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Notations are as in the Lecture Notes

X1. It is clear from the definition that the operator norm ‖ · ‖ is unitar-
ily invariant, ie ‖UMW‖ = ‖M‖ for any unitary U,W and that ‖XY ‖ ≤
‖X‖ ‖Y ‖. Show that these properties also hold for the Frobenius norm ‖ ·‖2.

By compactness any two norms on a finite–dimensional vector space are
equivalent, ie their ratios are bounded above and below. Show that ‖M‖ ≤
‖M‖2 ≤

√
n‖M‖ for any M ∈ Mn and that these inequalities are best pos-

sible.

X2. If S ∈ Mn is normal, note that span{S, S∗} consists entirely of normals.
If S is not normal, show that the normal matrices in span{S, S∗} are pre-
cisely those of the form αS + βS∗ where |α| = |β|.

X3. Show, by computing eigenvalues of X∗X, that X = αJ3+βJ∗
3 has norm

‖X‖ =
√

|α|2 + |β|2.

X4. Show that
√

1− 2/n(‖α|+ |β|) ≤ ‖αJn+βJ∗
n‖ by choosing unit u ∈ Cn

so as to make ‖(αJn + βJ∗
n)u‖ large.

X5. Show that if A,B ∈ Nn and the real span of {A,B}, ie RA + RB, con-
tains a nontrivial normal C (ie C is not a scalar multiple of A or B) then all
of RA+ RB is normal.

X6. Find 2× 2 unitary U,W so that U +W is not normal; by X5 the affine
path [U,W ] is not normal, yet there IS a normal path of the same length
(‖U − W‖), by Proposition 7.2; what can you say about the short normal
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path in this simple case?

X7. In place of the fancy proof using Corollary 7.3 and the normal path
inequality, give an elementary proof that

A,B ∈ N2 ⇒ sd(A,B) ≤ ‖A− B‖.

For example, show that for lists of length 2, sd is the Hausdorff distance, and
use Proposition 6.1 ...

X8. If pn(λ) = det(λIn − An) (the characteristic polynomial of An), show
that

pn(λ) = λpn−1(λ)−
1

4
pn−2(λ).

Verify by induction that

pn(λ) =
sin(n+ 1)θ

2n sin θ
, where θ = cos−1(λ), |λ| ≤ 1.

Conclude that the eigenvalues of An are cos(kπ/(n+ 1)) (k = 1, 2, . . . , n).

X9. Show thatBn = −iUnAnU∗
n where Un is the diagonal unitary diag(i, i2, . . . , in).

Conclude that the eigenvalues of Bn are i cos(kπ/(n+ 1)) (k = 1, 2, . . . , n).

X10. In the situation of Sunder’s Theorem, ie A,B ∈ Nn with A Hermi-
tian and B skew–Hermitian, with eigenvalues numbered so that |a1| ≤ |a2| ≤
· · · ≤ |an| and |b1| ≤ |b2| ≤ · · · ≤ |bn|, show that a best matching for sd(A,B)
is ak with bn−k+1.

X11. In the Sunder situation (X10), show that in computing sd2 the permu-
tations play no role.

X12. In the Sunder situation (X10), the Hoffman–Wielandt inequality is
always equality; in fact

sd2(A,B) =
√
‖A‖22 + ‖B‖22 = ‖A−B‖2.

Applied to An, Bn, this yields the identity

n∑

1

cos2(kπ/(n+ 1)) = (n− 1)/2.
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X13. Show that sd(An, Bn) = 1 if n is odd and that sd(An, Bn) < 1 if n is
even.

X14. In the Sunder situation (X10), consider

u ∈ span{un+1−k, . . . , un} ∩ span{wk, . . . , wn},

where the uk are orthonormal with Auk = akuk and the wk are orthonormal
with Bwk = bkwk. Show that ‖Au‖ ≥ |an+1−k| and ‖Bu‖ ≥ |bk|, and
complete the proof of Sunder’s Theorem.

X15. Show that the normal path from A3 to B3 found in Proposition 10.2
can be reparametrized in the form ρ(t) = eitH(t) where t ∈ [0, π/2] and H(t)
traces out a Hermitian path from A3 to B3/i. Find H(t).

X16. Suppose in the setup of X15 we use instead the affine path [A3, B3/i],
ie H(t) = 2

π ((
π
2 − t)A3 + tB3/i). Compare the length of this path with√

2 sin(π/(2
√
2)).
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