties
Equivalence of AS and DC
Maths properties for IGA

T-spline based differential forms
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Univariate B-splines: a little change in notation

Given a non-uniform knot vector Ξ = {ξ1, ..., ξn+p+1}, B-spline are:

B
0
i,Ξ(s) =

�
1 if ξi ≤ s < ξi+1

0 otherwise.

B
p

i,Ξ(s) =
s − ξi

ξi+p − ξi

B
p−1
i,Ξ (s) +

ξi+p+1 − s

ξi+p+1 − ξi+1
B

p−1
i+1,Ξ(s).

New notation: B2
5,Ξ(s) = B2[2, 3, 4, 4](s) = Bp[

l.k.v.����
ξ ](s)
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Univariate B-splines: a dual basis
A dual basis is a set of functionals that give the spline coefficients:

f (s) =
n�

i=1

λi(f )Bi(s), ∀f ∈ Sp,Ξ

Various definitions are possible [deBoor, BOOK] , [L. L. Schumaker BOOK, 2007] , e.g. in
“Standard and Non-Standard CAGD Tools for Isogeometric Analysis: a
Tutorial” by Carla Manni and Hendrik Speleers.

The dual basis also depends locally on the knot vector. Using a similar
notation as in the previous slide we will denote it as λp[ξ].
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Univariate B-splines: a dual basis
A dual basis is a set of functionals that give the spline coefficients:

f (s) =
n�

i=1

λi(f )Bi(s), ∀f ∈ Sp,Ξ

Various definitions are possible [deBoor, BOOK] , [L. L. Schumaker BOOK, 2007] , e.g. in
“Standard and Non-Standard CAGD Tools for Isogeometric Analysis: a
Tutorial” by Carla Manni and Hendrik Speleers.

The dual basis also depends locally on the knot vector. Using a similar
notation as in the previous slide we will denote it as λp[ξ].

I adopt here a “function representation”:

λp[ξ](f ) =

�

R
f (s)λp[ξ](s)ds
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Univariate B-splines: a dual basis
A dual basis is a set of functionals that give the spline coefficients:

f (s) =
n�

i=1

λi(f )Bi(s), ∀f ∈ Sp,Ξ

Various definitions are possible [deBoor, BOOK] , [L. L. Schumaker BOOK, 2007] , e.g. in
“Standard and Non-Standard CAGD Tools for Isogeometric Analysis: a
Tutorial” by Carla Manni and Hendrik Speleers.

The dual basis also depends locally on the knot vector. Using a similar
notation as in the previous slide we will denote it as λp[ξ].

This is a dual basis in the sense that
�

R
Bp[ξ

A]λp[ξ
A] = 1,

A �= B ⇒
�

R
Bp[ξ

A]λp[ξ
B] = 0,
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Bivariate B-splines: new notation

Bivariate B-splines
Tensor product B-splines are defined as

B
A
p,q(s, t) = Bp[ξ

A1 ](s) Bq[η
A2 ](t)

and span the space Sp,q := Sp ⊗ Sq

Tensor product dual functions are defined as

λA
p,q = λp[ξ

A1 ] λq[η
A2 ].

we still have the duality poperty:
�

R2
B

A
p,qλ

A
p,q =

�

R
Bp[ξ

A1 ]λp[ξ
A1 ]

�

R
Bq[η

A2 ]λq[η
A2 ] = 1

A �= B ⇒
�

R2
B

A
p,qλ

B
p,q =

�

R
Bp[ξ

A1 ]λp[ξ
B1 ]

�

R
Bq[η

A2 ]λq[η
B2 ] = 0.
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T-splines, from www.tsplines.com
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T-splines, from www.tsplines.com

T-splines are an extension of tensor-product NURBS:
allow local refinement
allow accurate patch union
allow more flexibility
from CAD [Sederberg et al., ACM SIGGRAPH 2003-04] ...
...to IGA [Bazilevs, Calo, Cottrell, Evans, Hughes, Lipton, Scott, Sederberg, CMAME, 2010]
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T-splines, from www.tsplines.com

To use T-splines in IGA we need
a restriction: Analysis-Suitable class [Li, Zheng, Sederberg, Scott, Hughes, CAGD, 2012] ,
a generalization to arbitrary-degree [Finnigan, PhD , 2008] ,[Bazilevs, Calo, Cottrell, Evans,

Hughes, Lipton, Scott, Sederberg, CMAME 2010] ,
a generalization to 3D and unstructured meshes [Wang, Zhang, Liu, Hughes,

CAD, 2012]
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To use T-splines in IGA we need
a restriction: Analysis-Suitable class [Li, Zheng, Sederberg, Scott, Hughes, CAGD, 2012] ,
a generalization to arbitrary-degree [Finnigan, PhD , 2008] ,[Bazilevs, Calo, Cottrell, Evans,

Hughes, Lipton, Scott, Sederberg, CMAME 2010] ,
a generalization to 3D and unstructured meshes [Wang, Zhang, Liu, Hughes,

CAD, 2012]

→[Beirão da Veiga,Buffa, GS, Vázquez, M
3
AS, 2013]
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T-splines, from www.tsplines.com

Two important features of IGA:

(k , p)-refinement + local h-refinement

smooth discrete “differential forms”+ local h-refinement
[Buffa, GS, Vázquez, JCP, submitted]

From here the interest for arbitrary degree AS T-splines
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Cubic T-spline meshes
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A T-mesh M in the index space. Indices are associated to knots:

ξ−2 = ξ−1 = ξ0 < ξ1 ≤ ξ2 ≤ ... ≤ ξ8 < ξ9 = ξ10 = ξ11

η−2 = η−1 = η0 < η1 ≤ η2 ≤ ... ≤ η7 < η8 = η9 = η10
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Cubic T-spline meshes
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To each vertex (anchor) of M, we associate a cubic bivariate B-spline,
defined by its horizontal and vertical local knot vectors

B
A

3,3(s, t) = B3[ξ−1, ξ0, ξ1, ξ2, ξ3](s) B3[η0, η1, η3, η4, η6](t)

B
B

3,3(s, t) = B3[ξ4, ξ5, ξ6, ξ7, ξ8](s) B3[η1, η2, η4, η5, η7](t)
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Definition of arbitrary-degree T-splines
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T-splines of arbitrary degree (p,q)

A bivariate T-spline of degree (p, q)

Bp,q[ξ,η](s, t) = Bp[ξ](s) Bq[η](t)

is defined by (p + 2) horizontal knot values ξ and (q + 2) vertical knot
values η for the t−coordinate.

Anchors indicate the center of the local knot vectors, then:

p q anchors
odd odd vertexes
even odd horizontal edges
odd even vertical edges
even even elements

Similar to: [Finnigan, PhD , 2008] ,[Bazilevs, Calo, Cottrell, Evans, Hughes, Lipton, Scott, Sederberg, CMAME 2010]
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The odd-odd case (the simplest to generalize)
Let for example p = q = 5.
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B
A
5,5(s, t) = B5[ξ2, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9](s) B5[η0, η1, η2, η4, η5, η7, η8](t)

G. Sangalli (Univ. of Pavia) Lecture 3 June 2013 12 / 51



The odd-odd case (the simplest to generalize)
Let for example p = q = 5.
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The even-odd ad odd-even cases
We consider the case p = 3, q = 2.
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B
A

3,2(s, t) = B3[ξ−1, ξ0, ξ1, ξ3, ξ4](s) B3[η6, η7, η8, η9](t)

B
B

3,2(s, t) = B3[ξ2, ξ5, ξ6, ξ7, ξ8](s) B3[η1, η2, η4, η5](t)
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The even-even case
Let for example p = 2, q = 2.
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2,2(s, t) = B3[ξ0, ξ1, ξ3, ξ4](s) B3[η6, η7, η8, η9](t)

B
B

2,2(s, t) = B3[ξ2, ξ5, ξ6, ξ7](s) B3[η0, η2, η4, η5](t)
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The even-even case
Let for example p = 2, q = 2.
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Definition of AS T-splines

G. Sangalli (Univ. of Pavia) Lecture 3 June 2013 15 / 51



Analysis Suitable T-splines of p, q degree
Extensions: every horizontal (� and �) (resp. vertical (⊥ and �))
T-junction is extended by �p/2�-bays (resp., �q/2�-bays) forward
(called face extension) and by �p/2�-bays (resp., �q/2�-bays)
backward (called edge extension). All extensions are closed lines.

Example for p=2, q=3:

Definition of Analysis Suitable (AS)
A T-mesh is ASp,q if no horizontal T-junction extension intersects a
vertical T-junction extension.
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Definition of DC T-splines
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Overlapping index vectors

Two local index vector may be coincident, different and overlapping or
different and non-overlapping (staggered):

overlapping

non-overlapping
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Overlapping B-splines (p = q = 3)
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Overlapping B-splines (p = q = 3)

G. Sangalli (Univ. of Pavia) Lecture 3 June 2013 20 / 51



Non overlapping T-splines (p = q = 3)
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Non overlapping T-splines (p = q = 3)
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Overlapping (in one direction) T-splines (p = q = 3)
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Overlapping (in one direction) T-splines (p = q = 3)
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Dual Compatible T-splines

Definition of Dual Compatible (DC)
A given T-mesh M is DCp,q if for any two different T-splines there is a
direction (either horizontal or vertical) such that the two local index
vectors in that direction are overlapping and do not coincide
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Dual Compatible T-splines

Definition of Dual Compatible (DC)
A given T-mesh M is DCp,q if for any two different T-splines there is a
direction (either horizontal or vertical) such that the two local index
vectors in that direction are overlapping and do not coincide

Equivalent definition in 2D
A given T-mesh M is DCp,q if
any pair of T-splines has
overlapping index vectors,
either horizontally or vertically.
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Dual Compatible T-splines

Definition of Dual Compatible (DC)
A given T-mesh M is DCp,q if for any two different T-splines there is a
direction (either horizontal or vertical) such that the two local index
vectors in that direction are overlapping and do not coincide

Given any anchor A we associate a B-spline BA
p,q = Bp[ξ

A] Bq[ηA] and

the "dual" function: λA
p,q = λp[ξ

A] λq[η
A].

This is a dual basis for tensor product B-splines:
�

R2
B

A
p,qλ

A
p,q =

�

R
Bp[ξ

A]λp[ξ
A]

�

R
Bq[η

A]λq[η
A] = 1,

A �= B ⇒
�

R2
B

A
p,qλ

B
p,q =

�

R
Bp[ξ

A]λp[ξ
B]

�

R
Bq[η

A]λq[η
B] = 0,

[deBoor, 1976] , [Lyche, JAT, 1978] ,[L. L. Schumaker BOOK, 2007] .
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Dual Compatible T-splines

Definition of Dual Compatible (DC)
A given T-mesh M is DCp,q if for any two different T-splines there is a
direction (either horizontal or vertical) such that the two local index
vectors in that direction are overlapping and do not coincide

Given any anchor A we associate a B-spline BA
p,q = Bp[ξ

A] Bq[ηA] and

the "dual" function: λA
p,q = λp[ξ

A] λq[η
A].

If the T-mesh is DCp,q, we still have
�

R2
B

A
p,qλ

A
p,q = 1

A �= B ⇒
�

R2
B

A
p,qλ

B
p,q =

�

R
Bp[ξ

A]λp[ξ
B]

�

R
Bq[η

A]λq[η
B] = 0,

Then {λA
p,q}A is still a dual basis !!.
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Properties of DC T-splines
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Properties of DC T-splines

Linear independence
The T-splines generated by M ∈ DCp,q are a basis for Tp,q(M).

Partition of unity
The basis above is a partition of unity.

Approximation
The operator Π : L2 → Tp,q(M) defined by

f �→ Π(f ) =
�

anchors A

��

R2
λA

p,qf

�
B

A
p,q

satisfies ||f − Π(f )||L2 ≤ Chmin (p,q)+1|f |
Hmin (p,q)+1 .
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anchors A

C
A
B

A
p,q(·) = 0

⇓
�

R2
λB

p,q

�
�

anchors A

C
A
B

A
p,q

�
= 0

⇓
C

B = 0
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�
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The T-splines generated by M ∈ DCp,q are a basis for Tp,q(M).

Partition of unity
The basis above is a partition of unity.
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The origin of the concept of DC T-splines

The idea originates from the analysis of “IsoGeometric analysis using
T-splines on two-patch geometries” [Beirão da Veiga, Buffa, Cho, GS, CMAME 2011]

simplest possible T-spline space and geometry.
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AS is equivalent to DC
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AS is equivalent to DC

Theorem [Beirão da Veiga,Buffa, Cho, GS, CMAME 2012] - [Beirão da Veiga,Buffa, GS, Vázquez, M
3
AS,2013]

ASp,q = DCp,q.

To summarize, for a given T-mesh M :

M ∈ ASp,q ⇔ M ∈ DCp,q ⇒






T-splines are a basis
T-splines are a p.o.u.
Tp,q(M) has optimal approx.
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Proving theorem for arbitrary-degree T-splines
Induction argument:

if ℘0,0 and
∀p

� | 0 ≤ p
� < p, ℘p�,q ⇒ ℘p,q,

∀q
� | 0 ≤ q

� < q, ℘p,q� ⇒ ℘p,q.
then ∀p, q, ℘p,q.

For example ℘p,q = “ Let M ∈ ASp,q and T a T-splines defined on M.
Then there are no vertices of M in the interior of the (p + 1)× (q + 1)
elements of T .”
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Proving theorem for arbitrary-degree T-splines
Induction argument:

if ℘0,0 and
∀p

� | 0 ≤ p
� < p, ℘p�,q ⇒ ℘p,q,

∀q
� | 0 ≤ q
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DCp,q is easy to generalize
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Abstract definition of DCp,q

A set of B-splines fulfills DCp,q if given two different B-splines in the set
there is a direction such that the two local index vectors in that
direction are overlapping and do not coincide

The definition above can be extended to:

trivariate splines
LR-splines [Dokken, Lyche, Pettersen, CAGD, 2013]

It allows to use the classical dual basis and get:
partition of unity (with proper scaling of the basis)
linear independence
Greville abscissae = interior knots average
approximation properties

provided the polynomials belong to the space.
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Differential forms based on AS T-splines
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Discrete differential forms

Goal: T-splines discretizations of the sequence:

H1(Ω)/R grad−−−−→ H(curl; Ω) curl−−−−→ H(div; Ω) div−−−−→ L2(Ω) .

It is a generalization of the finite element sequence:

Nodal FE grad−−−−→ Edge FE curl−−−−→ Face FE div−−−−→ Discont. FE .

Applications: electromagnetics, Darcy’s flow, Navier-Stokes...

[Buffa, GS, Vazquez, 2010-2012] , [Buffa, De Falco, GS, 2011] , [Evans, Hughes 2012-2013] ...

Today I consider only the 2D sequence:

H1(Ω)/R grad−−−−→ H(curl ,Ω) curl−−−−→ L2(Ω) .
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Univariate B-splines: derivatives

Sp(Ξ): space of B-splines of degree p on the open knot vector Ξ.
Ξ = {ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1}

B-splines derivatives are splines as well, in the space Sp−1(Ξ
�):

Ξ� = {ξ2 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p}

The derivative is (BA
p )

� = DA−
p−1 − DA+

p−1, with DA±
p−1 = p

|supp(BA±
p−1)|

BA±
p−1.
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−4

−3

−2

−1

0

1

2

3

4

(BA
p)’
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p−1

−DA+

p−1

A− A A+

G. Sangalli (Univ. of Pavia) Lecture 3 June 2013 36 / 51



Tensor-product spline differential forms [Buffa, GS, Vazquez, 2010-2012]

Recall the 2D diagram:

H1(Ω)/R grad−−−−→ H(curl ; Ω) curl−−−−→ L2(Ω) .

In the parametric domain Ω̂ =square, we have the exact sequence:

Sp,p/R
grad−−−−→ (Sp−1,p,Sp,p−1)

curl−−−−→ Sp−1,p−1

X̂ 0 = Sp,p ≡ Sp(Ξ1)⊗ Sp(Ξ2)
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Tensor-product spline differential forms [Buffa, GS, Vazquez, 2010-2012]

Recall the 2D diagram:

H1(Ω)/R grad−−−−→ H(curl ; Ω) curl−−−−→ L2(Ω) .

In the parametric domain Ω̂ =square, we have the exact sequence:

Sp,p/R
grad−−−−→ (Sp−1,p,Sp,p−1)

curl−−−−→ Sp−1,p−1

X̂ 0 = Sp,p ≡ Sp(Ξ1)⊗ Sp(Ξ2)

X̂ 1 = (Sp−1,p,Sp,p−1) ≡ (Sp−1(Ξ
�
1)⊗ Sp(Ξ2))× (Sp(Ξ1)⊗ Sp−1(Ξ

�
2))

X̂ 2 = Sp−1,p−1 ≡ Sp−1(Ξ
�
1)⊗ Sp−1(Ξ

�
2)

The next step is to map them to the physical domain.
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Use structure preserving push-forward.

X 0/R grad−−−−→ X 1 curl−−−−→ X 2
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Tensor-product spline differential forms [Buffa, GS, Vazquez, 2010-2012]

Recall the 2D diagram:

H1(Ω)/R grad−−−−→ H(curl ; Ω) curl−−−−→ L2(Ω) .

In the parametric domain Ω̂ =square, we have the exact sequence:

Sp,p/R
grad−−−−→ (Sp−1,p,Sp,p−1)

curl−−−−→ Sp−1,p−1

Use structure preserving push-forward.

X 0/R grad−−−−→ X 1 curl−−−−→ X 2

X
0 = {φ : φ ◦ F ∈ X̂

0}, standard mapping,
X

1 = {u : (DF)�(u ◦ F) ∈ X̂
1}, curl-conserving mapping,

X
2 = {ϕ : det(DF)(ϕ ◦ F) ∈ X̂

2}, integral preserving mapping.

F is the geometry parametrization of Ω.
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T-splines differential forms: odd degree

Recall the univariate derivative: (BA
p )

� = DA−
p−1 − DA+

p−1:
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T-splines differential forms: odd degree

Recall the univariate derivative: (BA
p )

� = DA−
p−1 − DA+

p−1:

Start with an AS T-mesh M0, and the space Ŷ 0 = Tp,p(M0):

Odd degree: anchors are associated with the vertices.

The space Ŷ 1 must contain the gradient of these functions.
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T-splines differential forms: odd degree

Recall the univariate derivative: (BA
p )

� = DA−
p−1 − DA+

p−1:

Start with an analysis suitable T-mesh M0, and the space
Ŷ 0 = Tp,p(M0).

∂
∂x−→

Degree (even,odd): anchors associated with the horizontal edges.

New mesh, M1
∂x

: added one extension of all horizontal T-junctions.
The first component of Ŷ 1 is the T-spline space: Tp−1,p(M1

∂x
).
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p−1:

Start with an analysis suitable T-mesh M0, and the space
Ŷ 0 = Tp,p(M0).

∂
∂y−→

Degree (odd,even): anchors associated with the vertical edges.
New mesh, M1
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: added one extension of all vertical T-junctions.

The second component of Ŷ 1 is the T-spline space: Tp,p−1(M1
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T-splines differential forms: odd degree

Recall the univariate derivative: (BA
p )

� = DA−
p−1 − DA+

p−1:

Start with an analysis suitable T-mesh M0, and the space
Ŷ 0 = Tp,p(M0).

∂2
∂x∂y−→

Degree (even,even): anchors associated with the elements.
New mesh, M2: added one extension of all T-junctions.
The third space is Ŷ 2 = Tp−1,p−1(M2).
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T-splines differential forms: odd degree (II)

We have constructed the meshes and spaces for the sequence

Tp,p(M0)/R grad−−−−→ (Tp−1,p(M1
∂x
),Tp,p−1(M1

∂y
))

curl−−−−→ Tp−1,p−1(M2)

If M0 is AS, then M1
∂x

, M1
∂y

and M2 are AS.

Theorem ([Buffa, GS, Vázquez, submitted to JCP] )

If M0 is analysis suitable, then the sequence is exact.

based on polynomial characterization of T-spline spaces,
we are currently constructing the stable commuting interpolators,
the Bézier mesh is the same in the four spaces,
works for any p, odd and even,
mapping to the physical domain done as for B-splines/NURBS.
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Numerical tests in 2D: the square domain

We test Ŷ 1 on the eigenvalue problem

curl curl u = ω2u, ω �= 0, u �= 0.

Unit square domain , with T-mesh as below:
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The computed spectrum is spurious free for any degree.
Good approximation of eigenvalues with the right multiplicity.
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2D numerical tests: the L-shaped domain

We discretize with the space Y 1 the eigenvalue problem

curl curl u = ω2u, ω �= 0, u �= 0.

L-shaped domain, in a mesh refined towards the corner.
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Convergence results for degrees 4 and 5.
Better approximation properties than B-splines.
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Three dimensional domains

We extend to 3D, assuming that we don’t need local refinement in z.

Ŷ 0/R grad−−−−→ Ŷ 1 curl−−−−→ Ŷ 2 div−−−−→ Ŷ 3

The idea is to use 2D T-splines in the first two directions.

In the third direction we use univariate B-splines.
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Three dimensional domains

We extend to 3D, assuming that we don’t need local refinement in z.

Ŷ 0/R grad−−−−→ Ŷ 1 curl−−−−→ Ŷ 2 div−−−−→ Ŷ 3

The idea is to use 2D T-splines in the first two directions.

In the third direction we use univariate B-splines.

These are the spaces that form the sequence:
Ŷ 0 = Tp,p ⊗ Sp(Ξ),

Ŷ 1 = (Tp−1,p ⊗ Sp(Ξ),Tp,p−1 ⊗ Sp(Ξ),Tp,p ⊗ Sp−1(Ξ
�)),

Ŷ 2 = (Tp,p−1 ⊗ Sp−1(Ξ
�),Tp−1,p ⊗ Sp−1(Ξ

�),Tp−1,p−1 ⊗ Sp(Ξ)),

Ŷ 3 = Tp−1,p−1 ⊗ Sp−1(Ξ
�).
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3D numerical results: three quarters of a cylinder

We discretize with the space Y 1 the model problem:

curl curl u + u = f,

with exact solution u = grad(r2/3 sin 2θ/3 sin(πz)).
Refinement towards the reentrant edge, to catch the singularity.

T-splines of degree 3: better convergence than B-splines in terms of
dofs.
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T-splines of degree 3: better convergence than B-splines in terms of
dofs.
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3D numerical results: twisted waveguide

Propagation of the first TE mode in a twisted waveguide.

Discretized with T-splines with p = 3, and 7936 dofs.

With 6 elements in the z-direction, C2 or C0 tang. continuity.

Accurate transmission and reflection output.[Buffa, GS, Vázquez, submitted to JCP]

[http://geopdes.sourceforge.net]
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Conclusion

we have defined arbitrary-degree AS T-splines,
we have proved linear independence of AS T-splines, partition of
unity property and fundamental approximation results,
the theory is based on the characterization of AS T-splines as DC
T-splines.

we have defined T-splines based differential forms, based on
arbitrary-degree AS T-meshes:

the Bézier mesh is the same for all the spaces in the diagram.
tested spurious free approximation of Maxwell eigenproblem.
better convergence than B-splines in terms of d.o.f.
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*** Thank you for your attention ***
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