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Tensor product B-splines do not allow local mesh refinement, as in

a. NURBS b. T-spline

(Courtesy of T. Sederberg)
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Tensor product B-splines do not allow local mesh refinement, as in
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(a) Refined solution with 13129 DOF (b) T-mesh after the last step
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Tensor product B-splines do not allow local mesh refinement, as in

o
Degrees of freedom

10110 anneleY

"”’

"”’

.’\\\\\‘\

(oy R. Vazquez)

exact solution u ~ grad(r?/3 sin 26/3 sin(nz))
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Possible extensions:

@ Hierarchical splines [A.-V. Vuong, C. Giannelli, B. Juettler, B. Simeon, CMAME 2011] . . .
o PS—BspIines [H. Speleers, C. Manni, F. Pelosi, M. L. Sampoli, CMAME, 2012] , . . .
o T—Splines [Sederberg, Cardon, Finnigan, North, Zheng, Lyche, 2004] , . . .

o LR—spllnes [T. Dokken, T. Lyche, K. F. Pettersen, CAGD, 2013] 4 « . «
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@ Recalling again some definition on B-splines

@ Intro on T-splines for isogeometric analysis
@ Arbitrary degree T-splines

@ AS class

@ DC class and properties

@ Equivalence of AS and DC

@ Maths properties for IGA

@ T-spline based differential forms

G. Sangalli (Univ. of Pavia) Lecture 3 June 2013 4/51



Univariate B-splines: a little change in notation

Given a non-uniform knot vector = = {&1, ..., {n1p+1}, B-spline are:

B9_(s) - { 1if & < 8 < &jpq

0 otherwise.

s_ ¢ pil — S
BP_(s) = &i BP='(s) + 5'JFLB,-“ZTE(S)-

h= Sivp—&i Sivpr1 — Cipt
OC,'O,O 1 2 3 44 555

LK.v.
New notation: | BZ =(s) = B[2,3,4,4](s) = Bp[?](s)
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Univariate B-splines: a dual basis

A dual basis is a set of functionals that give the spline coefficients:

f(s) = Zn: Ai(f)Bi(s), Vfe Sp=
i=1
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Univariate B-splines: a dual basis

A dual basis is a set of functionals that give the spline coefficients:
n
f(s) =Y _X(f)Bi(s),  Vf€ Sz
i=1

Various definitions are possible [deBoor, BOOK] , [L. L. Schumaker BOOK, 2007] , €.QJ. in
“Standard and Non-Standard CAGD Tools for Isogeometric Analysis: a
Tutorial” by Carla Manni and Hendrik Speleers.
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Univariate B-splines: a dual basis

A dual basis is a set of functionals that give the spline coefficients:
n
f(s) =Y _X(f)Bi(s),  Vf€ Sz
i=1

Various definitions are possible [deBoor, BOOK] , [L. L. Schumaker BOOK, 2007] , €.QJ. in
“Standard and Non-Standard CAGD Tools for Isogeometric Analysis: a
Tutorial” by Carla Manni and Hendrik Speleers.

The dual basis also depends locally on the knot vector. Using a similar
notation as in the previous slide we will denote it as A\ [£].
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Univariate B-splines: a dual basis

A dual basis is a set of functionals that give the spline coefficients:
n
f(s) =Y _X(f)Bi(s),  Vf€ Sz
i=1

Various definitions are possible [deBoor, BOOK] , [L. L. Schumaker BOOK, 2007] , €.QJ. in
“Standard and Non-Standard CAGD Tools for Isogeometric Analysis: a
Tutorial” by Carla Manni and Hendrik Speleers.

The dual basis also depends locally on the knot vector. Using a similar
notation as in the previous slide we will denote it as A\ [£].

| adopt here a “function representation”:

MlEN(F) = /R f(s)Aolé](s)ds
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Univariate B-splines: a dual basis

A dual basis is a set of functionals that give the spline coefficients:
n
f(s) =Y _X(f)Bi(s),  Vf€ Sz
i=1

Various definitions are possible [deBoor, BOOK] , [L. L. Schumaker BOOK, 2007] , €.QJ. in
“Standard and Non-Standard CAGD Tools for Isogeometric Analysis: a
Tutorial” by Carla Manni and Hendrik Speleers.

The dual basis also depends locally on the knot vector. Using a similar
notation as in the previous slide we will denote it as A\ [£].

This is a dual basis in the sense that
| Bl nalef) = 1.
R
A7 B~ [ Blenile®) =0

G. Sangalli (Univ. of Pavia) Lecture 3 June 2013 6/51



Bivariate B-splines: new notation

Bivariate B-splines
Tensor product B-splines are defined as

Bpq(s. t) = Bol€™](s) Bqln™](t)
and span the space Spq = Sp® Sq

Tensor product dual functions are defined as
Mg = Aol€™] Agln™].
we still have the duality poperty:
[ B = [ BolePIle™) [ Bl ) = 1
R2 R R

A#B= /Rg Boa o = /RBP[EA‘])\p[ﬁB‘] /RBq[??AZ])\q[??BZ] =0.
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T-splines, from www.tsplines.com

) Tsplines

Home > Aboutus > Technology

T-Splines technology &

=

Autodesk-T-Splines
‘What s the magic undereath the covers that makes T-Splines such a uniue and compelling new technology? How does T-Splines p
‘avercome limitations that are inherent to existing NURBS and subdivision based medeling approaches? Four key components of the Pl ug-in forRhino
patented T-Splines technology make it al possible:

T-Points BUYZTRY LEARN

A non-uniform rational b-spline Surface or NURBS surface is defined by a set of control points which lie, topologically, in a rectangular

‘erid. This means that, in practice, a large pe: NURBS 1 points pe in that they geometric T-Splines technology
information, but merely are needed to satisfy the topological constraint.

In the frog model below, 55% of the NURBS control points are superfluous. In contrast, a T-Spline’s control grid is allowed to have partial m
>

rows of control points. A partial row of control points terminates in a T-Point, hence the name T-Splines. In the T-Splines frog, the red
<control points are T-Points.

>

NURSS frog (11625 control points) Cautey Zygote Mecta T5plines frog (5035 control points)
Minimizing control points makes it easier to create models, control surface smoothness, decrease file size, and speed up editing time.
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T-splines, from www.tsplines.com

VURES o (19625 contrl ot iyt S ——
T-splines are an extension of tensor-product NURBS:
@ allow local refinement
@ allow accurate patch union
@ allow more flexibility

@ from CAD isederberg et al., ACM SIGGRAPH 2003-04] ...

. ..tO IGA [Bazilevs, Calo, Cottrell, Evans, Hughes, Lipton, Scott, Sederberg, CMAME, 2010]
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T-splines, from www.tsplines.com

MURBS frog (11625 control paints) Courtes; Tygote Madis T-Splines frog (5035 control points)

To use T-splines in IGA we need
@ a restriction: Analysis-Suitable class i zheng, sederberg, Scott, Hughes, GAGD, 2012]
@ a generalization to arbitrary-degree (rinnigan, Phd , 2008] ,[Bazilevs, Calo, Cotrell, Evans,

Hughes, Lipton, Scott, Sederberg, CMAME 2010] ,

@ a generalization to 3D and unstructured meshes (wang, znang, Liu, Hughes,
CAD, 2012]
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T-splines, from www.tsplines.com

e
Sl

MURBS frog (11625 control paints) Courtes; Tygote Madis T-Splines frog (5035 control points)

To use T-splines in IGA we need
@ arestriction: Analysis-Suitable class (1, zneng, sederberg, Scott, Hughes, cAGD, 2012] ,
@ a generalization to arbitrary-degree (rinnigan, Phd , 2008] ,[Bazilevs, Calo, Cotirell, Evans,

Hughes, Lipton, Scott, Sederberg, CMAME 2010] ,

@ a generalization to 3D and unstructured meshes (wang, znang, Liu, Hughes,
CAD, 2012]

—>[Beirdo da Veiga,Buffa, GS, Vazquez, M3 AS, 2013]
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T-splines, from www.tsplines.com

MURBS frog (11625 control paints) Courtes; Tygote Madis T-Splines frog (5035 control points)

Two important features of IGA:

@ (k, p)-refinement + local h-refinement

@ smooth discrete “differential forms”+ local h-refinement

[Buffa, GS, Vazquez, JCP, submitted]

From here the interest for arbitrary degree AS T-splines
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Cubic T-spline meshes

=
=)

o = N W & O O N O ©

1
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A T-mesh M in the index space. Indices are associated to knots:

Eo=81=6 <8 << <€ <& =E0=E11
Nno2=nq4=n0<mSn<..<n7<mng=7mn9=1m0
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Cubic T-spline meshes

Y
o

O = N W H O N ® ©
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‘—2—101234567891011

To each vertex (anchor) of M, we associate a cubic bivariate B-spline,
defined by its horizontal and vertical local knot vectors

Béq,S(S7 t) = B3[£_1,§0,£1,£2,£3](3) B3[7]07771 3 77377]47776](0
853(3’ t) = B3[§47£57£67£77€8](S) 83[771777277]477757777](t)
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Cubic T-spline meshes
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To each vertex (anchor) of M, we associate a cubic bivariate B-spline,
defined by its horizontal and vertical local knot vectors

Béq,S(S7 t) = B3[£_1,§0,£1,£2,£3](3) B3[7]07771 3 77377]47776](0
853(3’ t) = B3[§47£57£67£77€8](S) 83[771777277]477757777](t)
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Definition of arbitrary-degree T-splines
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T-splines of arbitrary degree (p,q)

A bivariate T-spline of degree (p, q)

Bo,ql€, ml(s, ) = Bpl€](s) Bqlm(?)

is defined by (p + 2) horizontal knot values € and (g + 2) vertical knot
values 7 for the t—coordinate.
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T-splines of arbitrary degree (p,q)

A bivariate T-spline of degree (p, q)

Bo,ql€, ml(s, ) = Bpl€](s) Bqlm(?)

is defined by (p + 2) horizontal knot values € and (g + 2) vertical knot
values 7 for the t—coordinate.

Anchors indicate the center of the local knot vectors, then:

| p [ a ] anchors \
odd | odd vertexes
even | odd | horizontal edges
odd | even | vertical edges
even | even elements
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T-splines of arbitrary degree (p,q)

A bivariate T-spline of degree (p, q)

Bo,ql€, ml(s, ) = Bpl€](s) Bqlm(?)

is defined by (p + 2) horizontal knot values € and (g + 2) vertical knot
values 7 for the t—coordinate.

Anchors indicate the center of the local knot vectors, then:

| p [ a ] anchors \
odd | odd vertexes
even | odd | horizontal edges
odd | even | vertical edges
even | even elements

Similar to: [Finnigan, PhD , 2008] ,[Bazilevs, Calo, Cottrell, Evans, Hughes, Lipton, Scott, Sederberg, CMAME 2010]
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The odd-odd case (the simplest to generalize)

Let for example p = g = 5.
1
10

L L L oapdmwasooN©O

-3-2-10 1 2 3 456 7 8 9 101112
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The odd-odd case (the simplest to generalize)

Let for example p = g = 5.

1

10

TS T )

L L lLoapdmwsono~Noo

-3-2-10 1 2 3 45

6

7 8 9 101112

Bé5(37 t) = B5[€27£47§57£67€77§87€9](s) B5[770777177727 T4, 15,17, 778](t)

G. Sangalli (Univ. of Pavia)
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The even-odd ad odd-even cases

We consider the case p = 3,9 = 2.

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11
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The even-odd ad odd-even cases

We consider the case p = 3,9 = 2.

|
EEEEE

-2 -1 o 1 2

BSo(s,t) = Bs[¢_1, 0. 1, &3, £4)(S) Bslne, 17,718, me] (1)
B3 (s,t) = Bs[&2, &5, &6, &7, €81(S) Balni, 2, nas ms) (1)

6 7 8 9 10 1"
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The even-even case

Let for example p = 2,9 = 2.
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The even-even case

Let for example p = 2,9 = 2.

B

= =

[
[ X

-1 L] 1 2 3 4 5 6 7 8 9 10

B/24,2(S’ t) = B3[§07§1’§37§4](S) 53[776’77777787779](t)
B3 (s, t) = Bs[&2, &5, &6, £7](S) Bslno, 12, 14, 18] (1)
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Definition of AS T-splines
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Analysis Suitable T-splines of p, g degree

Extensions: every horizontal (- and ) (resp. vertical (L and T))
T-junction is extended by [p/2]|-bays (resp., [g/2]-bays) forward
(called face extension) and by |p/2]-bays (resp., | q/2]-bays)
backward (called edge extension). All extensions are closed lines.

Example for p=2, 9=3:

Definition of Analysis Suitable (AS)

A T-mesh is ASp 4 if no horizontal T-junction extension intersects a
vertical T-junction extension.
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Definition of DC T-splines
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Overlapping index vectors

Two local index vector may be coincident, different and overlapping or
different and non-overlapping (staggered):

@ overlapping

@ non-overlapping
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Overlapping B-splines (p = g = 3)
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Overlapping B-splines (p = g = 3)

1l
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Non overlapping T-splines (p = g = 3)
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Non overlapping T-splines (p = g = 3)
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Overlapping (in one direction) T-splines (p = g = 3)
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Overlapping (in one direction) T-splines (p = g = 3)
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Dual Compatible T-splines

Definition of Dual Compatible (DC)

A given T-mesh M is DC, 4 if for any two different T-splines there is a
direction (either horizontal or vertical) such that the two local index
vectors in that direction are overlapping and do not coincide
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Dual Compatible T-splines

Definition of Dual Compatible (DC)

A given T-mesh M is DC, 4 if for any two different T-splines there is a
direction (either horizontal or vertical) such that the two local index
vectors in that direction are overlapping and do not coincide

Equivalent definition in 2D

A given T-mesh M is DCp q if A
any pair of T-splines has NN
overlapping index vectors, 4
either horizontally or vertically.
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Dual Compatible T-splines

Given any anchor A we associate a B-spline B} , = B,[¢"] By[n*] and
the "dual” function:  AJ 5 = Ap[€7] Ag[n].
This is a dual basis for tensor product B-splines:
By oMp :/B A1\ A/B Mgl =1,
[ BhaMia = [ BleIole?) [ Baln 'l
AzB= [ Bioo= [ BAe'Wole®) [ Bolaraln®] 0.

[deBoor, 1976] , [Lyche, JAT, 1978] ,[L. L. Schumaker BOOK, 2007] .
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Dual Compatible T-splines

Definition of Dual Compatible (DC)

A given T-mesh M is DC, 4 if for any two different T-splines there is a
direction (either horizontal or vertical) such that the two local index
vectors in that direction are overlapping and do not coincide

Given any anchor A we associate a B-spline B} , = B,[¢"] By[n*] and
the "dual” function:  AJ 5 = Ap[€7] Ag[n].

If the T-mesh is DC;, 4, we still have
/ BA )\A _
A4B= / BANE, = / BolE ]\ l€5) / Byl Agln®] = 0,

Then {2 } 4 is still a dual basis !.
June 2013 25/ 51
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Properties of DC T-splines
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Properties of DC T-splines

Linear independence
The T-splines generated by M € DCp, 4 are a basis for Tp q(M).
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Properties of DC T-splines

Linear independence
The T-splines generated by M € DC,, 4 are a basis for Ty q(M).

Dim:
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Properties of DC T-splines

Linear independence
The T-splines generated by M € DCp, 4 are a basis for Tp q(M).

Partition of unity
The basis above is a partition of unity.
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Properties of DC T-splines
Linear independence
The T-splines generated by M € DCp q are a basis for Tp q(M).

Partition of unity
The basis above is a partition of unity.

Dim:
> C'Bg() =1
anchors A
\
B ARA B
/Rz Ap’q (an%sAC Bp,q) N /Rz Ap,q
J

CcB =1
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Properties of DC T-splines

Linear independence

The T-splines generated by M € DCp, 4 are a basis for Tp q(M).
Partition of unity

The basis above is a partition of unity.

Approximation

The operator M : L2 — T o(M) defined by

fonf= 3 (/RZquf> B,

anchors A

satisfies Hf = n(f)HL2 < Chmin (p,@)+1 |f‘Hmin (p,q)+1-

A\
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The origin of the concept of DC T-splines

The idea originates from the analysis of “IsoGeometric analysis using
T-splines on two-patch geometries” [seirao da Veiga, Bufta, Cho, GS, GMAME 2011]
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AS is equivalent to DC

G. Sangalli (Univ. of Pavia) Lecture 3 June 2013 29/ 51



AS is equivalent to DC
ASp4 =DCpy. l
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AS is equivalent to DC
ASp4 =DCpy. l

To summarize, for a given T-mesh M :

T-splines are a basis
M e ASpq & M e DCpq = < Tsplines are a p.o.u.
Tp,q(M) has optimal approx.
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Proving theorem for arbitrary-degree T-splines

Induction argument:

Vo' |0 <p <p, Prg = Ppas

if £0,0 and
V@' |10<q <q, opg = ¢pg

then Vp,q, pp,q-
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Proving theorem for arbitrary-degree T-splines

Induction argument:

vp'|0<p <p, Prg = Ppas
Vq10<d <q 000 = opa
For example pp 4 = “Let M € AS, g and T a T-splines defined on M.

Then there are no vertices of M in the interior of the (p+ 1) x (g + 1)
elements of 7.

if o0 and then Vp,q, pp,q-
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Proving theorem for arbitrary-degree T-splines

Induction argument:

if £0,0 and

V' 0<p <P ppg
Vg |0<q <q, ppg

= ©pgs
= ©pg-

then Vp,q, pp,q-

For example pp 4 = “Let M € AS, g and T a T-splines defined on M.
Then there are no vertices of M in the interior of the (p+ 1) x (g + 1)

elements of T

“/1.
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Proving theorem for arbitrary-degree T-splines

Induction argument:

if £0,0 and

V' 0<p <P ppg
Vq'[0<q <q. ppg

= ©pgs
= ©pg-

then Vp,q, pp,q-

For example pp 4 = “Let M € AS, g and T a T-splines defined on M.
Then there are no vertices of M in the interior of the (p+ 1) x (g + 1)

elements of T

N

72
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DCp,q is easy to generalize
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Abstract definition of DC,, 4

A set of B-splines fulfills DC, 4 if given two different B-splines in the set
there is a direction such that the two local index vectors in that
direction are overlapping and do not coincide
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Abstract definition of DC,, 4

A set of B-splines fulfills DC, 4 if given two different B-splines in the set
there is a direction such that the two local index vectors in that
direction are overlapping and do not coincide

The definition above can be extended to:

@ trivariate splines
o LR-SpIineS [Dokken, Lyche, Pettersen, CAGD, 2013]
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Abstract definition of DC,, 4

A set of B-splines fulfills DC, 4 if given two different B-splines in the set
there is a direction such that the two local index vectors in that
direction are overlapping and do not coincide

The definition above can be extended to:

@ trivariate splines
o LR-SpIineS [Dokken, Lyche, Pettersen, CAGD, 2013]

It allows to use the classical dual basis and get:
@ partition of unity (with proper scaling of the basis)
@ linear independence
@ Greville abscissae = interior knots average
@ approximation properties
provided the polynomials belong to the space.
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Differential forms based on AS T-splines
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Discrete differential forms

Goal: T-splines discretizations of the sequence:

H'(Q)/R 2% Hieur; Q) 2" H(div;Q) — 12(Q).
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Discrete differential forms

Goal: T-splines discretizations of the sequence:
H'(Q)/R 2% Hieur; Q) 2" H(div;Q) — 12(Q).
It is a generalization of the finite element sequence:
Nodal FE 2%, Edge FE -, Face FE —% Discont. FE.

Applications: electromagnetics, Darcy’s flow, Navier-Stokes...

[Buffa, GS, Vazquez, 2010-2012] , [Buffa, De Falco, GS, 2011] , [Evans, Hughes 2012-2013] ...
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Discrete differential forms

Goal: T-splines discretizations of the sequence:

H'(Q)/R 2% Hieur; Q) 2" H(div;Q) — 12(Q).

It is a generalization of the finite element sequence:
Nodal FE 2%, Edge FE —®“". Face FE —®“_, Discont. FE.

Applications: electromagnetics, Darcy’s flow, Navier-Stokes...
[Buffa, GS, Vazquez, 2010-2012] , [Buffa, De Falco, GS, 2011] , [Evans, Hughes 2012-2013] ...
Today | consider only the 2D sequence:
rad 1
H'(Q)/R 225 H(curl, Q) -2 12(Q).
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Univariate B-splines: derivatives

Sp(=): space of B-splines of degree p on the open knot vector =
Z={{ = =81 <o < < E€n < npt :"'—§n+p+1}
B-splines derivatives are splines as well, in the space S,_1(='):
= ={o= = << <€n<§n+1 = =&ngp}

The derivative is (B)' = Dy — Dy, with Dy = e B2,

4 . . . p1 n . . .
0 o1 02 038 04 05 06 07 08
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Tensor-product spline differential forms

Recall the 2D diagram:
H'(Q)/R 22 Hicurl; Q) —Ls 12(Q).
In the parametric domain Q =square, we have the exact sequence:

curl

grad
Spp/R —— (Sp—1,p, Spp-1) — Sp—1,p-1

X0 = Spp = Sp(=1) ® Sp(Ze)
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Tensor-product spline differential forms

Recall the 2D diagram:
H'(Q)/R 22 Hicurl; Q) —Ls 12(Q).
In the parametric domain Q =square, we have the exact sequence:

curl

grad
Spp/R —— (Sp—1,p, Spp-1) — Sp—1,p-1

X0 = SPnD = Sp(E1) & Sp(£2)
X' = (Sp-1,0:Spp1) = (Sp-1(Z}) @ Sp(Z2)) % (Sp(Z1) ® Sp-1(Zp))
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Tensor-product spline differential forms

Recall the 2D diagram:
H'(Q)/R 22 Hicurl; Q) —Ls 12(Q).
In the parametric domain Q =square, we have the exact sequence:

curl

grad
Spp/R —— (Sp—1,p, Spp-1) — Sp—1,p-1

X0 = Spp = Sp(21) ® Sp(Z2)
X' = (Sp 10 Spp1) = (Sp-1(Z4) © Sp(Z2)) x (Sp(Z1) ® Sp_1(=5))
)A(2 = Sp,1’p,1 = Sp_1 (E%) & Sp—1 (5/2)

The next step is to map them to the physical domain.
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Tensor-product spline differential forms

Recall the 2D diagram:
H'(Q)/R 22 Hicurl; Q) —Ls 12(Q).
In the parametric domain Q =square, we have the exact sequence:

curl

grad
Spp/R —— (Sp—1,p, Spp-1) — Sp—1,p-1

Use structure preserving push-forward.
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Tensor-product spline differential forms

Recall the 2D diagram:
H'(Q)/R 22 Hicurl; Q) —Ls 12(Q).
In the parametric domain Q =square, we have the exact sequence:

curl

grad
Spp/R —— (Sp—1,p, Spp-1) — Sp—1,p-1
Use structure preserving push-forward.

grad .

Xo /R X1 curl X2
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Tensor-product spline differential forms

Recall the 2D diagram:
H'(Q)/R 22 Hicurl; Q) —Ls 12(Q).

In the parametric domain Q =square, we have the exact sequence:

curl

grad
Spp/R —— (Sp—1,p, Spp-1) — Sp—1,p-1

Use structure preserving push-forward.

grad .

Xo /R X1 curl X2

X°={¢:¢oFc X}, standard mapping,
X'={u:(DF)T(uoF)e X'},  curl-conserving mapping,
X? = {p : det(DF)(p o F) € X2},  integral preserving mapping.

F is the geometry parametrization of Q.
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T-splines differential forms: odd degree

Recall the univariate derivative: (Bf) = Dy, — D;‘L:
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T-splines differential forms: odd degree

Recall the univariate derivative: (Bf) = Dy, — D;‘L:
- —— - ——t——+ -
Start with an AS T-mesh M0, and the space Y° = T, p(M°):

Odd degree: anchors are associated with the vertices.

The space Y' must contain the gradient of these functions.
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T-splines differential forms: odd degree

Recall the univariate derivative: (Bf) = Dy, — D;‘L:
-t~
§tart with an analysis suitable T-mesh M9, and the space

9
ox
—

Degree (even,odd): anchors associated with the horizontal edges.
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T-splines differential forms: odd degree

Recall the univariate derivative: (Bf) = Dy, — D;‘L:
-t~
§tart with an analysis suitable T-mesh M9, and the space

9
ox
—

Degree (even,odd): anchors associated with the horizontal edges.
New mesh, M), : added one extension of all horizontal T-junctions.
The first component of ¥ is the T-spline space: To-1.p(MD,).
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T-splines differential forms: odd degree

Recall the univariate derivative: (B}) = DA~ — D/
-+ttt --

§tart with an analysis suitable T-mesh M9, and the space

YO = T, p(MO).

9
ay
—

Degree (odd,even): anchors associated with the vertical edges.
New mesh, Méyi added one extension of all vertical T-junctions.

The second component of ¥ is the T-spline space: T, 1 (Méy).
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T-splines differential forms: odd degree

Recall the univariate derivative: (Bf) = Dy, — D;‘L:
-t~

§tart with an analysis suitable T-mesh M9, and the space

YO — Tp7p(MO).

axag{ m e8| s |8 | =8|

Degree (even,even): anchors associated with the elements.
New mesh, M?: added one extension of all T-junctions.
The third space is Y2 = T, 1, ¢(M?).
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T-splines differential forms: odd degree (ll)

We have constructed the meshes and spaces for the sequence

grad

curl
Top(M®)/R —— (Tp_1,p(M},), Tp,p—1(Mjay)) — Tp1,p-1(M?)

If MO is AS, then M}, , M}, and M? are AS.
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T-splines differential forms: odd degree (ll)

We have constructed the meshes and spaces for the sequence

grad

curl
Top(M®)/R —— (Tp_1,p(M},), Tp,p—1(dey)) — Tp1,p-1(M?)

If MO is AS, then M}, , M}, and M? are AS.

If MO is analysis suitable, then the sequence is exact. \

@ based on polynomial characterization of T-spline spaces,

@ we are currently constructing the stable commuting interpolators,
@ the Bézier mesh is the same in the four spaces,

@ works for any p, odd and even,

@ mapping to the physical domain done as for B-splines/NURBS.
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Numerical tests in 2D: the square domain

We test ¥ on the eigenvalue problem
curlcurlu = w?u, w#0, u#0.

Unit square domain , with T-mesh as below:

Eigenvalue
8
2}

O Degree 4
O Degree 5
-+ Exact

50 60

20 30 40
Rank in the (non-null) spectrum

@ The computed spectrum is spurious free for any degree.
@ Good approximation of eigenvalues with the right multiplicity.
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2D numerical tests: the L-shaped domain

We discretize with the space Y the eigenvalue problem
curlcurlu = w?u,  w#0, u#0.

L-shaped domain, in a mesh refined towards the corner.
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2D numerical tests: the L-shaped domain

We discretize with the space Y the eigenvalue problem
curlcurlu = w?u, w+#0, u+#0.

L-shaped domain, in a mesh refined towards the corner.

Relative error
Relative error

10° 10°

10° 10 10° 10"
Degrees of freedom Degrees of freedom

@ Convergence results for degrees 4 and 5.
@ Better approximation properties than B-splines.
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assuming that we don’t need local refinement in z.

We extend to 3D

Y/g div

curl

1
T-splines in the first two directions.

grad

YO/R

The idea is to use 2D

In the third direction we use univariate B-splines.
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Three dimensional domains

We extend to 3D, assuming that we don’t need local refinement in z.

\A/O/R grad \Aﬂ curl \A/Z div \A/3
The idea is to use 2D T-splines in the first two directions.

In the third direction we use univariate B-splines.

These are the spaces that form the sequence:

Y0 = Tpp® Sp(3),

Y' = (Tpo1p @ So(Z), Tpp-1® So(Z), Top @ Sp-1(Z')),

V2 = (Top1©8p1(F) To-1p 2 Sp-1(F), To-1p-1® Sp(3)),

A

s = p—1,p—1 ® Spf1(5/)-
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We discretize with the space Y the model problem:

curlcurlu4+u =f

)

with exact solution u = grad(r?/3sin 26/3 sin(rz)).

Refinement towards the reentrant edge, to catch the singularity.
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3D numerical results: three quarters of a cylinder

We discretize with the space Y the model problem:
curlcurlu +u =f,

with exact solution u = grad(r?/3sin 26/3 sin(rz)).
Refinement towards the reentrant edge, to catch the singularity.

—

s(:‘
Vi

£
&
X
)
X
QO

0
o
:.0‘
A\

<>
P
X%
0
/)
7
o
/X
X2
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[/ /77777
[ 7777777
Relative error

ANV

10°
Degrees of freedom

T-splines of degree 3: better convergence than B-splines in terms of
dofs.
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3D numerical results: twisted waveguide

Propagation of the first TE mode in a twisted waveguide.
Discretized with T-splines with p = 3, and 7936 dofs.

With 6 elements in the z-direction, C? or C° tang. continuity.

Accurate transmission and reflection output.ufa, s, vazquez, submited to JoP)

IEI

\\\\\]P\\l\\\\\QO
OH i ]

22,332

[http://geopdes.sourceforge.net]
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Conclusion

@ we have defined arbitrary-degree AS T-splines,

@ we have proved linear independence of AS T-splines, partition of
unity property and fundamental approximation results,

@ the theory is based on the characterization of AS T-splines as DC
T-splines.
@ we have defined T-splines based differential forms, based on

arbitrary-degree AS T-meshes:

o the Bézier mesh is the same for all the spaces in the diagram.
o tested spurious free approximation of Maxwell eigenproblem.
@ better convergence than B-splines in terms of d.o.f.
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Conclusion

@ we have defined arbitrary-degree AS T-splines,

@ we have proved linear independence of AS T-splines, partition of
unity property and fundamental approximation results,

@ the theory is based on the characterization of AS T-splines as DC
T-splines.

@ we have defined T-splines based differential forms, based on
arbitrary-degree AS T-meshes:

o the Bézier mesh is the same for all the spaces in the diagram.
o tested spurious free approximation of Maxwell eigenproblem.
o better convergence than B-splines in terms of d.o.f.

*** Thank you for your attention ***
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