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For, in fact, what is man in nature? A Nothing in comparison with the Infinite, an
All in comparison with the Nothing, a mean between nothing and everything.

veraging operations entered mathematics rather early.
ascinated as they were by geometric proportions, the
ancient Greeks defined as many as eleven different means.
The arithmetic, geometric, and harmonic means are the
three best-known ones. If Pascal had one of these in mind
when he composed his Pensées [P], he would soon have
realised that mixing zero and infinity is a source of as many
problems as mixing mathematics and divinity.

For centuries, mathematicians performed their opera-
tions either on numbers or on geometrical figures. Then in
1855 Arthur Cayley introduced new objects called matyi-
ces, and soon afterwards he gave the laws of their algebra.
Seventy years later, Werner Heisenberg found that the non-
commutativity of matrix multiplication offers just the right
conceptual framework for describing the laws of atomic
mechanics. Matrices were found to be useful in the de-
scription of classical vibrating systems and electrical net-
works as well. For mathematicians, analysis of linear op-
erators was a subject of intense study throughout the
twentieth century and into the twenty-first century.

Many quantities of basic interest such as states of quan-
tum mechanical systems and impedances of electrical net-
works are defined in terms of matrices. Mixing of the un-
derlying systems in various ways leads to corresponding
operations on the matrices representing the systems. Not
surprisingly, some of these are averaging operations or
means.

Of the three most familiar means, the geometric mean
combines the operations of multiplication and square roots.
When we replace positive numbers by positive definite ma-
trices, both of these operations involve new subtleties. In
this article we introduce the reader to some of them.
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—Blaise Pascal

Let R, be the set of all positive real numbers. Given a
and b in R+ a mean m(a,b) could be defined in different
ways. It is reasonable to expect that the binary operation
m on R4 has the following properties:

@) m(a,b) = m(b,a).
(i) min(a,b) = m(a,b) < max(a,b).
(iii) m(aa,ab) = am(a,b) for all @ > 0.
(iv) m(a,b) is an increasing function of a and b.
(v) m(a,b) is a continuous function of a¢ and b.

The three familiar means, arithmetic, geometric, and har-
monic, satisfy all these requirements. Other examples of
means include the binomial means, also called the power
means, defined as

=p =,

a? + bP \1/p
e = () -

Here, it is understood that for the special values p = 0 and
*+ o we define my(a,b) as the limits

mela,b) = limy, _, gmpy(a,b) = Vab,
m(a,b) = imy, _, ~m,(a,b) = max(a,b),
m-x(a,b) = lim, _, —.my(a,b) = min(a,b).

The arithmetic and the harmonic means correspond to the
cases p =1 and —1, respectively. Inequalities between
means have been studied for a long time. See the classic
[HLP], and the more recent {BMV]. A sample result here is
that for fixed a and b, my(a,b) is an increasing function of
p. This includes, as a special case, the inequality between
the three familiar means.

There exists a fairly well-developed theory of means for
positive definite matrices. Let M,,(C) be the set of all n X



n complex matrices, S,, the collection of all self-adjoint el-
ements of M,,(C), and P,, that of all positive definite ma-
trices. The space S, is a real vector space and P, is an
open cone within it. This gives rise to a natural order on
S,. We say that A = B if A — B is positive definite or pos-
itive semidefinite. Two elements of S,, are not always com-
parable in this order. Every element X of GL,, (the group
of invertible matrices) has a natural action on P,,. This is
given by the map I'x(A) = X*AX. We say that A and B are
congruent if B = I'x(A) for some X € GL,. In the special
case when X is unitary, we say that A and B are unitarily
equivalent. The group of unitary matrices is denoted by U,,.

Now we have enough structure to lay down conditions
that a mean M(A,B) of two positive definite matrices A and
B should satisfy. Imitate the properties (i)-(v) for means
of numbers. This suggests the following natural conditions:

@ M(AB) = M(BA).
(I) If A < B, then A = M(A,B) =< B.
(M) M(X*AX X*BX) = X*M(A,B)X, for all X € GL,,
(IV) M(A,B) is an increasing function of A and B; i.e., if
A; = Ay and By = By, then M(A,,B)) = M(As,Bs).
(V) M(A,B) is a continuous function of A and B.

The monotonicity condition (IV) is a source of many in-
triguing problems in constructing matrix means. This is be-
cause the order A = B is somewhat subtle. For example, if

3 1 2 1
A:[l 1] and B:[l J’
then A = B but A% # B2,

What functions of positive numbers, when lifted to pos-
itive definite matrices, preserve order? This is the subject
of an elegant and richly applicable theory developed by
Charles Loewner. Let f be a real-valued function on R.. If
A is a positive definite matrix and A = SAuu; is its spec-
tral resolution, then f{A) is the self-adjoint matrix defined
as flA) = ZfA)uu;. We say that f is a matrix monotone
Sunction if foralln =1, 2, . . ., the inequality A = B in P,
implies f{A) = f(B). One of the theorems of Loewner says
that fis matrix monotone if and only if it has an analytic con-
tinuation to a mapping of the upper half-plane into itself. As
a consequence, the function f{x) = 2P is matrix monotone if
and only if 0 =p < 1. The function f{x) = log x is matrix
monotone, but f{x) = exp x is not. We refer the reader to
Chapter V of {B] for an exposition of Loewner’s theory.

Returning to means, the arithmetic and the harmonic
means of A and B are defined, in the obvious way, as
é(A + B) and [é(A‘1 + B™D]7! respectively. It is easy to
see that they satisfy the conditions (I)—(V) above.

The notion of geometric mean in this context is more
elusive, even treacherous. Every positive definite matrix A
has a unique positive definite square root AY2, However, if
A and B are positive definite, then unless A and B com-
mute, the product A2B12 js not self-adjoint, let alone pos-
itive definite. This rules out using AY2B12 a5 our geomet-
ric mean of A and B, except in the trivial case when AB =
BA. We should look for other good expressions in A and B

that reduce to AY2B2 when A and B commute. One plau-
sible choice is the quantity

(logA-HogB) . (Ap-i-Bp)l/p
expl| — 5 |=limp, Lol | .

M 2 2

The equality of the two sides of (1) was noted by Bhag-
wat and Subramanian [BS], who studied in detail the
“power means” occurring on the right-hand side. This
too is not monotone in A and B, as can be seen by choos-
ing positive definite matrices X and Y, for which X =Y
but exp X # exp ¥, and then choosing A and B such that
X= g (log A + log B) and Y:élogB.

The condition (III), sometimes called the transformer
equalion, is not innocuous either. Our failed candidates fail
on this count too.

The noncommutative analogue of Vab with all desirable
properties turns out to be the expression

2) A#B = A2 (A~12 BA— U212 g12

that was introduced by Pusz and Woronowicz [PW] in 1975.
At the outset it does not appear to be symmetric in A and
B; but it is, as we will soon see. The monotonicity in B is
assured by the facts that congruence preserves order (B; =
By implies X*B1X = X*ByX) and the square root function is
matrix monotone.

Symmetry in A and B is apparent more easily from an al-
ternative characterisation of A#B due to T. Ando [A]. We have

(3) A#B-= max{X : X = X* and E ﬂ > o].

Among its other characterisations, one describes A#B as
the unique positive definite solution of the Riccati equation

@) XA"X=B.

We call A#B the geometric mean of A and B. It has the de-
sired properties (I)~(V) expected of a mean M(A,B) : prop-
erty (II) may be verified easily from (3) or (4). It satisfies
the expected inequality
(A*l + B! A+B
2 )

(5

5 )_1 < A#B =

and has other pleasing properties. Many of these were de-
rived by Ando [A].

Two positive definite matrices A and B can be diago-
nalised simultaneously by a unitary conjugation I'y; if and
only if they commute. In the absence of commutativity, A
and B can be diagonalised simultaneously by a congruence
in two steps:

(AB) L, (1A% BAT) Ly, (1D,

where U is a unitary such that U* (A~2BA~VY3)J is a di-
agonal matrix D. This takes some of the mystery out of the
formula (2). In fact, any mean m(a,b) of positive numbers
leads to a mean M(A,B) of positive definite matrices by the
procedure M(A,B) = I' sis(m(I,D)). To ensure that M is an
increasing function of A and B, we have to assume that the
function f{x) = m(1,x) is matrix monotone. The formula (2)
corresponds to the case when m(a,b) = (ab)V2.
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The indirect argument we have used to deduce the sym-
metry of the geometric mean is not necessary. Let m(a,b)
be any mean, let f(x) = m(1,x), and

(6) M(A,B) - A1/2f (Afl/ZBA‘l/Z) AV2

Though this expression seems to be asymmetric in A and
B, in fact M(A,B) = M(B,A). For this we need to prove

f(A7 1/2BA7 1/2) = A l/ZBl/Qf (B— 1/2ABf 1/2)31/2A7 1/2.

Using the polar decomposition A~Y2BY? = PU, where P is
positive definite and U unitary, this statement reduces to

f(P2) = PU {U*P~2U)U*P = P.f(P2)P.

This, in turn, is equivalent to saying that for every eigen-
value A of P, we have

m(LAZ) = Am(LA~DA.

But that is a consequence of properties (i) and (iii) of the
mean m. A similar argument verifies (III).

A simple corollary of this construction is the persistence
of inequalities like (5) when one passes from positive num-
bers to positive definite matrices. Kubo and Ando [KA] de-
veloped a general theory of matrix means and established
a correspondence between such means and matrix mono-
tone functions.

What happens when we have three positive definite ma-
trices instead of two? The arithmetic and the harmonic
means present no problems. Plainly, they should be defined
asé(A + B+ C)and [é(A"1 + B! + CH]7 L respectively.
The geometric mean, once again, raises interesting problems.

We would like to have a geometric mean G(A,B,C) that
reduces to AY3BY3CY3 when A, B, and C commute with each
other. In addition it should have the following properties.

(o) G(AB,C) = G(w(A,B,C)) for any permutation 7 of
the triple (A,B,C).

(B) GX*AX X*BX,.X*CX) = X*G(A,B,C)Xforall X € GL,,.

(y) G(A,B,C) is an increasing function of A, B, and C.

(8) G(A,B,C) is a continuous function of A, B, and C.

None of the procedures presented above for two matrices ex-
tends readily to three. The expressions (2), (3), and (4) have
no obvious generalisations that work. The idea of simulta-
neous diagonalisation does not help either: while two posi-
tive definite matrices can be diagonalised simultaneously by
a congruence, generally three can not be. Defining a suitable
geometric mean of three positive definite matrices has been
a ticklish problem for many years. Recently some progress
has been made in this direction, and we describe it now.

& OO

One geometry cannot be more true than another; it can only
be more convenient.
—Henri Poincaré [Po]

While the geometric mean A#B has been much studied in

connection with problems of matrix analysis, mathemati-
cal physics, and electrical engineering, a deeper under-
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standing of it is achieved by linking it with some standard
constructions in Riemannian geometry.

The space M,(C) has a natural inner product (4,B) =
tr A*B. The associated norm ||Allz = (tr A*4)12 is called the
Frobenius, or the Hilbert-Schmidt, norm. If A is a matrix
with eigenvalues Ay, . . ., A,, we write A(A) for the vector
(AL ..., A, or for the diagonal matrix diag(Ay, . . ., Ay).

The set P, is an open subset of $,, and thus is a differ-
entiable manifold. The exponential is a bijection from S,
onto P,,. The Riemannian metric on the manifold P,, is con-
structed as follows. The element of arc length is the dif-
ferential

(7 ds = A2 dA A~ V2,

This gives the prescription for computing the length of a
differentiable curve in P,. If y: [a,b] — P, is such a curve,
then its length, obtained by integrating the formula (7), is

b
®) L(y) = f Iy 2y 0y~ (D) dt.

If A and B are two elements of P,, then among all curves
v joining A and B there is a unique one of minimum length.
This is called the geodesic joining A and B. We write this
curve as [A,B], and denote its length, as defined by (8), by
the symbol 85(A,B). This gives a metric on P, called the
Riemannian metric.

From the invariance of trace under similarities, it is easy
to see that for every X in GL,, the map I'y : P,, — P,, is a bi-
jective isometry on the metric space ([?,,,82).

An important feature of this metric is the exponential met-
ric increasing property (EMI). This says that the map exp
from the metric space (S,,||'|b) to (P,,82) increases distances.
More precisely, if H and K are Hermitian matrices, then

() IH — K]z = 82(e",€").

To prove this, one uses the formula (8) and an infinitesi-
mal version of (9):

(10) K]z = [l De(K)e™ 2

forall H, K € S,,. Here De(K) is the derivative of the map
exp at the point H evaluated at K, i.e.,

eH+tK — eH

(11) Def(K) = lim,_g .

There is a well-known formula due to Daleckii and Krein
(see [B], chapter V, for example) giving an expression for
this derivative. Choose an orthonormal basis in which H =
diag(Aq, . . ., A,). Then

et — el
DQH(K) = |: /\7', _ )\j k1]:|

(The notation here is that [x;;] stands for a matrix with en-
tries x;.) From this, one sees that the (i) entry of
e~ H2DeH(K)e~ 12 is

19 sinh(A; — A;)/2
(12 - A2

Since w = 1, the inequality (10) follows from this.



In the special case when H and K commute, a calcula-
tion shows that there is equality in (9). In this case the func-
tion exp maps the line segment [H,K] in the Euclidean
space S,, isometrically onto the geodesic segment [eF eX]
in P,. If A = ¢ and B = X this says that the geodesic seg-
ment joining A and B is the path

y(£) = el DHHIE = o(1-OHgtK = A=t Bt (<< |,

Further, 62(A,y(¢)) = t52(A,B) for each ¢ in [0,1].

The case of noncommuting A and B can be reduced
to the commuting case using the fact that I'4-.- is an isom-
etry on the space (P,,02). The geodesic segment
(ILA~12 BA™12] is parametrised by yy(¢) = (A~2BA~12),
by what we said about the commuting case. So, the geodesic
[4,B] = [ao(D),I 412(A~Y2BA~12)] is parametrised by

(13) y(t) = Al2 (A71/2 BA*I/Z)t A1/2’ 0<t=<1.

This shows that the geometric mean A#B defined by the
formula (2) is nothing but the midpoint of the geodesic join-
ing A and B in the Riemannian manifold P,,. Thus while (2),
(3), and (4) might have appeared as over-imaginative non-
commutative variants of 'V ab, very natural geometric con-
siderations lead to the same notion of mean as is given by
(2). Note that for each ¢, y(¢) defined by (13) is a mean of
A and B corresponding to the function f(r) = 27 in the for-
mula (6). Those means are not symmetric, however: (I) fails
unless t = 1/2.

This discussion also gives an explicit formula for
the metric 8. We have 85(A,B) =8, (I,A"V2BA™12) =

25,

log I — log (A~V2BA~ 1), = [log(A~ Y2BA~12)[},. The ma-
trices A"Y2BA 12 and A~!B have the same eigenvalues. So,
this can be expressed as

n

(14) §x(A,B) = |log A(A"1B)|x = (Z (log /\i(A'lB))2>l/2.
i=1

The inequality (9) captures an essential feature of P,, : it
is a manifold of nonpositive curvature. To understand this,
consider a triangle with three vertices O, H, and K in S,,.
Under the exponential map, this is mapped to a “triangle”
with vertices I, exp H and exp K in P,. The lengths of the
two sides [0,H] and [0,K] measured by the norm ||-[|; are
equal to the lengths of their images [/, exp H] and [I, exp
K] measured by the metric 65. By the EMI (9), the length
of the third side [exp H, exp K] of the triangle in P,, is larger
than (or equal to) |[H — K|». The general case of a geodesic
triangle with vertices exp A, exp B, exp C in PP,, may be re-
duced to the special case by applying the congruence
Texpc—ar) to all points and thus changing one of the ver-
tices to I. This is often described by saying that two geo-
desics emanating from a point in P,, spread out faster than
their pre-images (under the exponential map) in S,,.

It is instructive here to compare the situation with that
of U,,, a compact manifold of non-negative curvature (Fig-
ure 1). In this case the real vector space iS,, consisting of
skew-Hermitian matrices is mapped by the exponential
onto U,. The map is not injective; it is a local diffeomor-
phism.

Using the formula (11) with A and K in iS,,, we reduce

.2.5 2 1.5 1 0.5

.O .0.5 1 1.5 2 2.5

Figure 1. Three curvatures, showing a comparison of a Euclidean (curvature zero) triangle in S, with its images under exp(-) in P, (nonposi-

tive curvature} and exp{i-) in U, (non-negative curvature). The colours indicate matching vertices. Note that the geodesics emanating from

exp(A) spread out faster than Euclidean ones (compare the straight lines at A), whereas those emanating from exp(iA) spread more slowly.
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A#B

Figure 2. Geodesic distance from A#B to A#C is no more than half
that from B to C. Joining the midpoints of the sides of a geodesic
triangle in P, results in a triangle with sides no more than half as
long. Iterating this procedure leads to the construction of Ando, Li,
and Mathias, described in the text.

H to diag(iry, .
now

.., tAy,) with A; real. Instead of (12) we have
sin(A; — A;)/2 A
A —Ap2 Y

Since \—Sl‘;—’”{ = 1, the inequality (10) is reversed in this case,
as is its consequence (9), provided e and e are close to
each other.

expA -

Returning to P, and the geometric mean, it is not diffi-
cult to derive from the information at our disposal the fact
that given any three points A, B, and C in P,, we have

1
(15) Ba(AH#B,AHC) = 5 82(B,C).

This inequality says that in every geodesic triangle in P,
with vertices A, B, and C, the length of the geodesic join-
ing the midpoints of two sides is at most half the length of
the third side. (If the geometry were Euclidean, the two
sides of (15) would have been equal.) Figure 2 illustrates
(15).

We saw that the geometric mean A#B is the midpoint of
the geodesic [A,B]. This suggests that we may possibly de-
fine the geometric mean of three positive definite matrices
A, B, and C as the “centroid” of the geodesic triangle
A(AB,C) in P,

In a Euclidean space ¢, the centroid ¥ of a triangle with
vertices x), ¥z, x3 is the point x = %(xl + x5 + x3). This is
the arithmetic mean of the vectors x1, xs, and x3. This point
may be characterised by several other properties. Three of
them are:

(M1) 7 is the unique point of intersection of the three
medians of the triangle A(x1,x2,23), as in Figure 3;
(M2) x is the unique point in € at which the function

e = 2l + ke — 22l + ke — gl

attains its minimum;

(M3) x is the unique point of intersection of the nested
sequence of triangles {A,} in which A; = A and
A;.1 is the triangle obtained by joining the mid-

expB#expC

Figure 3. In the hyperbolic geometry medians may not meet. While the medians of a Euclidean triangle intersect at the centroid, the corre-
sponding median geodesics of a triangle in P, may not intersect at all. A 3-D wire model would make it clear that, generically, the medians

do not even intersect in pairs.
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points of the three sides of A; (Figure 2 mimics this
construction in the non-Euclidean setting of P,,).

To define a geometric mean of A, B, and C in P,, we may
try to imitate one of these definitions, now modified to suit
the geometry of P,,. Here fundamental differences between
Euclidean and hyperbolic geometry come to the fore, and
(M1), (M2), and (M3) lead to three different results.

The first definition using (M1) fails. The triangle
A(A,B,C) may be defined as the “convex set” generated by
A, B, and C. (It is clear what that should mean: replace line
segments in the definition of convexity by geodesic seg-
ments.) It turns out that this is not a 2-dimensional object
as in ordinary Euclidean geometry (see Figure 4). So, the
medians of a triangle may not intersect at all in some cases
(again, see Figure 3).

With (M2) as our motivation, we may ask whether there
exists a point Xy in PP, at which the function

JX) = 83(AX) + 83(BX) + 85(C.X)

attains a minimum. It was shown by Elie Cartan (see, for
examnple, section 6.1.5 of [Be]) that given A, B, and C'in P,,,
there is a unique point X, at which f has a minimum. Let
G9(A,B,C) = X, and think of it as a geometric mean of 4,
B, and C. This mean has been studied in two recent papers
by Bhatia and Holbrook [BH] and Moakher [M].

In another recent paper [ALM], Ando, Li, and Mathias
define a geometric mean G5(A,B,C) by an iterative proce-
dure. This iterative procedure has a nice geometric inter-
pretation: it amounts to reaching the centroid of the geo-
desic triangle A(A,B,C) in P, by a process akin to (M3).

0.25

Starting with A; as the triangle A(A,B,C) one defines Ay to
be A(A#B,A#C,B#C), and then iterates this process. Figure
2 shows the beginning of this process. The inequality (15)
guarantees that the diameters of these nested triangles de-
scend to zero as 1/2". It can then be seen that there is a
unique point in the intersection of this decreasing sequence
of triangles. This point, represented by Gs(A,B,C), is the
geometric mean proposed by Ando, Li, and Mathias.

It turns out that the two objects G2(A,B,C) and G3(A,B,C)
are not always equal (Figure 5 illustrates this phenome-
non). Thus we have (at least) two competing notions of the
centroid of A(4,B,C). How do they do as geometric means?
The mean G3(A,B,C) has all of the four desirable properties
(a)—(6) that we listed for a mean G(A,B,C). Properties (),
(B), and (6) are almost obvious from the construction. Prop-
erty (y)—monotonicity—is a consequence of the fact that
the geometric mean A#B is monotone in A and B. So mo-
notonicity is preserved at each iteration step. The mean
Go(A,B,C) does have the desirable properties (a), (8), and
(8). Property (B) follows from the fact that I'y is an isome-
try of (P,,,62) for every X in GL,. However, we have not been
able to prove that G3(A,B,C) is monotone in A, B, and C. We
have an unresolved question: Given positive definite matri-
ces A, B, C,and A’ with A = A, is Go(A,B,C) = Go(A',B,C)?

An answer to this question may lead to better under-
standing of the geometry of P,, the best-known example
of a manifold of nonpositive curvature. Certainly this is of
interest in matrix analysis. Computer experiments suggest
an affirmative answer to the question.

Finally, we make a brief mention of two related matters.
The Frobenius norm is one of a large class of norms called

N

0.2\5

0.15
0.1

0.05 S ot
0
-0.05
-0.1
-0.15
0.4
0.2 SRR o
.
3 T02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4. Conv (A,B,C) is not two-dimensional. In the hyperbolic (nonpositive curvature) geometry of P,,, the convex hull of a triangle (formed
by successively adjoining the geodesics between points that are already in the object) is not a surface but rather a “fatter” object.
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unitarily invariant norms or Schatten-von Neumann
norms. These norms |4 have the invariance property
|U AVlle = ||Alle for all unitary U and V. Each of these norms
corresponds to a symmetric norm ® on R"; that is, a norm
d that is invariant under permutations and sign changes of
coordinates. The correspondence is given by |Alg =
D (s1(A), . . ., s,(A)), where s1(A) = - - - =s5,(A) are the
singular values of A. Common examples are the Holder
norms ®p(x) = (Sl;#)? and the corresponding Schatten
norms |All, = (2 s¥(A))YP, 1 = p = . The Frobenius norm
is the special case p = 2.

For each of these norms we may define a metric 64 on
P, as in the formula (14). The EMI in the form (9) or (10)
remains true (see [B2]). The import of this remark is that,
with any of these metrics, P, is a Finsler manifold of non-
positive curvature; the special Frobenius norm arises from
an inner product and gives rise to a Riemannian structure.
In recent years metric spaces of nonpositive curvature have
been studied in great detail; see the comprehensive book by
Bridson and Haefliger [BrHa). The spaces P,, with norms | [l¢»
are interesting and natural examples of such spaces.

SO0

But the whole wondrous complications of interference,
waves, and all, result from the little fact that Zp — p4 is not
quite zero.

—Richard Feynman [FLS]

The generalised version of EMI has a fascinating
connection with yet another subject: inequalities for
the matrix exponential function discovered by
physicists and mathematicians. Many such in-
equalities compare eigenvalues of the matri-
ces K and ef’eX and are much used in
quantum statistical mechanics and lately
in quantum information theory. In [S] L.
Segal proved for any two Hermitian
matrices H and K the inequality

Figure 5. The “Cartan surface” contains G({A,B,C) but not G3(A,B,C).
The Cartan surface consists of points minimizing the convex combi-
nations aSS(A,X) + bag(B,X) + c8§(C,X); here the colours of the points
shown are chosen to reflect the relative strengths of the weights a,b,c.
Thus G»(A,B,C) corresponds to 1/3, 1/3, 1/3 (see yellow dot on sur-
face). The small black circle locates G;(A,B,C), which is not on the
surface in general. Thanks to J.-P. Shoch for computing this picture
of a Cartan surface.
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(16) A(eF+E) < A, (eM2eKell),

Here A (X) is the largest eigenvalue of a matrix X with real
eigenvalues. In a similar vein, we have the famous Golden-
Thompson inequality

) tr (el YKy < tr (eH2eKell2).

The matrices e X and e2efefl’2 are positive definite. So,
the inequalities (16) and (17) say

le”* ]l = lle"eXe!|},, for p = 1.

The EMI (9) generalised to all unitarily invariant norms is
the inequality

(18) IH + Ko = [log (e"e*e)]q.

By well-known properties of the matrix exponential, this
implies

(19) eI H]|q < |lefT2eKet?|y,.

This inequality, called the generalised Golden-Thompson
inequality, includes in it the inequalities (16) and (17). The
origins of these inequalities and their connections with
quantum statistical mechanics are explained in Simon [Si]
(page 94). Still more general versions have been discovered
by Lieb and Thirring, and by Araki, again in connection with
problems of quantum physics. See Chapter IX of [B]. Gen-
eralisations in a different direction were opened up by
Kostant [K], where the matrix exponential is replaced by
the exponential map in more abstract Lie groups.

A common thread running between matrix analysis, Rie-
mannian and Finsler geometry, and physics! Pascal would
have approved.
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