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This talk is based entirely on work/discussions with:

A.L. Fitzpatrick J. Kaplan
S. Raghu

Any major conceptual errors or calculational mistakes are attributable entirely to them
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1.  Introduction

The Fermi liquid fixed point is a stable IR fixed point 
(modulo the BCS instability).

∫
dt d3p

{
iψ†

σ(p)∂tψσ(p)− (ε(p)− εF)ψ
†
σ(p)ψσ(p)

}
.

Its starting point is the free fermion action:

Shankar,
Polchinski

p

p

1

2
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The scaling which governs the Fermi liquid fixed point, 
determined by the free action, is:

p = k+ l,

ε(p)− εF = lvF(k) + O(l2),

dt → s−1dt, dk → dk, dl → sdl, ∂t → s∂t, l → sl,

so examining the action
∫

dt d2k dl
{
iψ†

σ(p)∂tψσ(p)− lvF(k)ψ
†
σ(p)ψσ(p)

}

we see that the Fermi field should scale as:

ψ → s−1/2ψ .
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The first interaction, which determines the (in)stability of 
this fixed point, is:

∫
dt d2k1 dl1 d2k2 dl2 d2k3 dl3 d2k4 dl4 V (k1,k2,k3,k4)

ψ†
σ(p1)ψσ(p3)ψ

†
σ′(p2)ψσ′(p4)δ

3(p1 + p2 − p3 − p4).

It naively scales like s and is irrelevant, but for special 
kinematic configurations the delta function scales and we 

get marginal forward scattering and BCS couplings.

As it has no other obvious interesting perturbations, it is 
seemingly not a good starting point to describe the non-
Fermi liquid physics which is apparently seen in many real 

systems.
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In fact, the theoretical description of non-Fermi liquid fixed 
points remains a subject of active interest.

As a high energy theorist, I am going to borrow a lesson 
from our study of QCD.

The effective coupling runs strong
in the IR.  The emergent physics

includes chiral symmetry breaking
and confinement of quarks.
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Clay Millenium Problem:  prove mass gap in 
Yang-Mills theory.

The brute force understanding of this behavior remains an 
open problem:

However, through use of:

* Large N methods parametrized by (Nc, Nf )
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* Study of supersymmetric toy models, similarly 
parametrized by   (Nc, Nf )

.....

we have come to understand a rich set of possible 
behaviors of non-Abelian gauge theories, including:

* strongly coupled theories with free magnetic duals

* confinement without chiral symmetry breaking

* Banks/Zaks and other conformal fixed points

...and of course, some phases with qualitatively similar 
behavior to real-world QCD.
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The lesson I will take from this is the following: it will be 
useful to find controlled approaches to non-Fermi liquid 
fixed points using toy models, even unrealistic toy models.

II.  Our toy model & RG philosophy

We will study the theory with UV action:

S =

∫
dτ

∫
ddx L = Sψ + Sφ + Sψ−φ

Lψ = ψ̄σ [∂τ + μ− ε(i∇)]ψσ + λψψ̄σψ̄σ′ψσ′ψσ

Lφ = m2
φφ

2 + (∂τφ)
2
+ c2

(
	∇φ

)2

+
λφ

4!
φ4

Sψ,φ =

∫
dd+1kdd+1q

(2π)
2(d+1)

g(k, q)ψ̄(k)ψ(k + q)φ(q),
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i.e. a bosonic  “order parameter field” coupled to a 
conventional Fermi liquid, in the tuned limit:

mφ → 0 .

* We will do perturbative RG in the Yukawa and quartic 
couplings.

* We will introduce two additional control parameters:

ε = 3− d

N matrix boson,
1 “flavor” of fermions
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The unconventional large N we use here is in part inspired 
by AdS/CFT examples.

In general, in that setting, the question of finite charge 
density dynamics is mapped to a geometry question:

S =
∫

d4x
√−g

(
R− 2Λ + F 2 + · · · )
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ds2 = −r2zdt2 + r2(dx2 + dy2) + dr2

r2

Considering  “probe fermions” in the geometries:

which are supported by the doped large N CFT, has given 
rise to some interesting non-Fermi liquids.

1.  z = ∞ → AdS2×R2

1/N non-Fermi liquids which can exhibit local quantum 
criticality and other interesting behaviors.

S.S. Lee;
Liu, McGreevy,...;

Cubrovic, Schalm, Zaanen
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2. z = 2 → brane probe fermions Hartnoll, Polchinski,
 Silverstein, Tong

In both cases, the large N bath dresses the fermions very 
effectively.  

The theories I discuss today are simple field theories that 
should serve as good starting points for finding similar 

phenomena in more conventional models.

ρ ∝ T 2/z

J t
.

Monday, July 1, 13



What scaling do we use?

qx

qy

qx

qy

(a) (b)

(c)

	k

	k + 	q

	q

empty states

filled states

empty states

filled states

FIG. 1. Summary of tree-level scaling. High energy modes
(blue) are integrated out at tree level and remaining low en-
ergy modes (red) are rescaled so as to preserve the boson and
fermion kinetic terms. The boson modes (a) have the low
energy locus at a point whereas the fermion modes (b) have
their low energy locus on the Fermi surface. The most rele-
vant Yukawa coupling (c) connects particle-hole states nearly
perpendicular to the Fermi surface; all other couplings are
irrelevant under the scaling.

With our detour into geometry at an end, lets return to 
the field theory.
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k = Ω̂(kF + 
).

k′0 = etk0, k′
F = kF , 
′ = et


k′0 = etk0, k′ = etk

We expand fermion momenta about the closest point on 
the Fermi surface

and do Polchinski scaling:

In contrast, we scale boson momenta isotropically:
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This implies the following scaling of fields:

ψ′ = e−3t/2ψ, φ′ = e−
(d+3)

2 tφ

With the Polchinski scaling, we know the BCS four-Fermi 
interaction will remain marginal at tree level in all d.   The 

bosonic quartic coupling scales as:

λ′
φ = e(3−d)tλφ

So d=3 is the upper critical dimension.

Finally, expanding the momentum-dependent Yukawa 
coupling around the Fermi surface:

g(k, q) = g(kF , 0) + a1
+ a2q + · · ·
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we see that:

lim
k→kF

lim
q→0

g′(k′, q′) = e
3−d
2 tg(k, q)

This single term in the Yukawa coupling remains marginal in 
d=3;  the further terms in the Taylor expansion are 

irrelevant.

We note that there are different (reasonable) possible 
choices for Fermi surface “patch” scaling.  This scaling has 

been chosen for the following merits:

* It reverts to the obvious scalings as one decouples the 
boson and fermion, as perturbation theory should.

* BCS and forward scattering interactions of fermions 
remain obviously marginal at tree level.
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While all of this is the obvious procedure starting from the 
decoupled UV fixed point, it is distinct from the analysis 

done in some of the recent literature.

Instead, starting with Hertz, the notion that “Landau 
damping” of the boson by the Fermi liquid is going to be 
the most important effect is often fed in as the crucial 

determinant of low-energy physics.

SHertz
φ = Sφ+g2m2

ψ

∫
dd+1q

(2π)
d

|q0|
|q| θ(|q|−|q0|)φqφ−q

The non-analyticity arises from integrating out gapless 
fermions.
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FIG. 2: The one-loop boson self energy.

The fermion correction to the boson propagator:

D(q) =
1

N

(
cb
|qτ |
|qy| +

q2y
e2

+ r

)−1

.

yields a theory with z=3 dynamical scaling.

Feeding this back in to the fermionic sector 
yields a non-Fermi liquid.

FIG. 3: The one-loop fermion self energy. Here the boson propaga-
tor is a dressed propagator which include the one-loop self energy
correction in Fig. 2.

S.S. Lee;
Metlitski, Sachdev;

....
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So, I follow a “radically conservative” approach and avoid 
integrating out gapless modes.  The effects of Landau 

damping will be visible in correlators, and are part of our 
theory, but only arise in determining the RG fixed point as 

decimation of high energy modes would have them.

While this may be true at N=1, I wish to instead develop a 
systematic RG starting from a local high energy theory.  
What emerges in the IR is determined by decimation.  If 

there is an intermediate fixed point, the IR behavior may be 
different than has been expected.
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III.  RG in the epsilon expansion

Λe−t < E < Λ

external legs : E < Λe−t

So, we do the RG.  Our procedure will be to decimate in 
energy intervals, while integrating over all spatial momenta.

Because we have couplings that are marginal in d=3, we can 
hope to find controlled fixed points in the epsilon 

expansion.

The diagrams that arise at one-loop order are:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

FIG. 2. One-loop diagrams. The boson self-energy (a), boson
self-interactions (b,c), fermion self-energy (d), vertex correc-
tion (e) and particle-hole scattering (f). Diagrams (a) and (b)
do not contribute to the renormalization group flow while (c)
produces the ordinary Wilson-Fisher fixed point for bosons.
Diagram (d) gives rise to fermion wave-function renormal-
ization and (e) yields logarithmic Yukawa coupling constant
renormalization. The usual marginal BCS interaction Fermi
liquid theory (f) is altered by fermion wave-function renor-
malization as well as by diagram (g), both of which make the
BCS interaction irrelevant.
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An immediate and interesting result is that the diagrams (a) 
and (b) vanish:

ΠdΛ(p) ∝
∫
dΛ

dq0 [sgn(q0)− sgn(q0 + p0)] = 0,

So the diagram which normally yields the dramatic effect of 
Hertz-Millis theory, does not contribute in the RG.

I emphasize that Landau-damping does appear in 
correlation functions at the resulting fixed point.

(a) (b)
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The diagram (c) yields the standard contribution arising in 
study of the Wilson-Fisher fixed point:

dλφ

dt
= ελφ − aλφ

λ2
φ.

positive constant

ΣdΛ(k) =
(
ik0g

2ag
)
d log Λ,

(c)

(d) gives a nontrivial fermion wavefunction renormalization:fermion wavefuncti

(d)

another positive constant
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The beta function for the Yukawa coupling arises from both 
the fermion wave-function renormalization, and the vertex 

correction.  (The boson wave-function renormalization 
fortuitously vanishes at 1-loop).

The vertex correction is:

(e)

δgdΛ(k, 0)

g
= −C3

∂ΣdΛ(k)

∂ (ik0)
= −g2C3agd log Λ
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dg

dt
=

ε

2
g − (1 + C3)g

3ag +O(g3ε)

with a fixed point: g2 = ε
2(1+C3)ag

.

The resulting flow equation is:

1in basic theory
1/N at large N

Naive fixed point structure:

λ∗
φ ∼ ε

g∗ ∼ √
ε

The Wilson-Fisher boson is 
unaffected at this order, but
dresses the Fermi liquid into

a non-Fermi liquid
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The anomalous dimension of the fermion at this order is:

The fermion Green’s function takes the form:

G(ω, 
) ∼ 1

(iω − vF 
)
1−2γψ

.

In particular, the lifetime is governed by:

Contrast with the standard approach, which gives:

γψ = ε
8 .

Im(Σ) ∼ ω
d
3 = ω1− ε

3 .

Im(Σ) ∼ (g∗)2ω1− ε
4 .
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IV.  Subtleties with fermion self-coupling, and large N

There are subtleties with the RG for the four-fermion 
term.  The diagrams:

(g)

(i)

naively have log squared divergences, which would put 
explicit dependence on the t parameter on the RHS of the 

RG equations.
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For instance, one gets integrals of the form:

g2λ

∫
dωd�dd−1k‖
(2π)d+1

(
1

ω2 + c2s(k
2
‖ + �2)

)(
1

iω − vF �

)(
1

−iω − vF �

)

g2λ

∫
dd−1k

(2π)d−1

log
(

c2sv
2
F k2

(cs+vF )2

)
4πk2c2svF

g2λ

4π2c2svF
log(ΛUV ) log

(
csvFΛUV

cs + vF

)

Performing two of the integrals yields:

and expanding around d=3, the final integral gives a UV 
divergence of the form:
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I don’t have anything useful to say about these yet.  C.f. 
discussion in the finite density QCD literature by Son and 
by Schafer and Wilczek.  We plan to return to a systematic 

treatment of this issue in the future. 

Instead, we now resort to large N.  Consider the theory:

Lψ = ψ̄i [∂τ + μ− ε(i∇)]ψi +
λψ

N
ψ̄iψiψ̄

jψj

Lφ = tr

(
m2

φφ
2 + (∂τφ)

2
+ c2

(
	∇φ

)2
)

+
λ
(1)
φ

8N
tr(φ4) +

λ
(2)
φ

8N2
(tr(φ2))2

Lψ,φ =
g√
N

ψ̄iψjφ
j
i
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One can set:

λ
(1)
φ = 0

in a natural way (in the sense of  `t Hooft).  We do so.

In this theory, the only contribution to the four-Fermi beta 
function comes from the wavefunction renormalization of 

the fermion.  One finds:

d

dt
λψ = −2agg

2λψ.

The result is a Wilson-Fisher boson which dresses a 
fermion into a non-Fermi liquid, stable against 

superconductivity.
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Because the theory still “sees” Landau damping, one might 
worry about what happens in the deep IR.  We believe an 

analogy to a better-understood situation is helpful in 
understanding the possible uses of the fixed point:

m

ΛUV
Fixed point governed by SU(N)

QCD with M flavors, in the
perturbative Banks/Zaks regime

Add mass for enough of the
flavors that the theory is 

strongly coupled

???

kF
Wilson-Fisher

+ dressed non-Fermi
liquid

ωLD
Scale where Landau

damping sets in 

???
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Work in progress:

* We would like to find a systematic treatment of the log 
squared divergences in the RG.  In previous work these 

have led to enhanced pairing, but a systematic framework is 
absent.

* We had two control parameters:               ε,N . Hopefully,
one is sufficient.  We are currently in the process of solving 
the theory at                       We find integral equations for 
the self-energies which we can solve self-consistently in the 

large N limit.

ε = 1, N → ∞.
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