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Limitations of exact diagonalizations

ED provide the decomposition of any eigenstate |Ψ� on a convenient
occupation basis |m0, ...,mNΦ

�

|Ψ� =
�

{mi}

c{mi} |m0, ...,mNΦ
�

What is the amount of memory needed to store the Laughlin state ?

The most powerful computer
in the world can’t store more
than 21 particles !

Matrix Product State : more compact and computationally friendly way
to store these states

Benoit Estienne (LPTHE) Matrix Product State for FQHS Cargèse 06/2012 3 / 31
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The quantum Hall effects

Landau levels (spinless case)

Integer QHE

Cyclotron frequency : ωc = eB
m

Lowest Landau level : orbitals
�z | m� = zm exp

�
−|z |2/4l2

�

Fractional QHE

Partial filling + interaction → FQHE

FQHE is a hard N-body problem

Gapped bulk, massless edge, anyons,
. . .

Benoit Estienne (LPTHE) Matrix Product State for FQHS Cargèse 06/2012 8 / 31
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1.1. Excitations in quantum Hall systems 13

system). In this description it is assumed that all the electrons are polarized by the strong
magnetic field. The Laughlin wave functions are obtained from this hamiltonian by doing
a variational calculation. There are certain constraints on the wave functions, namely, they
have to be antisymmetric under the exchange of any two electrons and they need to be eigen-
states of the total angular momentum operator. In addition, we assume that the interactions
are taken into account via a Jastrow factor, which is a two-body correlation, keeping the
electrons apart. This factor has the general form . Taking these constraints into
account leads to the following form of the variational wave functions (using the symmetric
gauge in describing the magnetic field which is perpendicular to the plane of the electrons)

(1.2)

where we used complex coordinates to represent the position of the electrons, while the
magnetic length, is the basic length scale. The quantum Hall systems these
wave functions describe have filling fraction . They are not the exact ground state
wave functions for the Coulomb interaction, but they were shown to have very good overlap
with the numerically obtained ground state wave functions for a large class of repulsive
interactions. So studying these wave functions is a good starting point to study properties
of the quantum Hall systems at . On should keep in mind however, that many
properties, such as the behaviour of the transition from one quantum Hall state to another,
can not be addressed in this way. What can be learned in this approach are properties of the
excitations over these qH systems, and they turn out to be very interesting.

Before we go on to discuss the properties of the excitations over the quantum Hall
systems, we will first briefly discuss the other fractional quantum Hall systems, at filling
fractions , with . From the experimental plot in figure 1.1, it can be seen that
all the fractions have an odd denominator. The Laughlin states only describe a systems
of fermions when is odd. To explain the other quantum Hall systems, Jain proposed
a scheme in which composite fermions play a crucial role [60]. In this approach, an even
number of flux quanta is bound to the electrons, to form the composite fermions. These
composite fermions effectively feel a reduced magnetic field, and can form a integer quan-
tum Hall system. The filling fraction of the original electrons becomes . Almost
all the fractions observed can be obtained in this way. Note that the filling fractions in the
composite fermion scheme all have an odd denominator, related to the fact that the quantum
Hall systems are built from electrons.

1.1 Excitations in quantum Hall systems
Quasiholes in quantum Hall systems can be ‘made’ by locally increasing the magnetic flux
through the sample in an adiabatic manner. These quasiholes can be shown to have a frac-
tional charge, and also the statistics is fractional, in the sense that it interpolates between
fermi and bose statistics.

But before we come to the point of the statistics, we will first show how the fractional
charge of the quasiholes arise, in the case of the Laughlin states. So we are in a situation
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2.3. Quantum Hall systems and conformal field theory 27

level can be viewed as eigenstates of an interaction hamiltonian.
Wave functions for quantum Hall systems in the lowest Landau level can be written in

the form
(2.13)

where the are the complex electron coordinates and is the magnetic length.
is a polynomial in the electron coordinates and is called the ‘reduced wave func-

tion’. The important point is that this polynomial only depends on and not on the complex
conjugates . Note that is not normalized. In this thesis, we concentrate on the
reduced wave functions, but simply speak of ‘wave functions’ (we keep the tilde, however,
to remind the reader of this).

We will now describe the way in which conformal correlators can be used to define
quantum Hall systems. This will be done using two examples, namely the Laughlin and
Halperin states. In the next chapter, we will define the clustered quantum Hall states and
investigate their properties in subsequent chapters.

2.3.1 Example: the Laughlin wave function
Following the reasoning of Moore and Read, the wave functions for quantum Hall systems
can be written as correlators in a chiral conformal field theory. We explain how this can be
done using the Laughlin wave functions as an example, as they are the simplest fractional
quantum Hall states. In the next subsection, we will treat the (somewhat) more complicated
Halperin states [55].

The Laughlin wave functions,

(2.14)

can be reproduced as a correlator of vertex operators of a free boson , compactified on a
radius . This vertex operator has the form

(2.15)

The correlator which gives the Laughlin factor is

(2.16)

The background charge is inserted in the correlator to satisfy charge neutrality. The factor
is inserted to obtain a non-zero result in the limit where the background charge is

sent to infinity. This procedure of dealing with the background charge is different compared
to [71], where a homogeneous background charge was used. Using a homogeneous back-
ground charge is more involved, but has the advantage of also reproducing the exponential
factors (with the magnetic length set to ) of the full wave function [71].

That the correlator in eq. (2.16) indeed reduces to the Laughlin wave function eq. (2.14),
can be seen from the operator product expansion (OPE) for the vertex operators

(2.17)
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Matrix Product State for FQH trial wave-function

Ψ(z1, · · · , zn) = �u|V (z1) · · · V (zn)|v� is a MPS in disguise !

Dubail, Read, Rezayi (2012)

|Ψ� =
�

{mi}

(�u| Bm1Bm2 · · · Bmn |v�) |m1 · · · mn�

+ numerical checks for non-interacting CFTs (Laughlin and Moore-Read)

Zaletel, Mong (2012)

B0 = e−i
√

νϕ0 , B1 = V0 e−i
√

νϕ0

ϕ0 is the bosonic zero mode (B0 shifts the electric charge by 1/q)
V0 is the matrix of the electron operator V (z) =

�
n znVn

�β|V0|α� = δ∆β ,∆α �β|V (1)|α�

Benoit Estienne (LPTHE) Matrix Product State for FQHS Cargèse 06/2012 13 / 31
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MPS ingredients

What is required for a numerical implementation ?

build the basis |α� (auxiliary space)

compute the matrix elements �β|Bm|α�

meaningful truncation scheme
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This field can be used to construct trial wave-functions with (k = 2, r = 6) clustering. Note that these wf depend
explicitly on the central charge c since it appears in the OPE Ψ×Ψ.

The field Ψ is primary w.r.t. the Virasoro algebra, but it is part of an extended chiral algebra called the
super-Virasoro. It is generated by the modes of the stress-energy tensor T (z) =

�
n

zn−2L−n and those of
Ψ(z) =

�
n

zn−3/2Ψ−n

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (91)

{Ψn,Ψm} =
3
c
Ln+m +

1
2

�
n

2 − 1
4

�
δn+m,0 (92)

[Ln,Ψm] =
�

1
2
n−m

�
Ψn+m (93)

With respect to this super-algebra the field Ψ is no longer primary since Ψ3/2|Ψ� = |0�, or equivalently |Ψ� = Ψ−3/2|0�
In this setup the field Ψ appearing in the electron operator is no longer a primary field, but it is part the chiral

algebra. The electron operator is now part of the chiral algebra, which is the most natural description of the neutral
CFT, ensuring a one-to-one mapping between quasi-particle types and (super)-primary fields.

A. Descentdants

Descendants of a given super primary field ∆ are spanned by

|∆, λ, µ� = L−λ1 · · ·L−λnΨ−µ1 · · ·Ψ−µm |∆� (94)

with λ1 ≥ λ2 ≥ · · · ≥ λn > 0 and µ1 > µ2 > · · · > µm > 0. Note the strict inequalities for µ, due to the fermionic
nature of Ψ. The entries of µ will be integer in the Ramond sector, but half-integer in the Neveu-Schwarz one.

As for the Virasoro case there will be null vectors, and these can be found with the same method (but with the
larger super algebra). If there were no null-vectors the character would be (in the NS sector)

�

n≥1

1
1− qn

×
�

r

(1 + q
r) (95)

where r is a positive (half)-integer in the R (NS) sector. This is clearly the counting of a boson (Ln) times the
counting of a fermion (Ψn).

As a benefit from having the electron field in the chiral algebra, matrix elements with Ψ are relatively easy to
compute, since

�α�|Ψ(1)|α� = �α�|Ψ∆α−∆α� |α� (96)

and one just needs to commute the mode Ψ∆α−∆α� through the modes of |α� and |α�� which are of the form:

|α� = |∆, λ, µ�, ∆α = ∆ + |λ| + |µ| (97)
|α�� = |∆�

, λ
�
, µ

��, ∆α� = ∆� + |λ�| + |µ�| (98)

This also means that no OPE structure constants have to be computed, at least as far as the B matrices are concerned.
We would need some for the qh matrix though.

B. Topological sectors

The central charge is a free parameter. However as was the case for the Virasoro algebra - the CFT has a finite
amount of primary field (i.e. it is rational) only for a discrete serie of values. We call these models (super) minimal
SM(p, p�). They are labeled by two integers (p, p�), and the central charge is

c(p, q) =
3
2

�
1− 2(p− p�)2

pp�

�
(99)

For a central charge not of the form SM(p, p�), the CFT is irrational and we expect a torus degeneracy that grows
with system size, and ultimately infinite in the thermodynamic limit. The integers have to obey
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state superposition of all sectors, (i.e. we sum over the q ground-states in the Laughlin) In order to
make a Schmidt decomposition

ρ =
∑

θ±∞

∣

∣ψθ−∞,θ+∞

〉 〈

ψθ−∞,θ+∞

∣

∣ (90)

(the sums on θ±∞ are because we are not looking at a pure state but at the sum of the density matrices).
The reduced density matrix by tracing out the region to the right of the orbital cut l is now:

TrBρ =
∑

αl,α′
l

∑

θ+∞

〈α′
l, θ+∞ |αl, θ+∞〉

∑

θ−∞

|θ−∞αl〉 〈θ−∞α′
l| (91)

We can now easily compute the norms of the vectors on the right of the cut:

∑

θ+∞
〈α′

l, θ+∞ |αl, θ+∞〉 =
∑

θ+∞

∑

{ml}[B
ml+1Bml+2 . . . Bml2 ]αl,θ+∞ [Bml+1#Bml+2# . . . Bml2#]α′

l
,θ+∞ = (92)

=
∑

θ+∞

(

∑

ml+1
Bml+1

αl,α1B
ml+1#
α′

l
,α′

1

)(

∑

ml+1
Bml+2

α1,α2B
ml+2#
α′

1,α
′
2

)

. . .
∑

θ+∞

(

∑

ml2
B

ml2
α0,θ+∞

B
ml2#

α′
0,θ+∞

)

(93)

where double index in α’s mean summation (the summation over θ+∞ is explicitly shown: the other summations,
over α0,α1,α2... are not shown. We now have for the density matrix:

A. E matrices

We can recast the scalar product in another form. Use the following standard definition for the tensor product of
matrices:

A⊗B =





a11B a12B a13B . . .
a21B a22B a23B . . .
a31B a32B a33B . . .



 (94)

We can now write:

E =
∑

m

Bm# ⊗Bm (95)

Note that we did not define it as
∑

m Bm† ⊗ Bm as the usual MPS people define it and which I think
is just sloppy notation. If the bond dimension of the MPS matrix B is D, the components of the E matrix read:

E(k−1)D+i,(j−1)D+l =
∑

m

Bm#
kj Bm

il (96)

It is clear then that the norm of the vectors on the right side of the cut is:

∑

θ+∞

〈α′
l, θ+∞ |αl, θ+∞〉 =

D
∑

θ+∞=1

[

ENright of cut
]

(α′
l
−1)D+αl,(θ+∞−1)D+θ+∞

(97)

where Nright of cut is the number of sites to the right of the cut (which we will take to infinity).

TrBρ =
∑

αl,α′
l





D
∑

θ+∞=1

[

ENright of cut
]

(α′
l
−1)D+αl,(θ+∞−1)D+θ+∞





∑

θ−∞

|θ−∞αl〉 〈θ−∞α′
l| (98)

This is the density matrix in the basis of vectors |θ−∞αl〉 which are not orthorormal. The norm of these vectors is:
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In our cases, since we are looking at an infinite chain, we will only take into account the multiplet of highest |λ|
eigenvalues. For this, we have

(En)αβ =
∑

i

λn
i ψ

i
αφ

i
β (107)

So what we will need to obtain the density matrix are just the left and right eigenvectors of E.

1. Laughlin state structure

For Laughlin states, as Benoit did we can build the projector onto the q degenerate groundstates Pk, k = 0 . . . q−1,
which in the P,N basis has the form :

(Pk)P,N ;P ′,N ′ = δP,P ′δN,N ′δN mod q,k (108)

and which has the properties

BmPk = Pk−1B
m (109)

Let ψ0 = A be the right-eigenstate of E with real eigenvalue λ0. We can then form the states

ψk =
q

∑

j=1

ei
2πkj

q PjA (110)

which are right eigenvectors of eigenvalue λ0e
i 2πk

q . We then have that ψk = ψq−K†
(when written in matrix form,

and up to a an overall U(1) phase) pls check numerically. There is a similar equation for the left eigenvectors: if
φ0 = C is the left-eigenstate of E with real eigenvalue λ0, we can then form the states

φk =
q

∑

j=1

e−i 2πkj
q CPj (111)

with eigenvalues λ0e
i 2πk

q (again, to go from matrices to vectors, we remember that ψα = ψ(j−1)D+l = Alj ,φα =
φ(j−1)D+l = Cjl- note the order of the indices, and the equations they satisfy:

∑

mBmABm† = λA,
∑

m Bm†CBm =
λC, or in other words left and right eigenvectors of B# ⊗B). (pls check)
As they are left and right eigenvectors of the same matrix, we have (pls check):

∑

α

ψk1
α ψk2

α = δk1,k2

∑

m,n

ei
2π
q
k1(m−n)Tr[PmACPn] = δk1,k2

∑

n

Tr[PnAC] = δk1,k2Tr[AC] (112)

where I used PmPn = δmnPn

Hence the spectral decomposition of the matrix E (considering only the highest eigenvalues |λ| reads:

Eαβ =
1

∑

α ψ0
αφ0

α

q−1
∑

i=0

λiψ
i
αφ

i
β (113)

where φ0,ψ0 are the left and right eigenvectors as spit out by computer (un-normalized).

2. Largest Eigenvalue Structure

Under the assumption that the largest eigenvalue is in the sector diagonal in |P |, N we can keep in the E matrix
only those elements which have |Pl| = |Pj |;Nl = Nj and |Pk| = |Pi|;Ni = Nk, where Pi, Ni are the matrix element
entries. This reduces the dimension of the matrix from D2 to roughly D1.5 according to Nicolas’ results.
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The dominant configuration of the bosonic state ψ0
G is

n(λ0(2, 3)) = [2002002002...], or the highest density (2, 3)
state. We find this state is annihilated by (7) with
h2,1 = 3/4, as expected, as the wavefunction of this state
is also the correlation function of a minimal CFT M(5, 3)
field ψ(2,1) with this scaling dimension[7], and we identify
ψ0

G(z) as the (2, 3) vacuum Jack J
α2,3

λ0(2,3)(z).
Instead of using the differential equations that they

satisfy, it is easier to identify the FQH states with Jacks
from their clustering properties. Information on how the
Jacks vanish as k + 1 coordinates coincide is needed: we
verified that, for any (k,r,N)-admissible λ, if z1 = z2 =

. . . = zk = Z, that J
αk,r

λ (z) has a factor
∏N

i=k+1(Z−zi)r,
showing how it vanishes as a cluster of k + 1 coincident
coordinates is formed. This agrees with the known prop-
erties of the bosonic Laughlin/Moore-Read/Read-Rezayi
states (k ≥ 1, r = 2), as well as the “Gaffnian” (k = 2,
r = 3). For the case of the FQH ground states, where λ
= λ0

k,r , the Jacks satisfy a stronger clustering property
that relates N - and (N + k)-particle states: for {z} ≡
{z1, . . . , zN},

N
∏

i=1

(Z − zi)
rJ

αk,r

λ0(k,r)({z}) = J
αk,r

λ0(k,r)({z}, Z, . . . , Z), (8)

where on the RHS, zi = Z for i = N + 1, . . . , N + k.
As a corollary, when a (k,r) Jack FQH ground state is
fully k-clustered, i.e., zki−j → Zi for i = 1, . . . , N̄ and
j = 1, . . . , k, it becomes a Laughlin state in the cluster
coordinates:

J
αk,r

λ0(k,r)(z) → ψ(kr)
L (Zi). (9)

These properties show that, for these model FQH states,
removing a cluster of k particles at a point Z is ex-
actly equivalent to inserting r flux quanta (or vortices)
at that point (as is well-known in the k = 1 Laughlin
case, and implicit in the Read-Rezayi construction of the
parafermion states as symmetrizations over distinct pairs
of Laughlin-like clusters of particles [3] ).

As is obvious from their clustering property, the
(k,r,N)-admissible Jacks also have the property that a
(k + 1)-cluster of particles cannot have relative angu-
lar momentum less than r, and hence are simultane-

ous null states of Hermitian operators Ĥ(k+1)
r−1 , which

are the (k + 1)-body generalizations[7] of two-body

Hamiltonians Ĥ(2)
r−1 where the only non-zero two-body

pseudopotentials[4] are Vm > 0 for m ≤ r − 1 However,
for k > 1, r > 3 (and (k+1) and (r−1) relatively prime),

the number of linearly-independent null states of Ĥ(k+1)
r−1

is larger than the set of (k,r,N)-admissible Jacks, and in
particular, the homogeneous ν = k/r FQH state with λ
= λ0(k, r) is not in general unique, as seen in Table I of
[17]. For example, for (k,r) = (3,4), (spinless boson states
with N = 3N̄ , NΦ = 4(N̄ − 1)), the (3,4,N)-admissible

Jack with λ = λ0(3, 4) is a zero-mode eigenstate of Ĥ(4)
3

but is not unique. We did not find any other local Her-
mitian n-body pseudopotential operators that could be

added to Ĥ(4)
3 to make this Jack a unique null state, so

it remains unclear how to define the k > 1, r > 3 Jack
FQH states as unique null states of a model Hamiltonian
(although requiring them to also be eigenstates of the
non-Hermitian operator HLB does make them unique).
Mathematically, they are related to correlation functions
of primary fields of non-unitary minimal-sequence con-
formal field theories [7, 8].

In conclusion, we have identified a number of model
bosonic FQH ground states at ν = k/r (with k + 1
and r − 1 relatively prime) with a set of special Jack
symmetric polynomials, whose expansion in monomi-
als (free-particle occupation-number states) is (recur-
sively) known. The FQH states described here, being
single Jacks, are eigenstates of a multiplet of N mutu-
ally commuting, higher derivative many-body operators
(Sekiguchi operators)[18, 19], of which the first is E1 =
M , the total momentum, and the second is HLB(α). We
obtained the (k, r, N)-admissible partitions [8] as a spe-
cial case of the highest weight conditions on the Jacks
that generalizes to a (k, r, s, N)-admissibility to include
quasiparticle states [13]. It may be hoped that the iden-
tification of such larger underlying algebraic properties
of the conformally-invariant model FQH state will lead
to the development of analytic (as opposed to numerical)
techniques for calculation of their correlation functions
an other properties.
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qubits is a resource for quantum computation; entanglement between physical
qubits and the environment is a threat to quantum computation; entanglement
between physical qubits is essential for error correction.

Entanglement entropy is one measure of entanglement. If a system can be
subdivided into two subsystems A and B, then even if the whole system is in a
pure quantum state |!〉, subsystem A will be in a mixed state with density matrix
ρ obtained by tracing out the subsystem B degrees of freedom:

ρA = trB(|!〉〈!|) (1)

The entropy of this density matrix will be zero if the state |!〉 is the direct product
of a pure state for subsystem A with a pure state for subsystem B or, equivalently,
if the matrix ρA has only a single non-zero eigenvalue. If the entropy

SA = −tr(ρA ln ρA) (2)

is non-zero, then the subsystems A and B are entangled.
The entanglement entropy SA is a measure of the correlations between the

degrees of freedom of the A and B subsystems. In a 1+1-dimensional quantum
system, the dependence of SA on the length L of subsystem A can be used
to distinguish critical from non-critical systems: it remains finite as the length
increases, except at criticality, where it diverges logarithmically with a universal
coefficient. (1,2) Of course, in this case, there are other measures of criticality,
such as the power-law decay of correlation functions. In a gapped system, the
leading term in the entanglement entropy is proportional to the surface area of the
boundary. The coefficient is cutoff-dependent. However, in a 2+1-dimensional
system in a gapped topological phase, the first subleading term is universal and
independent of the size or shape of A: (3,4)

SA = aL − lnD + · · · , (3)

where L is the length of the boundary of region A (in two spacetime dimensions,
the ‘surface area’ is a length). It is not immediately obvious that D in the above
Eq. (3) is uniquely defined since a is a cutoff-dependent coefficient. However,
by dividing a system into three or more subsystems and forming an appropriate
linear combination of the resulting entanglement entropies, the length term can
be canceled, leaving only the universal term. (3,4) Such a construction can be used
to give a more precise definition of the topological entanglement entropy, but
its essential meaning is captured by (3). The quantity D is the total quantum
dimension of the topological phase, which we define in Sec. 2.

This is potentially a very useful probe of a topological phase. In such a
phase, all correlation functions are topologically-invariant at distances longer than
some finite correlation length and energies lower than a corresponding energy
scale. Hence, in order to identify such a state, one must examine the ground state
degeneracy on higher-genus surfaces or the braiding properties of quasiparticle
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eigenvector of T as well, so

Sbulk =
∑

a

na ln(da) . (27)

Each quasiparticle of quantum dimension da contributes ln(da) to the bulk entan-
glement entropy. Note that this “bulk” entropy is extensive not in the size of the
sample, but rather in the number of bulk quasiparticles.

4.3. The Bulk and Edge Entropies from the Holographic
Partition Functions

We show here that the entire topological entanglement entropy can be seen
in terms of the edge conformal field theory. We interpret this as an example of
holography. In a topological field theory, the degrees of freedom live on the edge.
In the fractional quantum Hall effect, these are, of course, the edge modes we have
been discussing all along. Holography simply means that all the information of
the bulk topological field theory is encoded in the edge modes.

As we have discussed above, adding or removing bulk quasiparticles changes
the boundary conditions on the edge modes. This will change the chiral partition
function for the edge. To illustrate this, consider the p + i p superconductor, where
there are three characters: χI , χψ and χσ , with a modular S matrix given in (A1).
The presence of σ quasiparticles (the vortices) in the bulk has an important effect
on the edge. As we reviewed in Ref. 21, an odd number of σ quasiparticles
changes the boundary conditions of the edge Majorana fermion from antiperiodic
around the circle to periodic. For a fermion with periodic boundary conditions on
the 1+1 dimensional torus, the chiral partition function is χσ . Thus we define the
holographic partition function for a single bulk σ quasiparticle to be Zσ = χσ . This
partition function yields the correct entanglement entropy. Taking the L/β → ∞
limit as in (23) yields

γσ = Sσ
I = 1√

2
.

For a p + i p superconductor with one vortex in region A, the entanglement entropy
is indeed

Sbulk + Sedge = ln(
√

2) − ln(2) = − ln(
√

2).

We define the holographic partition function for a single bulk ψ quasiparticle in a
similar fashion: Zψ = χψ . The corresponding entropy is then ln(Sψ

I ) = ln(1/2) =
−lnD. This is just Sedge, which is indeed what we expect, because there is no bulk
topological entropy for ψ quasiparticles.

Given our definition of the bulk entanglement entropy, it should be obvious
how to define the holographic partition function for an arbitrary number of bulk

-*
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2. QUANTUM DIMENSIONS

A fundamental characteristic of a topological field theory is the quantum
dimensions of the excitations. The topological entanglement entropy of the systems
studied here on a space with smooth boundaries is entirely given in terms of these
numbers.

For the quantum Hall effect and related states, one can find the quantum
dimensions directly from the wavefunctions. (22,23) In this paper we find it useful
to instead compute them using the methods of conformal field theory. The formal
reason why this is possible is that the algebraic structure of rational conformal
field theory is virtually identical to that of topological field theory (this can be
understood precisely by using the mathematical language of category theory).
A more intuitive reason is that the gapless edge modes of the 2+1-dimensional
quantum theories studied here form an effectively 1+1 dimensional system. A
1+1-dimensional gapless system with linear dispersion has conformal invariance,
so the powerful methods of conformal field theory are applicable. The edge modes
are in one-to-one correspondence with the modes of the bulk system, so the da

computed using conformal field theory are those of the bulk system as well.
We introduce the full conformal field theory formalism in the next section. In

this section we explain how to define both the individual quantum dimensions of
the quasiparticles da , and the total quantum dimension D of a theory. We discuss
explicitly the simplest non-trivial example, the Ising model.

The quantum dimension is simple to define. Denote the number of linearly-
independent states having N quasiparticles of type a as Ha(N ). Then the quantum
dimension da of the excitation of type a is given by studying the behavior of Ha(N )
for large N , which behaves as

Ha(N ) ∝ dN
a .

To have non-abelian statistics, one must have da > 1; these degenerate states are
the ones which mix with each other under braiding. In such a situation one typically
has da which are not integers.

As we discussed in the introduction, the topological entanglement entropy is
related to the total quantum dimension D, which is defined as

D =
√∑

a

d2
a . (5)

The sum is over all the types of quasiparticles in the theory. Thus to compute
D, one must not only compute the da but be able to classify all the different
quasiparticles as well. Since da ≥ 1 by definition, for D to make sense there can
only be a finite number of different quasiparticles. We must therefore confine
ourselves to topological field theories where this is true. Luckily, the topological
theories of most importance in condensed-matter physics have this property.
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largest eigenvalue is the one with k = 0, so we have

da = S0
a

S0
0

. (14)

There is a simple expression for the total quantum dimension D in terms
of the modular S matrix. Using (14) along with the fact that S is unitary and
symmetric gives

D =

√√√√∑

a

(
S0

a

S0
0

)2

= 1

S0
0

. (15)

This formula will prove useful in relating the topological and thermodynamic
entropies.

3.3. The Modular S Matrix

Rational conformal field theories have a variety of profound mathematical
properties. We have exploited one of them in using the Verlinde formula (13)
to give a compact expression (14) for the quantum dimensions in terms of the
modular S matrix. In this section we will discuss what S is and how to compute it.

To define S and to use the Verlinde formula, we study conformal field theory
on a torus, i.e. in finite size in both the Euclidean time and spatial directions.
Physically, this corresponds to a non-zero temperature, so that the Euclidean time
coordinate is periodic with period β. One must compute the partition function in
the sector of states associated with each primary field a and its descendants. In
mathematical language, this is called a character, and is defined as

χa(q) ≡ trae−βH = q−c/24 traq L0 , (16)

where q ≡ e−2πβ/R , R is the spatial length of the system, and the trace tra is
over all the states in the irreducible representation of the extended symmetry
algebra corresponding to the primary field a (i.e. the highest-weight state and its
descendants). The partition function of the chiral theory is then of the form

Z =
∑

a

Naχa(q), (17)

where the Na are integers, representing how many copies of each primary field
appears in a given theory. In a non-chiral theory, one defines analogous antichiral
partition functions χa(q), and the full partition function of a rational conformal
field theory is given by a sum over products of the form χa(q)χb(q), again with
integer coefficients. In both chiral and non-chiral rational conformal field theories,
the sums are over a finite number of characters. We will give explicit examples of
these characters below.
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[Eq(Na−1)−R](γ�
l−1)D+γl;(θ+∞−1)D+θ+∞ ∼ δ(Nl−Nθ+∞−R) mod q,0APl,Nl;P �

l ,N
�
l

(242)

with just a proportionality constant (Nθ+∞ = 0 in our case). Similarly,

[Eq(Nb−1)−R](θ−∞−1)D+θ−∞,(γ�
l−1)D+γl

∼ δ(−Nl+Nθ−∞−R) mod q,0CP �
l ,N

�
l ;Pl,Nl

(243)

where A,C are the right and left eigenvectors of the translationally invariant E-matrix and the γl, γ�
l = Pl, Nl;P �

l , N
�
l .

Notice that none of the quantities in the box are dependent on the Na, Nb anymore, and it involves product of R
translationally non-invariant E matrices (with R ≥ |Pmax) dotted into the left and right largest eigenvectors of the
translationally invariant E matrix. Hence the RSES can be computed from:

e
τ

|P |(7+2|P |2−3q(1+q)+|P |(3+9q))
3q

�

γl,γ�
l

[
−R�

i=P

(C0�⊗C
0+C

1�⊗C
1
NA[i]

2)](β�
l−1)D+βl,(γ�

l−1)D+γl
Aγl,γ�

l
δ(Nl−Nθ+∞−R) mod q,0 = O

T
RDROR

(244)
where γl = Pl, Nl. Notice this is just the projector of the translational non-invariant part into the largest right
eigenvalue of the translationally invariant E matrix. The matrix elements βl,β

�
l depend on P and are given above.

(the matrix is real and symmetric and diagonal in |P |, |P �|).
Also let

�

γl,γ�
l

δ(−Nl+Nθ−∞−R) mod q,0Cγ�
l ,γl

P�

i=−R

[(C0� ⊗ C
0 + C

1� ⊗ C
1
NA[i]

2)](γ�
l−1)D+γl,(α�

l−1)D+αl
= O

T
LDLOL (245)

The density matrix(up to a total multiplicative constant independent on Ne, P is):

ρ = O
T
L

�
DLO

T
RDROR

�
DLOT (246)

XV. QUASIHOLES

A. Laughlin Quasiholes

The quasihole wavefunction in CFT language reads:

ψ(η1 . . . ηnqh ; z1 . . . zNe) =
�
Ne

√
q + n√

q , 0
���V 1√

q
(η1) . . . V 1√

q
(ηnqh)V

√
q(z1) . . . V√

q(zNe) |0, 0�

=
�n

α<β=1(ηα − ηβ)
1
q
�Ne

i=1

�nqh

α=1(zi − ηα)
�Ne

i<j=1(zi − zj)q (247)

where Vβ(x) = exp(iβφ(x)) and where by |Q,P � I denote the state of U(1) charge Q and momentum P . At this
moment the position of the quasiholes does not matter, nor does it matter where we chose to make the quasihole
insertions.

We now insert a full set of states in between the quasiholes and the electrons:

ψ(η1 . . . ηnqh ; z1 . . . zNe) =
�

Q,P

�
Ne

√
q + nqh√

q , 0
���V 1√

q
(η1) . . . V 1√

q
(ηnqh) |Q,P � �Q,P |V√

q(z1) . . . V√
q(zNe) |0, 0� =

=
�

P

�
Ne

√
q + nqh√

q , 0
���V 1√

q
(η1) . . . V 1√

q
(ηnqh)

��Ne
√
q, P

� �
Ne

√
q, P

��V√
q(z1) . . . V√

q(zNe) |0, 0� (248)

where I have used U(1) charge conservation, Q = Ne
√
q. We have now separated the quasihole and the electron part.

We first express the electron part as an MPS:

�Ne
√
q, P |V√

q(z1) . . . V√
q(zNe) |0, 0� = �z1 . . . zNe |

�

{m0...mNφ
}

[BmNφ . . . B
m1B

m0 ]q−1−nqh,P ;0,0

��mNφ , . . . ,m1,m0

�

(249)
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[Eq(Na−1)−R](γ�
l−1)D+γl;(θ+∞−1)D+θ+∞ ∼ δ(Nl−Nθ+∞−R) mod q,0APl,Nl;P �

l ,N
�
l

(242)

with just a proportionality constant (Nθ+∞ = 0 in our case). Similarly,

[Eq(Nb−1)−R](θ−∞−1)D+θ−∞,(γ�
l−1)D+γl

∼ δ(−Nl+Nθ−∞−R) mod q,0CP �
l ,N

�
l ;Pl,Nl

(243)

where A,C are the right and left eigenvectors of the translationally invariant E-matrix and the γl, γ�
l = Pl, Nl;P �

l , N
�
l .

Notice that none of the quantities in the box are dependent on the Na, Nb anymore, and it involves product of R
translationally non-invariant E matrices (with R ≥ |Pmax) dotted into the left and right largest eigenvectors of the
translationally invariant E matrix. Hence the RSES can be computed from:

e
τ

|P |(7+2|P |2−3q(1+q)+|P |(3+9q))
3q

�

γl,γ�
l

[
−R�

i=P

(C0�⊗C
0+C

1�⊗C
1
NA[i]

2)](β�
l−1)D+βl,(γ�

l−1)D+γl
Aγl,γ�

l
δ(Nl−Nθ+∞−R) mod q,0 = O

T
RDROR

(244)
where γl = Pl, Nl. Notice this is just the projector of the translational non-invariant part into the largest right
eigenvalue of the translationally invariant E matrix. The matrix elements βl,β

�
l depend on P and are given above.

(the matrix is real and symmetric and diagonal in |P |, |P �|).
Also let

�

γl,γ�
l

δ(−Nl+Nθ−∞−R) mod q,0Cγ�
l ,γl

P�

i=−R

[(C0� ⊗ C
0 + C

1� ⊗ C
1
NA[i]

2)](γ�
l−1)D+γl,(α�

l−1)D+αl
= O

T
LDLOL (245)

The density matrix(up to a total multiplicative constant independent on Ne, P is):

ρ = O
T
L

�
DLO

T
RDROR

�
DLOT (246)

XV. QUASIHOLES

A. Laughlin Quasiholes

The quasihole wavefunction in CFT language reads:

ψ(η1 . . . ηnqh ; z1 . . . zNe) =
�
Ne

√
q + n√

q , 0
���V 1√

q
(η1) . . . V 1√

q
(ηnqh)V

√
q(z1) . . . V√

q(zNe) |0, 0�

=
�n

α<β=1(ηα − ηβ)
1
q
�Ne

i=1

�nqh

α=1(zi − ηα)
�Ne

i<j=1(zi − zj)q (247)

where Vβ(x) = exp(iβφ(x)) and where by |Q,P � I denote the state of U(1) charge Q and momentum P . At this
moment the position of the quasiholes does not matter, nor does it matter where we chose to make the quasihole
insertions.

We now insert a full set of states in between the quasiholes and the electrons:

ψ(η1 . . . ηnqh ; z1 . . . zNe) =
�

Q,P

�
Ne
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q + nqh√

q , 0
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=
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q, P
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Ne
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��V√
q(z1) . . . V√

q(zNe) |0, 0� (248)

where I have used U(1) charge conservation, Q = Ne
√
q. We have now separated the quasihole and the electron part.

We first express the electron part as an MPS:

�Ne
√
q, P |V√

q(z1) . . . V√
q(zNe) |0, 0� = �z1 . . . zNe |

�

{m0...mNφ
}

[BmNφ . . . B
m1B

m0 ]q−1−nqh,P ;0,0

��mNφ , . . . ,m1,m0
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(249)
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1. Two Quasiholes

Let us see how it works for two quasiholes (for one quasihole it is trivial). We have:

2�

α<β=1

(ηα − ηβ)
− 1

q = η
−1/q
1

�

n≥0

� 1
q − 1 + n

n

�
η
n
2 η

−n
1 (256)

And hence:

�

λ;|λ|=2Ne−|P |

cλ;Pmλ(η1, η2) = η
Ne
1 η

Ne
2

�

n>0

�

P1

� 1
q − 1 + n

n

�
η
−(n+|P1|)
1 η

−(|P |−(n+|P1|))
2 A0,P1(

1

q
)AP1,P (

1

q
) (257)

Since on the left side the maximum power in either η1, η2 is Ne (coming from the term
�Ne

i=1(zi−η1)(zi−η2)), we have
the constraint that all the terms besides the ones for which Ne ≥ n+ |P1| ≥ 0 and Ne ≥ |P |− (n+ |P1|) ≥ 0 are zero
(after summation, for any values of η1, η2). I have checked this for several cases and it works. Then by re-definition
of indices and summation, we have:

�

λ;|λ|=2Ne−|P |;λ1,...,λnqh
≥Ne

cλ;Pmλ(η1, η2) = η
Ne
1 η

Ne
2

min(Ne,|P |)�
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1 η

−(|P |−�)
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� 1
q − 1 + �− |P1|

�− |P1|

�
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1

q
)AP1,P (

1

q
)

(258)
we then find:

c[λ1,λ2];P =
�

P1;|P1|≤ |P |−(λ1−λ2)
2

� 1
q − 1 + |P |−(λ1−λ2)

2 − |P1|
|P |−(λ1−λ2)

2 − |P1|

�
A0,P1(

1

q
)AP1,P (

1

q
) (259)

(since λ1 + λ2 = 2Ne − |P |, λ1,λ2 ≤ Ne, then
|P |−(λ1−λ2)

2 is an integer). We have:

Ne�

i=1

2�

α=1

(zi − ηα)
Ne�

i<j=1

(zi − zj)
q =

�

P,|P |≥Nenqh

�

Ne≥λ1≥λ2,|λ|=2Ne−|P |

c[λ1,λ2];Pmλ(η1, η2) |P, electron� (260)

Notice that a consistency relation (Can we pls check this numerically, I checked it for small values, but
not all) is:

�
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� 1
q − 1 + �− |P1|

�− |P1|
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|P |− �− |P1|

�
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1

q
)AP1,P (

1

q
) (261)

which ensures, if correct, the symmetry between η1, η2.

2. Arbitrary Number Of Quasiholes

A simpler way exists to obtain the may quasihole case. This should superseed the two-quasihole case. For the
electron case, we already have the MPS:

|P, electron� = [BmNφ . . . B
m1B

m0 ]q−1−nqh,P ;0,0

��mNφ , . . . ,m1,m0

�
(262)

The quasihole element can be re-written as (remembering V 1√
q
(η) =: exp(iφ(η)/

√
q) : where :: means normal ordering,

which in our present case, to agree with Benoit, we take the a−n to the left of an, n > 0 and take φ0 to the left of a0,
which gives the matrix elements B0

N �,P �;N,P = δN �,N−1δP �,P , B0
N �,P �;N,P = AP �,P (q)δN �,N+q−1δ|P �|−|P |+N,0. Our

previous normal ordering was identical for an but we did not normal order φ0, a0.)
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(263)
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Hence we have that:
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Ne�
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q, P � |P, electron� (264)

where |P, electron� has an MPS given in Eq[251]. The matrix element can now be easily computed to give:
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Ne

√
q +

nqh√
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���� : e
i 1√
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�nqh
α=1 φ(ηα) : |Ne
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�nqh�

α=1
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−Pi
α
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A0;P

�
1
√
q

�
(265)

where �P is the number of elements in the partition P . For a system of Ne electrons and nqh quasiholes, we also
have that |P | ≤ nqhNe, and each Pi ≤ Ne. If you do not keep Pi ≤ Ne then you’re effectively looking at the infinite
system. This representation is good for edge exponents and decent for Berry phase as the quasi holes
can be separated by about Pmax = 20 particles.

3. Quasiholes Normalized on the Cylinder

The normalized |P, electron� states read:

|P, electron� = e
τ(Nφ+1− q−1

2 )P [CmNφ . . . C
m1C

m0 ]q−1−nqh,P ;0,0

��mNφ , . . . ,m1,m0

�
(266)

where Nφ = q(Ne − 1) + nqh and where I have neglected an overall multiplicative constant exp(τ(f(Nφ, Ne, 0, 0) +
qNe(Ne−1)

2 )) which does not depend on P . The quasi hole η on the cylinder goes to exp(i2πη/L).

I assume that the simple, extra eτ(Nφ+1− q−1
2 )|P | factor was what was making the states on the cylinder

not work before.
Example for Yangle to convince him this is correct: Ne = 2, Nφ = 4, nqh = 1. The root partitions and

their normalizations according to the above formula of the electron states are:

|0, electron� = e0[C0C1C0C0C1]1,0;0,0 |01001� ∝ e−τ 10
6

|1, electron� = e4τ [C1C0C0C0C1]1,1;0,0 |10001� ∝ e−τ 10
6 eτ

7
2

|2, electron� = e8τ [C1C0C0C1C0]1,2;0,0 |10010� ∝ e−τ 10
6 eτ4 (267)

Where i gave c common factor of exp(−10/6). The partitions are: P = 0 : [3, 0] with
�

i λ
2
i /2 = 9/2;

P = 1 : [4, 0] with
�

i λ
2
i /2 = 8 = 9/2 + 7/2; P = 2 : [4, 1] with

�
i λ

2
i /2 = 17/2 = 9/2 + 4. Notice that up to a

common factor 9/2, they agree with the above formula

B. An Alternative Representation of the Quasihole Wavefunction

We will now give the representation of quasi holes in the bulk (the one above, due to the limitation of truncation on
P can only achieve good approximation on the edge. Depending on the position of a quasihole η along the cylinder,
we insert the quasi hole in between the orbitals:

[M,M + 1] = [ Floor[yL/(2πl2b )], Ceiling[yL/(2πl2b )]] (268)

for the most accurate representation of its wave function. η = x+ iy.

1. Unnormalized Quasiholes in the Bulk

We find that the representation for one quasi hole reads:

�

Q,P �,P

[BNφ . . . B
M+1] q−1√

q ,0;Q+ 1√
q ,P

�VQ;P �,P (η)[B
mM . . . B

m0 ]Q,P ;0,0 (269)
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Where 1 means the identity sector. The two conformal blocks are:

�

λ

�0, 1|σ(η1)σ(η2) |λ, 1� �λ, 1|σ(η3)σ(η4) |0, 1� ,
�

λ

�0, 1|σ(η1)σ(η2) |λ,ψ� �λ,ψ|σ(η3)σ(η4) |0, 1� (309)

(of course, we need to introduce a set of states in between η1 and η2 and then in between η3 and η4, but those will all
be in the σ sector. ) These conformal blocks will be then

�

µ<ν

η

1
4q−

1
8

µν
(η13η24)

1
4 (1 +

√
1− x)�
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√
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η

1
4q−

1
8

µν
(η13η24)

1
4 (1−

√
1− x)�

1−
√
1− x

(310)

We then would like to prove that the two conformal blocks equal the expansion of the cft ones when η1 > η2 > η3 > η4,
which is the way we have placed the quasiholes.

We can now write the full MPS. The electron part is:

�Ne
√
q,λ, µ, 1|Vel(z1) . . . Vel(zNe) |0, 0, 1� = �z1 . . . zNe |

�

m0...mNφ

[Bm0B
m1 . . . B

mNφ ] 1
2
√

2
,λ,µ,0; 1

2
√

2
,0,0

��m0m1 . . .mNφ

�

(311)
Where the 1 in |0, 0, 1� gives the identity element in the neutral CFT. The Nφ expression was given before, except
now we have nqh = 4 nonabelian quasiholes which changed the matrix element.

On the edge, the quasihole matric element reads:

�Q�,λ�, µ�,∆�|σ(η)eitφ(η)|Q,λ, µ,∆� = η|λ
�|+|µ�|+∆�−|λ|−|µ|−∆+tQ �λ�,∆�|σ(1) |λ,∆� �Q�, µ�| eitφ(1) |Q,µ� =

= η|λ
�|+|µ�|+∆�−|λ|−|µ|−∆+tQ �λ�,∆�|σ(1) |λ,∆� δQ�,Q+tAµ�,µ(t) (312)

In the bulk, there might be a sign contribution, just like in the case of the Laughlin quashihole. In that case, the
sign contribution came because the monodromy of the quasihole with the electron gave a − sign. However, here the
monodromy is a bit more complicated (i.e. doesnt just give a factor), so Im unsure yet of what sign one should get
yet.

D. Braiding for (2, r) states

We now figure out the braiding for any m for the 2, r states.

XVII. LIST OF THINGS TO DO

1. Electron Scaling exponents from occupation numbers of finite MPS (for Parsa paper)
2. Spectrum of the E matrix. Eigenvalues and sector where the eigenvectors are. Degeneracies. For non unitary

states is the largest eigenvalue eigenvector in the diagonal sector or not?
3. Entanglement Spectrum- pushed to the limit. Scaling of eigenvalues. Unitary VS non-unitary.
4. RSES for Gaffnian
5. Test Benoit’s conjecture of the E matrix and on the scalar product.
6. Implement quasi holes on the plane, then cylinder.
7. Compute Bulk correlation functions (using the MPO)
8. RSES velocity, both for MR and Gaffnian; different U(1) boson, majorana velocities.
9. Berrry phases for quasi holes. Then the quasi hole exponents.
10.
11.
12.
13.
14.
15.
16.
17.
18.
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where q = 2 in our case (in general q = 2/(r + 2m) for (2, r) states) and where we have assumed, and where the
Hilbert space is assumed to be |Q,P, x�, to be refined later to include both the Neutral CFT momentum and the U(1)
charge momentum. Observe that we do not obtain any branch cut for the quasihole factor for m = 2. The above
conformal block will give best accuracy when the quasiholes are at the edge of the sample. We now insert a complete
series of states:

ψη1,η2;z1...zNe
=

�
Q,λ,µ,x

�
Ne

√
q + 1√

q , 0, 0
���Vqh(η1)Vqh(η2) |Q,λ, µ, x� �Q,λ, µ, x|Vel(z1) . . . Vel(zNe) |0, 0, 0�

=
�

λ,µ

�
Ne

√
q + 1√

q , 0, 0
���Vqh(η1)Vqh(η2)

��Ne
√
q,λ, µ, 0

� �
Ne

√
q,λ, µ, 0

��Vel(z1) . . . Vel(zNe) |0, 0, 0� (283)

where we have assumed an even number of electrons in the bulk. We now have separated the quasihole and the
electron part. ?λ, µ are the momenta of the neutral and U(1) CFT’s respectively. The total ”momentum” |P | of the
quasihole wavefunction (or the Lz − Lzroot) is then |P | = |λ|+ |µ| . We first express the electron part as an MPS:

�Ne
√
q,λ, µ, 0|Vel(z1) . . . Vel(zNe) |0, 0, 0� = �z1 . . . zNe |

�

m0...mNφ

[Bm0B
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mNφ ] 1√
2
+ 1

2
√

2
,λ,µ,0; 1

2
√

2
,0,0

��m0m1 . . .mNφ

�

(284)
The value of 2 in the left matrix element is equal to the S − 1 − nqh

2 = r + m − 2 = 1, the shift minus 1 and the
strange 1/2 due to the way we define the nonabelian matrices. The number of fluxes is:

Nφ =
r + 2m

2
Ne +

1− (−1)Ne

4
r − (r +m) +

nqh

2
(285)

since there are and even number nqh of quasiholes, for the above state the quasihole
First Check Check that the polynomials
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mNφ ] 1√
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√

2
,0,0

��m0m1 . . .mNφ

�
span

the same hilbert space as the Jack polynomials at momentum |P | = |λ|+ |µ|. Notice that there are more polynomials
because the value of |P | does not know anything about the momentum sector, but some of them must canncel. For
example, |P | = 1 can be realized with λ = 1, µ = 0 or viceversa µ = 0,λ = 1 so we would get 2 polynomials, but if
x = 0 (i.e. in the neutral sector) we only have one polynomial 2020202011 (in the x = 1 sector we would have two
polynomials 2020202001 and 202020111)

We now would like to obtain the η1, η2 dependence:
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2 )A0;µ(

1
2
√
2
) (286)

where 1 in the quasihole matrix element denotes the vacuum 1 sector. and where lµ is the number of elemenets in
the parition µ

Unfortunately, we are not able to get rid of the branch cut in the σ field and as such we need to expand it in powers.
In fact, considering there is no outright cancellation of the branch cut (cancellation occurs only after an expansion of
the σσ correlator to infinity), we might as well not normal order the charge sector.

We insert a new set of states into the neurtal sector:

�0, 1|σ(η1)σ(η2) |λ, 1� =
�

λ�

�0, 1|σ(η1) |λ�
,σ� �λ�

,σ|σ(η2) |λ, 1� (287)

and we see that to compute correlation functions we will need to compute:

�λ�
,σ|σ(η) |λ, 1� = η

|λ�|−|λ| �λ�
,σ|σ(1) |λ, 1� (288)

as well as:

�λ�
, 1|σ(η) |λ,σ� = η

|λ�|−|λ|− 1
8 �λ�

, 1|σ(1) |λ,σ� (289)
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where q = 2 in our case (in general q = 2/(r + 2m) for (2, r) states) and where we have assumed, and where the
Hilbert space is assumed to be |Q,P, x�, to be refined later to include both the Neutral CFT momentum and the U(1)
charge momentum. Observe that we do not obtain any branch cut for the quasihole factor for m = 2. The above
conformal block will give best accuracy when the quasiholes are at the edge of the sample. We now insert a complete
series of states:

ψη1,η2;z1...zNe
=

�
Q,λ,µ,x

�
Ne

√
q + 1√

q , 0, 0
���Vqh(η1)Vqh(η2) |Q,λ, µ, x� �Q,λ, µ, x|Vel(z1) . . . Vel(zNe) |0, 0, 0�

=
�

λ,µ

�
Ne

√
q + 1√

q , 0, 0
���Vqh(η1)Vqh(η2)

��Ne
√
q,λ, µ, 0

� �
Ne

√
q,λ, µ, 0

��Vel(z1) . . . Vel(zNe) |0, 0, 0� (283)

where we have assumed an even number of electrons in the bulk. We now have separated the quasihole and the
electron part. ?λ, µ are the momenta of the neutral and U(1) CFT’s respectively. The total ”momentum” |P | of the
quasihole wavefunction (or the Lz − Lzroot) is then |P | = |λ|+ |µ| . We first express the electron part as an MPS:

�Ne
√
q,λ, µ, 0|Vel(z1) . . . Vel(zNe) |0, 0, 0� = �z1 . . . zNe |

�

m0...mNφ

[Bm0B
m1 . . . B

mNφ ] 1√
2
+ 1

2
√

2
,λ,µ,0; 1

2
√

2
,0,0

��m0m1 . . .mNφ

�

(284)
The value of 2 in the left matrix element is equal to the S − 1 − nqh

2 = r + m − 2 = 1, the shift minus 1 and the
strange 1/2 due to the way we define the nonabelian matrices. The number of fluxes is:

Nφ =
r + 2m

2
Ne +

1− (−1)Ne

4
r − (r +m) +

nqh

2
(285)

since there are and even number nqh of quasiholes, for the above state the quasihole
First Check Check that the polynomials

�
m0...mNφ

[Bm0Bm1 . . . B
mNφ ] 1√

2
+ 1

2
√

2
,λ,µ,0; 1

2
√

2
,0,0

��m0m1 . . .mNφ

�
span

the same hilbert space as the Jack polynomials at momentum |P | = |λ|+ |µ|. Notice that there are more polynomials
because the value of |P | does not know anything about the momentum sector, but some of them must canncel. For
example, |P | = 1 can be realized with λ = 1, µ = 0 or viceversa µ = 0,λ = 1 so we would get 2 polynomials, but if
x = 0 (i.e. in the neutral sector) we only have one polynomial 2020202011 (in the x = 1 sector we would have two
polynomials 2020202001 and 202020111)

We now would like to obtain the η1, η2 dependence:

�
Ne

√
q + 1√

q , 0, 0
���Vqh(η1)Vqh(η2)

��Ne
√
q,λ, µ, 0

�
=

= �0, 1|σ(η1)σ(η2) |λ, 1�
�
Ne

√
q + 1√

q , 0
��� eiφ(η1)/2

√
2eiφ(η2)/2

√
2
��Ne

√
q, µ

�
=

= �0, 1|σ(η1)σ(η2) |λ, 1� (η1 − η2)
1
8

�
Ne

√
q + 1√

q , 0
��� : eiφ(η1)/2

√
2+iφ(η2)/2

√
2
��Ne

√
q, µ

�
=

= �0, 1|σ(η1)σ(η2) |λ, 1� (η1 − η2)
1
8 η

Ne/2
1 η

Ne/2
2

�lµ
i=1(η

−µi
1 + η

−µi
2 )A0;µ(

1
2
√
2
) (286)

where 1 in the quasihole matrix element denotes the vacuum 1 sector. and where lµ is the number of elemenets in
the parition µ

Unfortunately, we are not able to get rid of the branch cut in the σ field and as such we need to expand it in powers.
In fact, considering there is no outright cancellation of the branch cut (cancellation occurs only after an expansion of
the σσ correlator to infinity), we might as well not normal order the charge sector.

We insert a new set of states into the neurtal sector:

�0, 1|σ(η1)σ(η2) |λ, 1� =
�

λ�

�0, 1|σ(η1) |λ�
,σ� �λ�

,σ|σ(η2) |λ, 1� (287)

and we see that to compute correlation functions we will need to compute:

�λ�
,σ|σ(η) |λ, 1� = η

|λ�|−|λ| �λ�
,σ|σ(1) |λ, 1� (288)

as well as:

�λ�
, 1|σ(η) |λ,σ� = η

|λ�|−|λ|− 1
8 �λ�

, 1|σ(1) |λ,σ� (289)
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up to an overall proportionality constant that depends on Ne, Nφ and that will cancel when the wave function is
normalized. Note that M is basically the (center of the wave packet of the) position of the quasi hole on the chain,

and e
τ M(q−3−M)

2q is like a gaussian factor which acts like the quasi hole gaussian factor. However, since we normalize
the wave function and it must be normalized for every quasi hole position separately for this to hold, this
overall factor cancels to give the quasi hole wave function (which must be normalized):

�

Q,P �,P

[CNφ . . . C
M+1] q−1√

q ,0;Q+ 1√
q ,P

�VQ;P �,P (η)e
τ(|P �|−|P |− Q√

q )(M+ 3−q
2 )[CmM . . . C

m0 ]Q,P ;0,0 (278)

Notice that the only change from the unnormalized (besides the use of the C rather than B matrices) is that the
exponential factor. Its exponent is actually familiar:

VQ;P �,P (η)e
τ(P �−P− Q√

q )(M+ 3−q
2 ) = AP �,P (

1
√
q
)(−1)

√
qQ

�
e
−i 2π

L x
e

2π
L (y− 2πl2b

L (M+ 3−q
2 ))

� Q√
q+|P �|−|P |

(279)

where η = ei
2π
L (x+iy) was used. Notice that, whatever y,M are, the factor y − 2πl2b

L (M + 3−q
2 ) cannot get very large

or small because our orbital cut M is made such that 2πl2b
L (M + 1) > y >

2πl2b
L M . This gives the explicit cylinder

normalized wave function.

D. Computation of Berry Phase

Berry phase can be computed Yangle, please put the method here quickly

XVI. ν = 1/2 MOORE-READ QUASHIHOLES

The neutral CFT sector has the fusion rules:

ψ × ψ = 1; ψ × σ = σ; σ × σ = 1 + ψ (280)

The nonabelian character of the state comes from the last fusion rule. The conformal dimension of the σ field is
∆ = 1/16.

We will first try the simplest case. For ν = 1/2 Moore-Read state, the electron operator is

Vel(z) = ψ(z)ei
√
2φ(z)

, Vqh(η) = σ(η)eiφ(η)/2
√
2 (281)

Note that they do not give a 1/8 upon changing 2 quasiholes. The 1/8 factor comes for the bosonic Moore-Read state
but it is something we cannot check for the fermionic one.

As the fermionic state has no branch cut for two quasiholes, it is then a polynomial, on which we will perform the
checks to see that we have obtained a good wavefunction. We first then want to check that we obtain the 2 quasihole
wavefunction, first in the conformal limit then on the cylinder, and compare with the Jack.

A. Conformal limit, Quasiholes at the Edge

B. Two Quasiholes at the Edge of the Sample, Easy Check

We aim to compute the conformal block:

ψη1,η2;z1...zNe
=

�
Ne

√
q + 1√

q , 0, 0
���Vqh(η1)Vqh(η2)Vel(z1) . . . Vel(zNe) |0, 0, 0� =

= Pfaffian
�

(zi−η1)(zj−η2)+(zj−η1)(zi−η2)
zi−zj

��Ne

i<j(zi − zj)2 (282)
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