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1. Adding noise to classically stochastic
hydrodynamics in 2D is a rich problem, which
includes Turbulence

2. What kind of symmetries can we expect in this
low-dimensional non-equilibrium problem?

3. A picture emerges from numerical simulations
which points to CFT-type conformal invariance.
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• Bernard, Boffetta, Celani, Falkovich (Nature Physics (2006) 2,

124128), Showed that zero voriticty isolines conform
with c = 0 Percolation hulls.

• Polyakov had earlier suggested a connection to
CFT (with another regime in mind):
Try to match solutions of 〈~v(x1)~v(x2) . . . ~v(xn)〉
with CFT correlators
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1. Look at the quantum problem instead
2. Search for hidden symmetries of quantum

hydrodynamics.
3. Compare to classical stochastics.
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• We shall make use of Stochastic quantization
(SQ) in phase space:

dp

dτ
= ıq̇ − δH

δp
+ dξp,

dq

dτ
= −ıṗ− δH

δq
+ dξq,

• Take τ → ∞, whereupon dp
dτ

d
= dq

dτ

d
= 0

• Classically, take d
dτ

→ 0, t → ıt:

0 = q̇ − δH

δp
+ dξp, 0 = −ṗ− δH

δq
+ dξq,

• The relation is formal.
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The Calogero-Sutherland model is an N-particle
system on a line with inverse square law
interactions:

H =
∑

i

(

p2i + x2i
)

+
∑

i6=j

θ(θ − ~)

(xi − xj)
2
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The interaction can be thought of as a purely phase
volume effect. Indeed, the dynamics are equivalent
to the motion of the eigenvalues of X:

Ẋ = P, Ṗ = −X

[X,P ] = 2ıθ [1− (N + 1)|N〉〈N |]
The system is symmetric under X → U †XU ,
P → U †PU with U † = U−1, and U |N〉 = eiφ|N〉.
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X and P are coordinates in phase space. Since they
are Matrices, we consider their Wigner transform,
and the Wigner distribution

X̂ =
∑

i,j

Xi,j|i〉〈j|, 〈x|i〉 = Hi(x)e
−x2

θ

X(x, p) =

∫

〈x− y/2|X̂|x+ y/2〉eiypθ
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Susskind gave the following picture:

ρ(X,P ) =
1N(x, p)

{X,P} =
1N(x, p)

WT ([X,P ])
= f(x, p)

The density is a time independent function of
Lagrangian coordinates, i.e. incompressibility.
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The ground state is given by:

X̂ = x̂ cos(t) + p̂ sin(t), P̂ = p̂ cos(t)− x̂ sin(t)

where:

x̂+ ıp̂ =
N
∑

i=0

√
i|i− 1〉〈i| = 1N×Na1N×N
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We want to quantize

˙̂
Z = ıẐ + ı[λ, Ẑ]

where Ẑ = X̂ + ıP̂ . With constraint:

[Ẑ, Ẑ†] = 2θ (1− (N + 1)|N〉〈N |)

And a gauge choice determining λ

This is a Hamiltonian Reduction.
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Quantize (Parisi) by introducing Auxiliary time, τ :

dẐ

dτ
= −dS

dẐ
+ dΞ̂

=
˙̂
Z − ıẐ + dΞ̂

(Ohba) Introduce Lagrange multipliers, ν̂ associated

with the constraint, φ̂, and Lagrange multiplier, λ̂ ,
associated with the gauge condition, χ̂.

dẐ

dτ
= −dS

dẐ
+ λ̂

dφ̂

dẐ†
+ ν̂

dχ̂

dẐ†
+ dΞ̂ (1)
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1. The usual gauge choice is to let X̂ be diagonal,
[x̂, X̂] = 0.
Where x̂, p̂ are ground state matrices.

2. This choice leads to Calogero,

H =
∑

i

(

p2i + x2i
)

+
∑

i6=j
θ(θ−~)

(xi−xj)
2 , as a

Hamiltonian reduction .
3. This anisotropic choice is inconvenient. Choose

instead the Coulomb gauge:

[x̂, X̂] + [p̂, P̂ ] = 0
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1. The equations are:
dZ
dτ

= Ż − ıZ + ı[λ, Z] + [a, ν] + dΞ
2. Considering small perturbations:

Ẑ = âN + V (â†N) + . . .
3. The equation of motion turns out to be:

V̇ = ıV + dξ + . . .
4. In vector form, V → δ ~R and

~v = ẑ × δ ~R, δρ = ~∇ · δ ~R, ~∇× δ ~R = 0,
which leads to

ω =
θ

m
δρ, ~∇ · ~v = 0,

which is equivalent to hydrodynamics.
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1. Taking curl of Euler v̇ + v · ∇v +∇P = 0:

ω̇ + v · ∇ω = 0, ρ̇+ v · ∇ρ = 0,

leads to a solution δρ ∝ ω.
2. In our case it is only true integrated over any

region whose boundary has small deformation:

δND =

∫

D

ρ(~r)d2~r =
m

θ

∮

∂D

~v · d~r = m

θ
ΓD.

3. In particular quantized vortices -
nD = m

~
ΓD = ~

θ
δND
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1. An infinite number of conserved quantites exist
and can be written through the mode
expansion:

V =
∑

n

αna
†n,

where Z = a+ V + . . .
2. The expressions are complicated, but one may

expand in ~

L
. Assuming vortices one obtains

V ∼ ~

L
. One obtains a set of conserved

quantities whose leading orders commute.
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1. H1 =
∑

n α
†
nαn + . . .

2. H2 =

=
∑√

θ
(

α†
nα

†
mαn+m + hc

)

+(θ−~)nα†
nαn+. . .

3. The simultaneous diagonalization of H1 and H2

is a problem already solved in collective field
theory of Calogero and is related to Jack

polynomials, CFT with c = 1− 12
(√

θ√
~
−

√
~√
θ

)2
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1. Calogero in a different gauge is related to
hydrodynamics

2. The integrability of the Calogero expresses itself
in the problem of diagonalizing the Hamiltonian
written in terms of modes of deformation

3. The diagonalization problem is given through
Jacks related to the representation theory of

c = 1− 12

(

√

θ
~
−
√

~

θ

)2
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1. Beyond the the separated vortices limit: Hall
viscosity?

2. Relation to the fractional quantum Hall effect
3. Relation to Classical Stochastic Dynamics
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