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Quantum Hall Problem

Landau levels (spinless case)

N=1_ _______ how. Integer QHE

e Cyclotron frequency : w, = <2

.
@ Lowest Landau level : orbitals
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Fractional QHE
@ Partial filling + interaction — FQHE
e FQHE is a hard N-body problem

b @ Gapped bulk, massless edge, anyons,
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Bulk-Edge Correspondence

Fractional Quantum Hall Trial States have identical form as CFT corelators in the bulk (why?
— not known - just an observation)
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This CFT is widely believed to be the same one as on the edge of the sample.

This however cannot work for any state described by a non-unitary CFT (Gapless bulk?)

What is the bulk-edge correspondence for non-unitary states?



Limitations of exact diagonalizations

ED provide the decomposition of any eigenstate |W) on a
convenient occupation basis |mg, ..., mp, )

|W) = Z C{m,-} |mo, - mNé)

Exponential growth of Hilbert space: 2*N coefficients needed

Any state can be written as

W) =Y P BI™l_Bl™elpg |mo,.... mpy,)
{m;}

where the BI™! are matrices and P, Pr projectors on given matrix
elements.
In some cases :

@ [ he size of the B matrices can be much smaller than the
Hilbert space (one dimensional systems)

@ [ he size of the B matrices still grows exponentially but a
controlled truncation can be applied



Matrix Product States for Fractional Quantum Hall

m=0,1 are the unoccupied/occupied electron Hilbert space. i, j are the
bond dimensions of the MPS

PL£ £i£mi£ L £ £ éPR

Zaletel and Mong (arXiv :1208.4862) | MPS for Laughlin and MR

W) =) Tr(B™B™---B™)|my---m,)
{m;}

where the MPS matrices B™ can be computed analytically (underlying
CFT is non interacting)

>

Zalatel and Mong used the well-known orbital basis as 1D basis for the 2D
FQH problem computed entanglement spectrum for Laughlin, Moore-Read



What Can Matrix Product States In The FQH Gain Us?

1. Build GS and gh Wavefunctions not achievable by ED: for example, superconfomal
N=1 wavefunctions or other Virasoro minimal models. unitary vs nonunitary.

2. Test screening properties of plasmas, conjectures about many-component plasmas
3. Compute Braiding

4. Compute Entanglement Properties (spectrum, topological entanglement entropy,
etc)

5. Compute Correlation Functions
6. Flows, unitary vs nonunitary

7. MPS representations directly from the differential operator fixing the state,
integrability



Where does the MPS structure
come from?



FQH trial wave-function from CFT

(2d) Conformal field theory : field theory of scale invariant (massless)
Systems

@ Infinite but graded Hilbert space :
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9 Operators V(z) =) ,2"V,
@ Correlation functions (u|Vi(z)) - V,[z,) v

Trial wave function ¥(z,.--- .2,) = (u|V(z)--- V(z,) v,



Matrix Product State for FQH trial wave-function
V(z1, -+ ,2zp) = (u|V(z1) - V(zn)|v) is a MPS in disguise!

Dubail, Read, Rezayi (2012)

W) =" ((u B™B™ - B™ |v)) my - - my)
{m;}

+ numerical checks for non-interacting CFTs (Laughlin and Moore-Read)

BO — e—l'\/5</>o7 B! = e~ Vo

@ (g is the bosonic zero mode (By shifts the electric charge by 1/q)
@ /[ is the matrix of the electron operator V(z) =) z"V,

(B]Vola) = 0a4,a. (BIV(1)|)



MPS ingredients

We have obtained the MPS representation for a large series of non-

abelian FQH states whose underlying CFT is interacting
(Estienne, Papic, Regnault, BAB, 2012)

What is required for a numerical implementation ?
@ build the basis |a) (auxiliary space)
@ compute the matrix elements (G|B"”|«)

@ meaningful truncation scheme




Building the Hilbert Space

The auxiliary space |«) :
CFT Hilbert space

U(1) ® CFT,,

V(z) =: eV%3) : @ &(2)

®(z) lives in the so-called neutral conformal field theory CFT),



The U(1) Hilbert space
The CFT factorizes H = Hupeutral @ Hu(1)

as a neutral CFT times a U(1) chiral free boson.

: , 1
o(w) = po — iag log(w) + i Z —apw "

n
n#0
Primary states |Q) are defined by their U(1) charge Q

ao|Q) = Q|Q), an|Q) =0 forn=>0

The Hilbert space is simply a Fock space

Descendants are obtained with the lowering operators a:r, —a_, n>0
g op

Qi) =[] a-wil@):  2lQ,1) = QIQ, )
i=1

with p1g > pip > -+ > pp >0




The neutral Hilbert space

L, (modes of the stress-energy tensor) obey the Virasoro algebra
C
12
Primary fields |A) are annihilated by the positive modes

Lo, Ll = (n—m)L o+ n(n2 —1)0p+tmo

Lo|A) = A|A), LJAY=0 n>0

Descendant states : lowering operators LT = L_,, n >0

A N) = L—/\1 L—/\z T L-)‘nIA>

Two issues :
@ these states are not orthogonal
@ they might not even be independant!
= No closed formula, has to be implemented numerically.



Building up an orthonormal basis

The level of a descendant |A, \) is just the size of the partition
Al = Zj Aj-

e.g. at level 2 we have two states : [2,|A), L_5|A).

At each level we compute the overlap matrix between descendants

(A, N|A,N).

e.g. at level 2 we have ( 4824+ 1) 64 )

6A 4A + 5

o if positive definite, Gramm-Schmidt

o if states with vanishing norm (null-states), they have to be discarded

Or build the Gram matrix to have nonzero determinant from very beginning

From CFT the number of null-vectors is known : check for numerics.



How to compute the MPS matrix
elements:



The U(1) part

CFT factorization : V(z) = ®(z) ® : e/Va#(2) .
where ®(z) is a primary field in the neutral CFT.

The matrix elements of the vertex operator

(@, 1| - €PPW Q1) = 6qr.ep Aurp

can be easily computed through the commutation relation

[am, eiBso(z)] _ 3eiBe)

. m r+s (mj +r—s)Im;!
SIS S (L) dmame S

j>1 r=0 s=0

Works for quasiholes too.



The neutral part

Matrix element for an arbitrary primary field ®(")(z) are of the form
(A", N[oM(1)|A,N)

They can be computed (in principle) using

[Lm — Lo, &) (1)] = mh&(")(1)

where h is the conformal dimension of ®(h)(z).

= But no analytical closed formula, has to be implemented
numerically.



For more complicated CFTs (parafermions, W algebras, N = 1 susy,
S3...), much more involved... but it can be done. For k = 3 Jack states :

The underlying algebra is the Vs algebra :

(Lo, L] = (7 — m)Lpsm + —n(n? — 1)0nsm.o

12
[Ln, W] = (2n — m) Whim

. 16
[Wh, W] = 22+5C(”_ )An+m+%”(” _1)(” — 4)0n+m.,0
1 1
+(n — m) 15(n+m+2)(n—|—m-|—3)—6(n+2)(m+2) Losm

The matrix elements can be computed using :

(@[ [Wa, W(1)]|a) = Ca(A, Aar, g ) (o [W(1) Wy | )

_ Z‘*(ﬁ:)) ’; (/| L_mW(1)]0) + (/[ W(1)L|ar)]




Truncation of the auxiliary CFT basis

The auxiliary space (i.e. the CFT Hilbert space) basis is of the form

1Q, 1) @ |A,N)

The natural cut-off is the level || + |pu| < P.
@ P = 0 recovers the thin-torus limit (Jack root partition)
@ The ¢ are either exact or zero at a given truncation level
@ In finite size the truncated MPS becomes exact for P large enough

o But the overlap is extremely good way before this P(N)

-~

Just exactly how good is it for different
states on different geometries?



“N=1 Superconformal” Wavefunctions

A conformal dimension 3/2 field with Z_2 fusion rules

C

(L, Lin]l = (n—m) Ly + En(n2 — 1)0n4m.0
3 1 1

1

Gives rise to clustered (k,r)=(2,6) wavefunctions (Jackson, Simon, Read, 2013): they die as
6t power of coordinates when 3 particles come together. C=-21/4 is a Jack
polynomial M(3,8) (Haldane, BaB, 2008) and C=7/10 is M(4,5).

A ) =Ly Loa, By oo T, |A)

Central charge is a free parameter, and one can probe irrational, non unitary
and unitary cases with the same algebra. (of course, for irrational we don’t
know mps)



We have the MPS for RR Z=3.. and for
all the (k,r)=(2,r) Jacks as well as N=1
superconformal states.

Tricks understood (easier ways of doing RR than the W
algebra, dealing with null vectors, computing matrix elements,

etc). Can be applied to truncated CFT in other areas
Estienne, Regnault, BAB, to appear

What are the properties of the MPS
and what can we numerically do?



Benchmarks for MPS

P=0 approximation is the root partition of 18 | | . ]
the FQH states (the Tao-Thouless state CDW ¢ gl !
in orbital space) o E

£
We obtain ALL the degenerate FQH states, §>“ 2 | |
even though we work on the plane. Thisis 4| Moore_égggh('li(nzgi/z?; |
because the plane is effectively identical to 2 Calfian he20=d) —+— |
the cylinder, and the infinite cylinder should "0 . 10 15 2
contain all the degenerate states. truncation level P

P=25 for Laughlin doable (B matrix 2*1078 row dimension), but only P=11 for RR
state (optimizing maybe goes to P=12).

We have obtained the (k,r) =(2,r) and (k, 2)- Z_k parafermions for cylinder, plane,
sphere; for k>3, the method starts having increasing deficiencies due to large number
of null vectors. k=3 has another description in terms of Virasoro CFT.

Power of MPS is in approximating upon truncation. For exact state, Jack polynomial
machinery is faster!
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MPS on Sphere VS Cylinder

Convergence much better on the cylinder than the sphere.

Laughlin state v=1/3 on the cylinder Laughlin state v=1/3 on the sphere 1F 1
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Computing With MPS

The E matrix is an importgmt quantity in the MPS. Its largest eigenvalue
gives the norm, the left and right eigenvectors are the projectors in the
case of infinite MPS  k I |

m

| m
B

The next eigenvalue bounds the decay of correlations.

Entanglement spectrum (real space, orbital, particle) in infinite limit, etc,
computable from E matrix.

What are the E matrix properties for FQH states?



Properties of E matrix; Orbital, Particle
and Real Space Spectra In Infinite Limit

The E-matrix, though built on plane, knows the state degeneracy (both abelian and
nonabelian). Integrable structure of operators.

Build projector onto q degenerate states per neutral CFT sector:
Pk, k:()...q—l

B" P, = P,_1B™

The largest eigenvalue eigenstate of the E matrix contains (depending on
matrix elements) the orbital, particle and real space entanglement spectrum
in the infinite limit.

qg—1
Eap = Y Ao
1=0
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Entanglement Spectra

Pair correlation
functions are also
computable
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States With Same Clustering

In 2008 and 2009, we introduced a 10 | Jack (k=2,r=6) i.e. M(3,8) —
series of symmetric and 35 | [—
antisymmetric polynomials, labeled 30 t -
by a a root partition (pattern of wp B _ =
zeroes, thin torus limit — Bergholtz, 20 ¢ S
Seidel, Kardhele, Barkeshli, Wen, 154 — —
Ardonne, Lee, and many others) with 10 . = = = =
the property: 1 2 4 8 15 26 45
N 0 1 2 3 4 5 6
| J (D IR CE SN N CE) A P
- 40 | Tricritical Ising model
It was soon realized by us and others 35 | —
that: 30 | -
1. many of these states are wp 25 ¢ L =
nonunitary (see Read, 2009) 20 — =
15 | - = =—
2. many are not uniquely defined by 10 = = = =
clustering. Z 1 2 5 9 17 29 50
Question: can we distinguish them 0 1 2 |35 4 5 6



Gap

Gap Of The E matrix

Laughlin v=1/3
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L/21 In(A4/Ay)

L/2r In(Aq/Ay)

Gap Of The E matrix

Moore-Read state (vacuum x vacuum sector)
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Gap Of The E matrix

Gaffnian state (vacuum x vacuum sector)

2 3 4 5 6 7
truncation level P

0.00 L=40.00 —e— L=50.00
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3 4 5 6 7 8
truncation level P

—
N

L=30.00 L=40.00 —e— L=50.00
—e— | =35.00 —&— 1=45.00




Transfer matrix for the FQH model states

Gap

A - A

E matrix gap for the Laughlin v=1/3 state

0 1 2 3 4 5 6 7 8
truncation level P

9 10 11 12 13 14

00 —e— L=30.00 —e— L=40.00 —e— L=50.00
.00 —e— 1=35.00 —e— L=45.00

Largest eigenvalue splitting for the Moore-Read state

o0 1t 2 3 4 5 6 7 8 9 10
truncation level P
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L=40.00 —e— 1=50.00

[=inf, —e—
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@ E matrix for a cylinder of
perimeter L

@ For the Laughlin v = 1/3, the
gap seems to converge to a
finite value

@ For states such as the
Moore-Read or the Gaffnian, we

have to consider several sectors
({1,V¥} and {0} for MR)

Largest eigenvalue splitting for the Gaffnian state
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Entanglement Entropies:
How Well Do They Behave And What
Do the Nonunitary Wfs Show



Topological Entanglement Entropies:

One can obtain some info about the modular S matrix directly from the ground-state
wavefunction

0
d, = i. B
So

pq = trp(|W) (W) A

Hy(N) o dV.

Sy=al —InD+--- ) ngln(d,)

p:ﬁ.
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Entanglement Entropy - Laughlin
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Entanglement Entropy — Moore-Read

o = N W BSs

Moore-Read state
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Entanglement Entropy — Moore-Read

Moore-Read state, quasihole sector
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Entanglement Entropy — Read-Rezayi
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Entanglement Entropy NonUnitary State Gaffnian

Gaffnian state
Y OaFe@ T
3 /'/"'
/'
< 2 =
iy r"
1| 3
y P=11 -
0 P=12
| [~ r=0.803 #-0.016 P=13 -
0 5 10 15 20 25
perimeter

This corresponds to a total quantum dimensions = 5 of the theory. This would be the
guantum dimension of the theory without the quasihole sector.



Entanglement Entropy NonUnitary State Gaffnian
Plus Quasiholes
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Similar Value to the ent entropy without the nonabelian nonunitary quasihole sector.



Gap
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Correlations in Moore-Read and Laughlin

The E MPS matrix is gapped for More Read and Laughlin, reaches
convergence fast, for small truncation level.
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The electron sector of the Gaffnian matrix

also exhibits exponentially decaying
correlations. “Gaplessness” of the
Gaffnian not in the electron sector.

Gap

0.6

0.5 -8 .
'\
o4 .\\XM ‘”"—‘lil:g:hg

0.3

0.2t

0.00
0.1}

TERERL
BB WWN N

5.00

0.00 —e—

()}
o
o

5.00 —e— ||
0.00 —e—

0 1 1 1 L 1 1 L 1 T

0 1 2 3 4 5 6 7 8 10 11

truncation level P

©

12

0.6

Gap
I_I_I_I_I_If
N

=25.
0.00

5.00 —e—

——

02t

01 5.00

0.00

AR BDWW

05 r . ]
Gaffnian

0.4 :

03 r /\/./ _m |

0.00 —— | |

0 1 1 1 1 T
0 1 2 3 4

truncation level P

()]

6



Quasiholes: Laughlin

with Yangle Wu

10
V(M1 M2l 2N,) =

= Sp (Nev/@+ 2, ‘ (m) - Vo (ngn) [Ne /@, P) (Nev/@, PV, (1) - V. g (2n.) [0, 0)

Ngh

= It (v 0

a<B

. ngh
elﬁ >l d(na) . |Ne\/Z]7 P>

o [N} =~ [=p] oo
I

There are a large number of quasi-hole representations
depending on where we insert the quashiholes. Edge
representation can be made exact, bulk representation cannot,
due to branch-cut. Better resolution for braiding - in the bulk,
for edge coefficients — on the edge.
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Braiding of Laughlin Quasiholes

Uniformity of Norm of
Laughlin Conformal Block
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Quasiholes: (2,2) and (2,3) Jacks. Moore-Read and Gaffnian

For the nonabelian quasiholes, the MPS representation cannot be made
exact (except if going to infinity in truncation)
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Conclusions

MPS description for large series of FQH states is now available.
Zalatel and Mong showed how to do it for Laughlin and Moore-Read.

We obtained the MPS description for a large series of states (most Jack polynomials,
other)

This approximation scheme opens new avenues

It becomes possible to test many of the predictions of CFT, sort out what non-unitary
theories do

DMRG should NOT be done on the sphere, contrary to many previous calculations.

Braiding, topological quantities, flows, etc



