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Momentum space topology in Standard Model & condensed matter
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1. Gapless & gapped topological media

2. Fermi surface as topological object

3. Fermi points (Weyl, Majorana & Dirac points) & nodal lines 

5.  Fully gapped topological media

* superfluid 3He-A, topological semimetals , cuprate superconductors , graphene     
    vacuum of Standard Model of particle physics in massless phase

*  gauge fields, gravity, chiral anomaly as emergent phenomena; quantum vacuum as 4D graphene

* exotic fermions: quadratic, cubic & quartic dispersion; dispersionless fermions; Horava gravity

*  superfluid 3He-B, topological insulators , chiral superconductors, quantum spin Hall insulators,
     vacuum of Standard Model of particle physics in present massive phase, vacua of lattice QCD

4. Flat bands & Fermi arcs in topological matter

* 1D flat band  in the vortex core
*Fermi-arc on the surface of topological matter with Weyl points

* surface flat bands: 3He-A, semimetals , cuprate superconductors , graphene , graphite
* towards room-temperature superconductivity

* Majorana edge states & zero modes on vortices ( planar phase , topological insulator  & 3He-B )



Topology: winding number
one can’t comb hair on a ball smooth, anti-Grand-Unification

Thermodynamics is the only physical theory of universal content 

I think it is safe to say that no one understands Quantum Mechanics

Richard Feynman

Albert Einstein

3+1 sources of effective Quantum Field Theories
in many-body system & quantum vacuum

Symmetry: conservation laws, translational invariance, 
          spontaneously broken symmetry, Grand Unification, ...

missing ingredient
in Landau theories

effective theories
of quantum liquids:

two-fluid hydrodynamics
of superfluid  4He

& Fermi liquid theory of
liquid  3He

Lev Landau
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Khodel-Shaginyan flat band: -vortex in p-space

Fermi surface: vortex ring in p-space
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flat band
on vortex in Weyl material

fully gapped topological matter: 
skyrmion in p-space

3He-B, topological insulators,
quantum-Hall states, 3He-A film,

vacuum of Standard Model
Weyl point - hedgehog in p-space

3He-A, vacuum of SM, topological semimetals (Abrikosov)

Dirac strings in p-space terminating on monopole

Fermi arc on surface
of Weyl materials

H = + c  .p 

metals,
normal 3He

Topological classes as defects in momentum space



gapless fermions on surface of fully gapped systems;
higher order nodes in nodal topological materials 

gapless fermions inside topological defect



 vacuum with Fermi surface:
metals, normal 3He

 vacuum with Fermi (Weyl) point:
3He-A, planar phase, Weyl semimetal, 

vacuum of SM

two major universality classes of gapless fermionic vacua

gμ (pμ- eAμ - e  .Wμ)(p - eA  - e  .W ) = 0
gravity emerges from

Fermi (Weyl) point
analog of

Fermi surface

Landau theory of Fermi liquid Standard Model + gravity

Theory of topological matter:
Nielsen, So, Ishikawa, Matsuyama, Haldane, Yakovenko, Horava, Kitaev,

Ludwig, Schnyder, Ryu, Furusaki, S-C Zhang, Kane, Liang Fu, ...



Fermi surface as topological object 

Fermi surface:
vortex ring in p-space
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Fermi surface

 = 0

Energy spectrum of
non-interacting gas of fermionic atoms

 < 0
occupied 

levels:
Fermi sea

p=p
F

phase of Green’s function

Green’s function

 > 0
empty levels

G( ,p)=|G|e i

G-1= i  (p)

has winding number N = 1

(p)                   =         p
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— μ  =         p
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2m
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no!
it is a vortex ring

is Fermi surface a domain wall

in momentum space?



Fermi surface:
vortex line in p-space
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G( ,p)=|G|e i

* Singularity at Fermi surface is robust to perturbations:

 winding number N=1 cannot change continuously,
interaction (perturbative) cannot destroy singularity

* Typical singularity: Migdal jump

* Other types of singularity with the same winding number:
   Luttinger Fermi liquid,
   marginal Fermi liquid, pseudo-gap  ...

* Example: zeroes in G( ,p) have the same N=1 as poles  

* Important for interacting systems, where quasiparticles are ill defined

* Fermi surface exists in superfluids/superconductors, examples: 3He-A in flow &
   Gubankova-Schmitt-Wilczek, PRB74 (2006) 064505,
   but Luttinger theorem is not applied

zeroes in G( ,p)
for  > 1/2

 

p

n(p)

pF

Z(p, ) = ( 2 + 2(p))G( ,p) =
i  (p)

Z(p, )

Migdal jump, non-Fermi liquids & p-space topology



Topology in r-space

quantized vortex in  r-space   Fermi surface in p-space

winding
number
N1 = 1

classes of mapping  S1  U(1) classes of mapping  S1  GL(n,C)

Topology in p-space

vortex ring

scalar order parameter
of superfluid & superconductor

Green’s function (propagator)
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how is it in p-space ?

space of
non-degenerate complex matrices

manifold of
broken symmetry vacuum states

homotopy group 1



non-topological flat bands due to interaction
Khodel-Shaginyan fermion condensate JETP Lett. 51, 553 (1990)

GV, JETP Lett. 53, 222 (1991)
Nozieres, J. Phys. (Fr.) 2, 443 (1992)

p
p2p1

flat  band

solutions:     (p) = 0     or      n(p)=0

n(p)=0

n(p)=0 splitting of Fermi surface
to Fermi ball (flat band)

p

(p) (p)n(p) n(p)

pF

E{n(p)}
E{n(p)} =  (p) n(p)ddp = 0

n(p)=0

n(p)=0(p) = 0 (p) = 0

S.-S. Lee
Non-Fermi liquid from a charged black hole: A critical Fermi ball

PRD 79, 086006 (2009)

anti-de Sitter/conformal field theory correspondence



Flat band as momentum-space dark soliton terminated by half-quantum vortices
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Khodel-Shaginyan

fermionic condensate
(flat band)
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half-quantum vortices
in 4-momentum space

phase of Green's function changes by  across the "dark soliton"



3. Classes of Fermi points & nodal lines: 
    superfluid 3He-A, Standard Model, semimetals, graphene, cuprate SC, ...
    surface of 3He-B & topological insulators  

Weyl point
or Berry phase Dirac monopolemagnetic hedgehog

hedgehog in r-space
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(r)=r ^ ^  (p) = p

H = + c  .p 

pz

hedgehog in p-space

right-handed Weyl electron  = 
hedgehog in p-space with spines = spins

close to Fermi point

again no difference ?

Landau CP symmetry
is emergent

right-handed and left-handed
massless quarks and leptons

are elementary particles
in Standard Model



Topological invariant for right and left elementary particles

Berry phase

Dirac string
(unobservable)

Dirac
monopole

in
momentum

space

Berry ‘magnetic’ field

 H (p) =
    p

2p2

^

0

(C) = 0 =2

 C



N3 = 1 

over 2D surface S
in 3D p-space

    2   
p

   1   
p

N3 =1 

Gap node - Weyl point
(anti-hedgehog)

Weyl fermions in 3+1 gapless topological cond-mat
topologically protected Weyl points in:

topological semi-metal or Weyl metals (Abrikosov-Beneslavskii 1971),
3He-A (1982), triplet Fermi gases, CoSb3 (arXiv:1204.5905)
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H =
c(px + ipy) 

c(px — ipy) 

          p
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          p
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)) g3(p) g1(p) +i g2(p)

g1(p) i g2(p) g3(p) 
  = )) μ

+ μ 

S2 

Gap node - Weyl point
(hedgehog)

p2 = px
2 +py

2+pz
2

8
N3   =    1   e

ijk
   dSk  g . (  pi g  ×   pj g) 



left-handed
particles

right-handed
particles

H = N3 c  . (p p0) 

close to nodes, i.e. in low-energy corner
relativistic chiral fermions emerge
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H =
c(px + ipy) 

c(px — ipy) 
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          p
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2m
)) g3(p) g1(p) +i g2(p)

g1(p) i g2(p) g3(p) 
  = )) μ

+ μ 
=  .g(p) 

emergence of relativistic chiral Weyl fermions near Fermi points

original non-relativistic Hamiltonian

chirality is emergent ??

what else is emergent ?
relativistic invariance as well 
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top. invariant determines chirality
in low-energy corner

N3 = 1 

N3 =1 E = – cp



two generic quantum field theories of interacting bosonic & fermionic fields

bosonic collective modes in two generic fermionic vacua

Landau theory of Fermi liquid Standard Model + gravity
 

collective Bose modes:
 

propagating
oscillation of position

of Fermi point
p  p - eA

form effective dynamic
electromagnetic field

propagating
oscillation of slopes 

E2 = c2p2  gikpi pk
 

form effective dynamic
gravity field

AFermi
point

collective Bose modes
of fermionic vacuum: 

propagating
oscillation of shape

of Fermi surface

Fermi
surface

Landau, ZhETF 32, 59 (1957)



relativistic quantum fields & gravity emerging near Weyl point
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hedgehog in p-space

effective metric:
emergent gravity

emergent relativity

linear expansion near Fermi surface linear expansion near Weyl point

tetrad 
primary object:

effective
SU(2) gauge

field

effective
isotopic spin

gμ (pμ- eAμ - e  .Wμ)(p - eA  - e  .W ) = 0

all ingredients of Standard Model :
chiral fermions & gauge fields 
emerge  in  low-energy corner

together with spin, Dirac matrices, 
gravity  & physical laws: 

Lorentz & gauge  invariance,
equivalence principle, etc

Atiyah-Bott-Shapiro construction:
linear expansion of Hamiltonian near the nodes in terms of Dirac -matrices

H = ea
k a .(pk  pk) 0 ea

μ 

metric
secondary object:

gμ  = ab ea
μ eb  

E = vF (p  pF) 

effective
electromagnetic

field

effective
electric charge

e = + 1  or  1

gravity & gauge fields
are collective modes

of vacua with Weyl point

Einstein-Cartan-Sciama-Kibble theory
with tetrads, spin connection & torsion



Chiral Weyl fermions in Standard Model

for interacting systems



3 weak isotopic spin of SU(2)

Topological invariant protected by symmetry

16 massless Weyl particles in one generation are protected
by combined symmetry and topology

24 2
N =    1    e

μ
 tr   dV K G   μ G-1 G    G-1G     G-1

over S3

G   =+/  G 

 = exp 2 i 3 

G is Green’s function,  is symmetry operator

Standard Model topological invariant

N  = 16 ng

for Standard Model vacuum  is 2 center group



chiral anomaly equation
(Adler, Bell, Jackiw)

Weyl point (Dirac monopole) as origin of chiral anomaly
example:
baryon production from  vacuum by hypermagnetic field

a

a

B -- baryonic charge

Y -- hypercharge  

earlier indications of axial anomaly in 3He-A from Weyl point:
anomaly in orbital dynamics & paradox of angular & linear momenta

Leggett-Takagi, Ann. Phys. 110, 353 (1978); GV & Mineev, JETP 56, 579 (1982)

matrix of hypechargematrix of baryonic charge

a
C   = +1 for right

          -1 for left

B =          NB BY•EY 
•       

4 2

1

B =             BY•EY  B C Y2
•       

a a a a
4 2

1

over S324 2
NB =    1    e

μ
tr dV BY2 G    μ G-1 G    G-1G     G-1

B

Y Y

triangle
Feynman diagram

Berry phase

Dirac string

Dirac monopole in p-space

Berry ‘magnetic’ field

 H (p) =
    p

2p2

^

0

(C) = 0 =2
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q

chiral 
anomaly
 equation

(Adler, Bell, Jackiw)

applied to 3He-A applied to Standard Model

spectral flow produces 

experimental verification of chiral anomaly equation 
measurement of Kopnin force

momentum  from  vacuum
of fermion zero modes

quasiparticles move from vacuum to the positive energy world,
where they are scattered by quasiparticles in bulk

and transfer momentum from vortex to normal component

this is the source of Kopnin spectral flow force

baryons   from  vacuum 

sp
ec

tra
l f

low

B = (1/4 2) BY•EY  B C Y2
•       

a a a aP = (1/4 2) B•E  P C e2
•       

a

a

a

a a a

B =   B n  
•       •       

a a
P =   P n 
•       •       

a a

a
C   = +1 for right

          -1 for left

B -- baryonic charge

Y -- hypercharge  
a

a

P -- momentum of Weyl point (fermionic charge)

e --  effective electric charge  

a
C   = +1 for right

          -1 for left

Bevan, Manninen, Cook, Hook, Hall, Vachaspati & GV
Momentum creation by vortices in superfluid 3He as a model of primordial baryogenesis,  Nature 386, 689 (1997)
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where are massive Dirac particles?
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Dirac particle - composite object:
mixture of left and right Weyl particles

 p
y 

(p
z
)
 

p
x

E

E2 = c2p2 + m2

is Dirac vacuum topologically trivial ?

fully gapped vacua
can be also topologically nontrivial
(3He-B, topological insulators, ...)

From massless Weyl particles to massive Dirac particles

N=+1

N=+1 1=0

N= 1

Tew ~ 1 TeV~1016K



p-space analogs of graphene
emergence of 2+1 gapless
relativistic fermions in 2D graphene

p-space analog of
4D graphene in lattice QCD

Kaplan 1993, 2011, Creutz JHEP 04 (2008) 017

Weyl/Dirac point N = +1

Weyl/Dirac point N = 1

p-space analog of 3D graphene:
superconductor  - phase

quantum vacuum as crystal



 = +1 

 = +1  = 1 

 = 1  = +1 

 = 1 

K - symmetry operator,
commuting or anti-commuting with H

for real interacting systems
the Hamiltonian H(p) is substituted
by inverse Green’s function at zero frequency
G 1( =0,p)

H  = +1  = xpx + ypy 

H  = 1  = xpx  ypy 

K  = z

close to nodes:

emergence of 2+1 relativistic fermions due to topology of graphene nodes

4 i
1  tr [K

   dl H-1  l H]  N
 
=  o  



SU(2) gauge fields emerging near Weyl & Dirac points

SU(2) field near Dirac points in graphene

effective tetrad:
emergent gravity effective

SU(2) gauge
field

effective
isotopic

spin

Atiyah-Bott-Shapiro construction:
linear expansion of Hamiltonian near the nodes in terms of Dirac -matrices

H = ea
k a .(pk  eAk  e  .Wk) 

effective
electromagnetic

fieldSU(2) gauge field is collective mode
of vacuum with Weyl point

isotopic spin comes from spin
or from band indices 

H  = +1  = x(px  Ax   .Wx) + y(py   Ay   .Wy) 



exotic fermions:
massless fermions with quardatic,
cubic & quartic dispersion
semi-Dirac fermions
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E2 = 2c2p2 + 4m2 E2 = (p2/ 2m)2

N=+1 N=0 N=+2 N=+1

nonrelativistic Dirac fermion
with quadratic dispersionDirac fermionrelativistic massless fermions

++ =

Summation of topological charges in action

bilayer graphene
double cuprate layer

re-entrant violation of Lorentz invariance & neutrino physics  Klinkhamer & GV arXiv:1109.6624

4 i
1  tr [K

   dl H-1  l H]  N
 
=  o  



nonlinear Dirac fermions
N=1:  Dirac fermions with linear dispersion

N=2:  Dirac fermions with quadratic dispersion

H =
px + ipy 

px — ipy 
))   = x px + y py 

0

0

H =
(px + ipy)

2 

(px — ipy)
2 )) 0

0

N=3:  Dirac fermions with cubic dispersion

Dirac fermions with nonlinear  dispersion

H =
(px + ipy)

3 

(px — ipy)
3 )) 0

0

H =
(px + ipy)

N 

(px — ipy)
N )) 0

0



multiple Fermi point

N =  1 + 1 + 1  =  3

N =  1 + 1 + 1  + ...

 

E=cp

 

E=cp

 

E=cp

N=+1 N=+1 N=+1

N= +3
+ + =

E = p3 

E = pN 

E =  p3 

E =  pN 

T. Heikkila & GV arXiv:1010.0393

cubic spectrum in trilayer graphene

spectrum in the outer layersmultilayered graphene

route to topological flat band on the surface of 3D material

p
x

what kind of induced gravity
emerges near degenerate Fermi point?



Splitting of quadratic point or trigonal warping

Splitting of Dirac and Weyl points

N =  2  =  1 + 1 + 1 1
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Horava anisotropic scaling gravity

Horava anisotropic z=2 scaling in bilayered graphene
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E2 = 2c2p2 + 4m2 E2 = (p2/ 2m)2

N=+1 N=0 N=+2 N=+1

massless Dirac fermions
with quadratic dispersion

massive fermions2+1 massless Dirac fermions

++ =

Sgrav =   d3
x dt  R

3 

b 6b3b3
anisotropic z=3 scaling:    x = b x’ ,  t = b 3t’

4 i
1  tr [K

   dl H-1  l H]  N
 
=  o  



Fermions in 2+1 bylayer graphene

H =
(px + ipy)

2 

(px — ipy)
2 )) [(e1+i e2).(p A)]2

(e1+i e2).(p A)

[(e1  i e2).(p A)]2

(e1  i e2).(p A)

  = )

H =
px + ipy 

px — ipy 
))   = x px + y py =  

single layer
zweibein

zweibein
double layer

anisotropic scaling:    x = b x’ ,  t = b2  t’  

Horava-Lifshitz gravity:
Horava, Quantum gravity at a Lifshitz point
PRD 79, 084008 (2009)
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Heisenberg-Euler action in massive QED

non-linear corrections to Maxwell equations due to vacuum polarization

SHE =  d3
x dt [( B

2 
 E

2 )2 /M4 
+ ( B.E)2 /M4]

What is the Heisenberg-Euler action for relativistic massless QED
emerging in condensed matter ?

 M is rest energy of electrons    B,E << M
2

What is the Heisenberg-Euler action for massless QED
with exotic Dirac fermions with quadratic and cubic spectrum ?

relation to Horava quantum gravity with anisotropic scaling



isotropic QED emerging in 3He-A and single layer graphene

3+1 isotropic QED & emerging in Weyl superfluids & semimetals

imaginary action (Schwinger pair production) at B
2 

< E
2 

 

imaginary action (Schwinger pair production) at B
2 

< E
2 

 

isotropic scaling:    x = b x’ ,  t = b t’  ,  B = b 2 B’ , E = b 2 E’ ,   S = S’ 

SQED =  d3
x dt ( B

2 
 E

2 ) ln 1/( B
2 

 E
2 )

b 4 b 4bb3

2+1 isotropic QED emerging in single layer graphene

SQED =  d2
x dt ( B

2 
 E

2 )3/4

b 3bb2



2+1 anisotropic QED emerging in bylayer graphene

Heisenberg-Euler action

magnetic field asymptote electric field asymptote

pair production mainly occurs  at

anisotropic scaling:    x = b x’ ,  t = b2  t’  ,  B = b 2 B’ , E = b 3 E’ ,   S = S’ 

H =
(px + ipy)

2/2m 

(px — ipy)
2/2m     ) ) [(e1+i e2)(p A)]2/2m

[(e1  i e2)(p A)]2/2m
  = ) )0

0

0

0

S =1/m  d
2
x dt B

2 
g(μ)

μ > 1  i.e  at   E
2
> B

3
/m

2

Schwinger pair production ~ E
4/3

μ= m
2
E

2
/B

3

b 4

b 6 b6

b2b2

SB =1/m  d
2
x dt B

2 
ln 1/B2 SE =1/m  d2

x dt (  m
2
E

2 )2/3

b 4b2b2

g(μ)  dimensionless fuction of dimensionless parameter



pair production mainly occurs  at

Schwinger pair production 

Im S = 
-2

B
2
μ     dx exp(  μ f(x) )

μ > 1  i.e  at   E
2
> B

3
/m

2

 at μ >> 1     f(x) = x
3
/6

μ= m
2
E

2
/B

3

1

0

 f(x) = x  (1+x)/2 ln(1+x)  (1 x)/2 ln(1 x)

Schwinger pair production       Im S ~ E
4/3

m
1/3

M.I. Katsnelson &  G.E. Volovik,
Quantum electrodynamics with anisotropic scaling:
Heisenberg-Euler action and Schwinger pair production in the bilayer graphene,
Pis’ma ZhETF 95, 457 (2012); arXiv:1203.1578



4. Flat bands & Fermi arcs in topological matter 

nodal spiral in multilayered graphene
generates flat band with zero energy

in the top and bottom layers 

nodal lines
in cuprate superconductors

generate flat band on side surface
nodes in graphene

generate flat band on zigzag edge

approximate flat band on side surface
of graphite

Hekilla, Kopnin, GV Shinsei Ryu



formation of nodal spiral in bulk (together with flat band on the surface)
by stacking of graphene layers 

N1 
= 1

Hi,j = ( xpx + ypy) i,j + ( +t+ + t ) i,j+1 

t+ > t

4 i
1  tr [K

   dl H-1  l H]  N1 
=  o  



Emergence of nodal line from gapped branches by stacking graphene layers



example of topological bulk-surface correspondense:
Nodal spiral generates flat band on the surface

projection of spiral on the surface determines boundary of flat band

at each (px,py) except the boundary of circle
one has 1D fully gapped state (insulator) 

trivial 1D insulator

topological 1D insulator

N = 1

N = 1N = 0

Nout(px,py)
 
= 0

Nin(px,py) = 1

C

C

Cout Cin

4 i
1  tr [K

   dl H-1  l H]  N
 
=  o  

topological insulator has 1D gapless edge state
manifold (px,py) of edge states forms flat band 



Nodal spiral generates flat band on the surface

projection of nodal spiral on the surface determines boundary of flat band

energy spectrum in bulk
(projection to px , py plane)

surface states form the flat band

bulk states
lowest energy states:

nodal line



Modified nodal spiral in rhombohedral graphite: spiral of Fermi surfaces (McClure 1969) 

projections on surfaces
determine
approximate flat band

for conventional graphite:
approximate flat band
on the lateral surface



Nodal lines in graphite tranformed to chain of electron and hole FS

for conventional graphite:
approximate flat band
on the lateral surface



p
x

N = 0

N = 0

N = +1

N = +1

N = +1

N = +1

flat
band

flat
band

N = 1

Flat band on the graphene edge

4 i
1  tr [K

   dl H-1  l H]  N
 
=  o  



Surface superconductivity in topological semimetals:
route to room temperature superconductivity

Extremely high DoS of flat band gives high transition temperature:

Tc  =  TF exp (-1/g ) DoS = ( )     2/N  1 Tc    gSFB  

normal superconductors:
exponentially suppressed

transition temperature

N is number of layers

N = 4:  ( )  1/2  Kopaev (1970); Kopaev-Rusinov (1987)

flat band superconductivity:
linear dependence

of Tc on coupling g

couplinginteraction DOS
flat band
area

1= g  
2h2
d2p

E(p)

1



‐



 top. invariant for fully gapped 2+1 system

 top. invariant for Weyl point in 3+1 system

From Weyl point to quantum Hall topological insulators 

over 2D surface S
in 3D momentum space

over the whole 2D momentum space
or over 2D Brillouin zone

~

hedgehog
in p-space

skyrmion
in p-space

Weyl
point

2D topological Hall
insulator

2D trivial
insulator

pz

px

py

N3(pz) = 1 

N3(pz) = 0 

N3 = N3(pz <p0)  N3(pz >p0)  

at each pz one has 2D insulator
or fully gapped 2D superfluid

8
N3   =    1   e

ijk
   dSk  g . (  pi g  ×   pj g) 

8
N3 (pz)   =    1   e

ijk
   dpxdpy   g . (  px g ×   py g) 



3D matter with Weyl points:
Topologically protected flat band in vortex core

flat
band

Weyl
point

2D topological
QH insulator

2D trivial
insulator

2D trivial
insulator

Weyl
point

pz

 pF cos 

 pF cos 

N3(pz) = 0 

N3(pz) = 1 

N3(pz) = 0 

4 2
N3(pz) =    1   tr   dpx dpyd  G    G-1 G   px

 G-1G   py
 G-1~

GV & Yakovenko
(1989)

at each pz between two values:
2D topological Hall insulator:
zero energy states E (pz)=0, 

 in the vortex core
(1D flat band 1011.4665)

vortices in r-space

z



Topologically protected flat band in vortex core of superfluids with Weyl points 

flat band
in spectrum of fermions

bound to core of 3He-A vortex
(Kopnin-Salomaa 1991)

E (pz , Q)

E (pz)

pz

pz

continuous spectrum

bound states

flat band Weyl
point

Weyl
point

flat band of bound states
terminates on zeroes

of continuous spectrum
(i.e on Weyl points)



3He-A with Weyl points:
Topologically protected
Dirac valley (Fermi arc) on surface 

Fe
rm

i a
rc

Fe
rm

i a
rc

Weyl
point

Weyl
point

pz

 pF cos 

 pF cos 

N3(pz) = 0 

N3(pz) = 1 

N3(pz) = 0 

for each    |pz | < pF cos 
one has 2D topological Hall insulator with

zero energy edge states E (pz)=0
(Dirac valley PRB 094510 or Fermi arc PRB 205101)

 px

 py

2D trivial
insulator

2D trivial
insulator

2D topological
insulator

x=xRx=xL

E
 (

p z
)=

0

E
 (

p z
)=

0



Edge states at interface between effective two 2+1 topological insulators & Fermi arc

0 
py

py

pz
pFpF

E(py, |pz| < pF)

left moving
edge states

occupied

Fermi arc in 2D:
Fermi surface which terminates

on two points:
projections of Weyl points

empty

gapped stategapped state
  

on the edge of insulator with

one fermion zero mode
   =   1

y 

x 

int
er

fa
ceN3 = N  

~

N3 = 1
~

E > 0

E = 0

E < 0

N3 = N+ 
~

GV JETP Lett. 55, 368 (1992)

Index theorem:
number of fermion zero modes

at interface:
 

 =   N+  N  



Fermi arc:
Fermi surface separates positive and negative energies, but has boundaries

pz

py E (py = 0, |pz| < pF) = 0

E (py, pz) <  0

E (py, pz) >  0

Fermi surface

Fermi surface of localized states is
terminated by projections of Weyl points 

when localized states merge with
continuous spectrum

 Tsutsumi, et al PRB 094510

ordinary Fermi surface
has no boundaries

Fermi surface of bound states
may leak to higher dimension

L  spectrum of
edge states on 

left wall

R  spectrum of
edge states on 
right wall



5. Fully gapped topological matter

skyrmions in p-space



 3+1vacuum with massless fermions

 Fully gapped 2+1 vacuum

 Fully gapped 4+1 vacuum gives 3+1 relativistic fermions (Kaplan, arXiv:1112.0302)

emergent relativistic fermions as edge states

gapless 1+1 edge states

over the whole 2D momentum space
or over 2D Brillouin zone

py

px

 dimensional reduction

 dimensional reduction

around Fermi point
8

N3   =    1   e
ijk

   dSk  g . (  pi g  ×   pj g) 

8
       N3 =    1   e

ijk
   dpxdpy   g . (  px g ×   py g) 

~



topological insulators & gapped superconductors in 2+1 

How to extract useful information on energy states from this Hamiltonian
without solving equation

generic example:

p-wave 2D superconductor (Sr2RuO4 ?), 3He-A thin film,
CdTe/HgTe/Cd insulator quantum well, planar phase film

H =
c(px + ipy) 

c(px — ipy) 

          p
2

2m

          p
2

2m
))  μ

+ μ 
p2 = px

2 +py
2 

H  = E

topological gapped superconductor = 
superconductor with gap in bulk
but with topologically protected
gapless states on the boundary

topological insulator =
bulk insulator

with topologically protected
gapless states on the boundary

who protects gapless states?



Skyrmion (coreless vortex) in momentum space at μ > 0 

Topological invariant in momentum space

N3 (μ > 0) = 1
~

~

g (px,py)

unit vector

sweeps unit sphere

py

px

ĝ

fully gapped 2D state at  μ = 0 

g3(p) g1(p) +i g2(p)

g1(p) i g2(p) g3(p) 
 H  = ))H =

c(px + ipy) 

c(px — ipy) 

          p
2

2m

          p
2

2m
))  μ

+ μ 
=  .g(p) 

p2 = px
2 +py

2 

GV,  JETP 67, 1804  (1988)
8

       N3 =    1   e
ijk

   dpxdpy   g . (  px g ×   py g) 



quantum phase transition:
from topological to non-topologicval insulator/superconductor

Topological invariant in momentum space

intermediate state at μ = 0  must be gapless

H =
c(px + ipy) 

c(px — ipy) 

          p
2

2m

          p
2

2m
)) g3(p) g1(p) +i g2(p)

g1(p) i g2(p) g3(p) 
  = )) μ

+ μ 
=  .g(p) 

N3 = 1 
~

N3
~

N3 = 0 
~

μ

quantum phase transition

 μ = 0

N3 = 0 is origin of fermion zero modes
at the interface between states with different  N3

topological
insulator

trivial
insulator

8
     N3 =    1   e

ijk
   dpxdpy   g . (  px g ×   py g) 



p-space invariant in terms of Green’s function & topological QPT

film thickness

gapgap

gap

quantum phase transitions
in thin 3He-A film

plateau-plateau QPT
between topological states 

QPT from trivial
to topological state

N3 = 2 
~

N3 = 0 
~

N3 = 4 
~

N3 = 6 
~

a

a1 a2 a3

24 2
N3=    1     e

μ
 tr   d2p d  G   μ G-1 G    G-1G    G-1~

transition between plateaus
must occur via gapless state!

GV & Yakovenko
J. Phys. CM 1, 5263 (1989)



q -  parameter of system
qc 

quantum phase transition at q=qc

other topological QPT:
Lifshitz transition,

transtion between topological and nontopological superfluids,
plateau transitions,

confinement-deconfinement transition, ...

example: QPT between gapless & gapped matter

topological quantum phase transitions

transitions between  ground  states (vacua)  of  the same  symmetry,

but  different  topology  in  momentum  space

no symmetry change
along the path

broken symmetry

different asymptotes

when T => 0 

T (temperature) 

T n e /T
qc 

T
no change of symmetry

along the path

topological
semi-metal

topological
insulator

QPT interrupted
by thermodynamic transitions

q

q

line of
1-st order transition

2-nd order transitionT

q

line of
1-st order transition

line of
2-nd order transition

T



py - component   

x 

y 

interface between two 2+1 topological insulators or gapped superfluids

H =
c(px + i py tanh x ) 

c(px —  i py tanh x ) 

          p
2

2m

          p
2

2m
))  μ

+ μ 

px+ipypx  ipy

x 0 

N3 = +1  N3= 1 
~~

px - component   

gapped state

gapless
interface

gapped state

int
er

fa
ceN3 = N  

~
N3 = N+ 
~

  

* domain wall in 2D chiral superconductors:



Edge states at interface between two 2+1 topological insulators or gapped superfluids

0 
py

E(py)

left moving
edge states

occupied

empty

Index theorem:
number of fermion zero modes

at interface:
 

 =   N+  N  

gapped stategapped state
  

y 

int
er

fa
ceN3 = N  

~
N3 = N+ 
~

GV JETP Lett. 55, 368 (1992)



0 
py

E(py)
x 

y y 

cu
rre

nt

cu
rre

nt

N3 = 0 
~ N3 = 0 

~

Edge states and currents

 

2D topological
insulator

2D non-topological
insulator

or vacuum

2D non-topological
insulator

or vacuum

current   Jy  =  Jleft +Jright  = 0

left moving
edge states

occupied

empty
empty

occupied

0 
py

E(py)

right moving
edge states

N3 = 1 
~



0 
py

E(py) V/2 E(py)+V/2

Edge states & intrinsic QHE: topological invariant determines Hall quantization

2D topological
insulator 2D non-topological

insulator
or vacuum

2D non-topological
insulator

or vacuum

current  Jy  = Jleft +Jright  = xyEy

left moving
edge states

extra number
of left moving states

deficit
of right moving states

0 
py

V/2

V/2

V/2

V/2

right moving
edge states

apply voltage V

4xy
 =   e

2
  N

~

x 

y y 

cu
rre

nt

cu
rre

nt

N = 0 
~

N = 0 
~

N = 1 
~



N

a

2

4

6

8

film of topological quantum liquid

Intrinsic quantum Hall effect  & momentum-space invariant

4xy
 =   e

2
  N

film thickness

quantized intrinsic Hall conductivity
(without external magnetic field)

p-space invariant r-space invariant 

4
      =     e

2
  N3 

Ey electric current   J
x

   = S
CS 

/ A
x

ẑ

x , J ^

y , E^

A
μ
- electromagnetic field

~

~

~

GV & Yakovenko
J. Phys. CM 1, 5263 (1989)

3

3

3

16
S

CS
 =          N

 
eμ     d2x dt A

μ
 F

e2 ~



general Chern-Simons terms & momentum-space invariant
(interplay of r-space and p-space topologies)

16
S

CS
 =   1    N

3IJ 
eμ     d2x dt A

μ
I F J

 
I 

 - charge interacting with gauge field A
μ

I

 =e     for electromagnetic field A
μ

 r-space invariant
p-space invariant protected by symmetry

24 2
      1  e

μ
tr [

   
d2p d  

I J 
G   μ G-1 G    G-1G    G-1]N

3IJ 
=  

gauge fields can be
real, artificial or auxiliary

dimensional reduction
of chiral anomaly in 3+1

 = z     for effective spin-rotation field A
μ

z    ( A
0
z= H z) ^

 id/dt .H =  id/dt  .A
0
    

applied Pauli magnetic field plays the role of components of effective SU(2) gauge field A
μ

i  

^ ^

~

~



Intrinsic spin-current quantum Hall effect  & momentum-space invariant

4
     =     1    ( N

ss 
dHz/dy + N

se 
Ey) spin current   J

x
z   

spin-spin QHE spin-charge QHE

2D singlet superconductor:

film of planar phase of superfluid 3He

s-wave:       Nss = 0
px + ipy:       Nss = 2
dxx-yy + idxy : Nss = 44xy

          =   Nss    
spin/spin

4xy
          =   Nse    

spin/charge GV & Yakovenko
J. Phys. CM 1, 5263 (1989)



spin quantum Hall effect: planar phase film of 3He   &   2D topological insulator

spin quantum Hall effect

4
     =     1   N

se 
Ey spin current   J

x
z  

spin-charge QHE

4xy
          =   Nse    

spin/charge GV & Yakovenko
J. Phys. CM 1, 5263 (1989)

H =
c(px + i py z ) 

c(px —  i py z) 

          p
2

2m

          p
2

2m
))  μ

+ μ 

N3 = 1
~

N3 = +1
~ +

N3 =  
~N3 = 

~
N3  +           0
~ +

N3 =  
~Nse = 

~
N3             2
~+

N
se

 = 2 

24 2
      1  e

μ
tr [

   
d2p d  z G   μ G-1 G    G-1G    G-1]N

se 
=  

~

24 2
      1  e

μ
tr [

   
d2p d  G   μ G-1 G    G-1G    G-1] = 0 N
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=  

~



Intrinsic spin-current quantum Hall effect  & edge state

4
     =     1    ( N

ss 
dHz/dy + N

se 
Ey) spin current   J

x
z

spin-charge QHE

4xy
          =   Nse    

spin/charge

electric current is zero
spin current is nonzero

V/2V/2 x 

y y 

N
se

= 2 
N

se
= 0N

se
= 0

sp
in 

cu
rre

nt

sp
in 

cu
rre

nt
py

E(py) V/2 E(py)+V/2

left moving
spin up

right moving
spin down

py

V/2

V/2

right moving
spin up

left moving
spin down



3D topological superfluids / insulators / semiconductors / vacua

  

gapless topologically
nontrivial vacua

3He-A, 
Standard Model

above electroweak transition,
semimetals,
4D graphene

(cryocrystalline vacuum)

fully gapped topologically
nontrivial vacua

3He-B, 
Standard Model

below electroweak transition,
topological insulators,

triplet & singlet
chiral superconductor, ...

Bi2Te3



E (p)

p

conduction electron band, q=-1 

3 conduction  bands
of d-quarks

electric charge q=-1/3 

3 conduction bands
of  u-quarks, q=+2/3 

3 valence u-quark bands
q=+2/3 

3 valence d-quark bands
 q=-1/3 

valence electron band, q=-1 

Quantum vacuum: 
Dirac sea

       electric charge of quantum vacuum
   Q=  qa = N [-1 + 3×(-1/3) + 3×(+2/3) ] = 0

a

Present vacuum as semiconductor or insulator

neutrino band, q=0 

neutrino band, q=0 

dielectric and magnetic
properties of vacuum
(running coupling constants)



* Standard Model vacuum as topological insulator

superfluid 3He-B, topological insulator Bi2Te3 ,  present vacuum of Standard Model

Standard Model vacuum:

Topological invariant protected by symmetry

8 massive Dirac particles in one generation

24 2
N =    1    e

μ
 tr    dV  G   μ G-1 G    G-1G    G-1

over 3D momentum space

G   =+/  G 

= 5 G 5  =  5G 

G is Green’s function at =0,  is symmetry operator

fully gapped 3+1 topological matter

 N  = 8ng



topological  superfluid  3He-B

topological 3He-B

topological superfluid

non-topological superfluid

non-topological superfluid

μ

Dirac Dirac

N  = +2 N  = 0 

N  = 0 N  = 2 

1/m*

0N  = 1 N  = +1 

         p
2

2m*
— μ

         p
2

2m*
+ μ—

cB .p

cB .p( ( =

— 

+ 

cB .p

cB .p( ( =

1/m* = 0

GV JETP Lett.  90, 587 (2009)

K = 2

Dirac vacuum

         p
2

2m*
— μ( )=                     3 +cB .p 1 

H 2  =  2H 



Boundary of 3D gapped topological superfluid

vacuum

z

z

N  = 0 

x,y

0

N  = 0 

N  = +2 

         p
2

2m*
— μ+U(z)

         p
2

2m*
+ μ—U(z)—

cB
.p

cB
.p( ( =

0 

μ—U(z)

Majorana
fermions
on wall

3He-B

N  = +2 

helical fermions

spectrum of Majorana fermion zero modes

Hzm = cB z .  x p = cB ( xpy ypx)^

 



fermion zero modes on Dirac wall

— (z)

+ (z)

c .p

c .p( ( =

N  = 1 

N  = +1 

z 
0 

Volkov-Pankratov,
2D massless fermions
in inverted contacts
JETP Lett. 42, 178 (1985)

chiral
fermions

Dirac point
at the wall

z

N  = +1 

Dirac vacuum

0

Dirac vacuum

Dirac wall

N  = 1 

 > 0 < 0

 

Bi2Te3in Bi2Te3 Dirac point is below FS:
nodal line on surface of topological insulator

nodal line

Dirac point



Majorana fermions: edge states
on the boundary of 3D gapped topological matter

3He-Bvacuum

z

N  = +2 N  = 0 

x,y

0
N  = 0 

N  = +2 

         p
2

2m*
— μ+U(z)

         p
2

2m*
+ μ—U(z)—

c .p

c .p( ( =

— (z)

+ (z)

c .p

c .p( ( =

0 

μ—U(z)

N  = 1 

N  = +1 

z 
0 

* boundary of topological superfluid 3He-B

* Dirac domain wall

helical fermions

Volkov-Pankratov,
2D massless fermions
in inverted contacts
JETP Lett. 42, 178 (1985)

Majorana
fermions
on wall

chiral
fermion

spectrum of fermion zero modes

Hzm = c ( xpy ypx)



Majorana fermions

N  =  2 

N  = +2 

         p
2

2m*
— μ

         p
2

2m*
+ μ—

xcxpx+ ycypy+ zczpz

xcxpx+ ycypy+ zczpz
( ( =

z 
0 

on interface in topological superfluid 3He-B

one of 3 "speeds of light" changes sign across wall 

spectrum of fermion zero modes
Majorana
fermions

domain wall
phase diagram

Hzm = c ( xpy ypx)

cx

cz

N  =  2 N  = +2 

cy

N  = +2 

N  = 2 

N  = 2 

N  = +2 

 

0



 vortices in fully gapped 3+1 system

 fermion zero modes in vortex core

Zero energy states in the core of vortices in topological superfluids



E (pz , Q)

pz

Q=2

Q=1

Q=0

Q=-2

Q=-1

E (pz , Q)

 quantum numbers: Q - angular momentum  & pz - linear momentum

pz

E(pz) = - cpz for d quarks

Spectrum of  quarks  in core of electroweak cosmic string

asymmetric branches cross zero energy

 Bound states of fermions on cosmic strings and vortices

E(pz) =  cpz  for u quark

Number of asymmetric branches = N
N is vortex winding number

Index theorem: Jackiw & Rossi 
Nucl. Phys. B190, 681 (1981)



E (pz , Q)

pz

Q=-3/2
Q=-5/2

Q=-1/2

Q=-7/2

E (Q, pz = 0 )

3/21/2 5/2 7/2
Q

E(Q,pz)  =   Q 0 (pz)

Number of asymmetric Q-branches = 2N
N is vortex winding number

is the existence of fermion zero modes
related to topology in bulk?

Index theorem for approximate fermion zero modes: Index theorem for true fermion zero modes?

no true fermion zero modes: 
no asymmetric branch as function of pz

asymmetric
branch

as function of Q

 Bound states of fermions on vortex in s-wave superconductor

Angular momentum Q is half-odd integer
in s-wave superconductor

0 = 2/ EF << 

Caroli, de Gennes & J. Matricon, Phys. Lett. 9 (1964) 307

GV JETP Lett. 57, 244 (1993)

N  = 0 



E (Q, pz = 0 ) E (pz , Q)

pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

topological 3He-B at μ > 0 :   N  = 2 

Q1 2 3 4

E (pz , Q)

pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

EQ=-Q 0  
�

0= 2/EF << �

Q  is integer 
for p-wave superfluid 3He-B

 gapless fermions on Q=0 branch form

1D Fermi-liquid

 fermions zero modes on symmetric vortex in 3He-B 

helicity + helicity 

Misirpashaev & GV 
Fermion zero  modes in symmetric  vortices in superfluid 3He,

Physica B 210, 338 (1995)



E (Q, pz = 0 ) E (pz , Q)

pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

Q1 2 3 4

EQ=-Q 0  

0= 2/EF << 

Q  is integer 
for p-wave superfluid 3He-B

 gapless fermions on Q=0 branch form

1D Fermi-liquid

Misirpashaev & GV 
Fermion zero  modes in symmetric  vortices in superfluid 3He,

Physica B 210, 338 (1995)

topological 3He-B at μ > 0 :   N  = 2 

 fermions zero modes on symmetric vortex in 3He-B 



pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

E (pz , Q)
pz

 topological quantum phase transition in bulk & in vortex core 

vs

N  = 2

vs

N  = 0

μ > 0μ < 0

topological superfluid 3He-Bnon-topological superfluid

μ

N  = +2 N  = 0 

1/m*
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2m
— μ

         p
2

2m
+ μ—

cB
.p

cB
.p( ( =

5

5  c .p  M + μR

c .p+ M  μR( ( =

superfluid 3He-B as non-relativistic limit of relativistic triplet superconductor

superfluid 3He-B

relativistic triplet superconductor

cB = c  /M

cp  << M
μ  << M

(μ + M)
2 = μR + 2

m = M / c2 

2



         p
2

2m
— μ

         p
2

2m
+ μ—

cB .p

cB .p( ( =

5

5  c .p  M + μR

c .p+ M  μR( ( =

phase diagram of topological states of relativistic triplet superconductor

3He-B



5

5  c .p  M + μR

c .p+ M  μR (( =

energy spectrum in relativistic triplet superconductor

gapless spectrum
at topological
quantum phase
transition

soft quantum phase
transition:
Higgs transition
in p-space

R
     |μ

R
|<μ*μ

R
2 2 2=M  

R
*      |μ

R
|>μ

 



spectrum of non-relativistic 3He-B

μ

Dirac Dirac

N  = +2 N  = 0 

N  = 0 N  = 2 

1/m*

0N  = 1 N  = +1 

         p
2

2m*
— μ

         p
2

2m*
+ μ—

cB .p

cB .p( ( =

μ< 2/M  μ<0 μ=0 μ> 2/M 
 

gapless spectrum
at topological

quantum phase
transition

soft quantum phase
transition:

Higgs transition
in p-space



5

5  c .p  M + μR

c .p+ M  μR (( =

fermion zero modes in relativistic triplet superconductor

vortices in
topological superconductors
have fermion zero modes

pzpz

generalized index theorem ?



index theorem for fermion zero modes on vortices
(interplay of r-space and p-space topologies)

for vortices in Dirac vacuum

N
5 

invariant was introduced by Golterman, Jansen & Kaplan for lattice fermions
         Phys. Lett. B 301 (1993) 219

see also M.A. Zubkov & GV
Momentum space topological invariants for the 4D relativistic vacua with mass gap
Nucl. Phys. B 860 (2012) 295

winding number
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      1  tr [  d3p d  d  
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BROKEN SYMMETRY OF VORTEX CORES IN  He-B
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∼ few ξ

Ikkala, Hakonen, Bunkov, Krusius et al 1982-

Salomaa, Volovik, Thuneberg et al
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DAMPING OF SPIN PRECESSION VIA VORTEX CORES

Core of the non-axisymmetric vortex

M

Torque from precessing magnetic moment puts vortex

core in twisting motion (oscillations / precession)

⇓

Transitions between the core-bound fermion states

are triggered and the core gets overheated

⇓

Dissipation

(Kopnin and Volovik, 1998)




