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Abstract: This paper deals with geometry of covariance
matrices to define new advanced Radar Doppler Processing
based on Metric Space tools. Information Geometry has been
introduced by C.R.Rao, and axiomatized by N. Chentsov, to
define a distance between statistical distributions that is invariant
to non-singular parameterization transformations. For
Doppler/Array/STAP Radar Processing, Information Geometry
Approach will give key role to Homogenous Symmetric bounded
domains geometry. For Radar, we will observe that Information
Geometry metric could be related to Kéhler metric, given by
Hessian of Kiihler potential (Entropy of Radar Signal given by —
log[det(R)]). To take into account Toeplitz structure of
Time/Space Covariance Matrix or Toeplitz-Block-Toeplitz
structure of Space-Time Covariance matrix, Parameterization
known as Partial Iwasawa Decomposition could be applied
through Complex Autoregressive Model or Multi-channel
Autoregressive Model. Then, Hyperbolic Geometry of Poincaré
Unit Disk or Symplectic Geometry of Siegel Unit Disk will be
used as natural space to compute “p-mean” (p=2 for “mean”,
p=1 for “median”) of covariance matrices via Karcher Flow
derived from Weiszfeld algorithm  extension on Cartan-
Hadamard Manifold. This new mathematical framework will
allow development of OS (Ordered Sta-tistic) concept for
Hermitian Positive Definite Covariance Space/Time Toeplitz
matrices or for Space-Time Toeplitz-Block-Toeplitz matrices. We
will define OS-HDR-CFAR (Ordered Statistic High Doppler
Resolution CFAR) and OS-STAP (Ordered Statistic Space-Time
Adaptive Processing).

Index Terms: Median, p-mean, Center of mass, Cartan-
Hadamard Manifold, Cartan Symmetric spaces, Homogenous
bounded domains, Siegel Upper-half plane, Poincaré disk, Siegel
disk, Fréchet metric space, Berger fibration, Mostow
decomposition, Radar, CFAR, STAP
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I. INTRODUCTION

NFORMATION Geometry has been introduced by

C.R.Rao, and axiomatized by N. Chentsov, to define a
distance between statistical distributions that is invariant to
non-singular ~ parameterization transformations. For
Doppler/Array/STAP ~ Radar  Processing,  Information
Geometry Approach will give key role to Symmetric spaces
and Homogenous bounded domains geometry. For Radar, we
will observe that Information Geometry metric could be
identified to Kéhler metric, given by Hessian of Kahler
potential (Entropy of Radar Signal given by —log[det(R)]). To
take into account Toeplitz structure of Time/Space Covariance
Matrix or Toeplitz-Block-Toeplitz structure of Space-Time
Covariance matrix, Parameterization known as Partial
Iwasawa Decomposition could be applied through Complex
Autoregressive  Model or Multi-channel Autoregressive
Model. Then, Hyperbolic Geometry of Poincaré Unit Disk or
Symplectic Geometry of Siegel Unit Disk will be used as
natural space to compute “p-mean” (p=2 for “mean”, p=1 for
“median”) of covariance matrices via Karcher Flow for
Weiszfeld algorithm extension on Manifold.

This new mathematical framework will allow development
of (Ordered Statistic) concept [3] for Hermitian Positive
Definite Covariance Space/Time Toeplitz matrices or for
Space-Time Toeplitz-Block-Toeplitz matrices. We will define
OS-HDR-CFAR (Ordered Statistic High Doppler Resolution
CFAR) and OS-STAP (Ordered Statistic Space-Time
Adaptive Processing) algorithms for radar detection.

II. INFORMATION GEOMETRY MANIFOLD OF COVARIANCE
HERMITIAN POSITIVE DEFINITE MATRICES

In 1945, Rao has introduced Information Geometry for
parameterized density of probability p(. /9) with the metric
given by the formula ds* = K[p(./6), p(./ 0+ d6)|=d6 1(6)d6
where 1(.9):[&/ (g)J is the Fisher Information matrix. If we
model Signal by complex circular multivariate Gaussian
distribution of zero mean :

DX, IR,) = (1) R, [ "o B2 hiom) (1




then for , =0:

@ =o' 1(0kio - 1R aR |- [ “ar ., @

ntn

This metric has been integrated by Siegel and the distance is :
dist*(R,.R, )= log(R "> R, R 3 log*(4, ) 3)
k=1

=
with det(R, - 4,R,)=0

This is a complete simply connected metric space of
negative curvature with geodesic between R, and R,:
7(t) = Rll ,'zez.log(R;' ZRZR('”]RII/Z _ Rll/2(R171,'2R2R171/2)’R11/2 4)
with 0<¢ <1

III. FROM CARTAN CENTER OF MASS TO FRECHET MEDIAN

Robust Covariance Matrix Mean Estimation can be
addressed by Riemannian center of mass. Elie Cartan has
proved back in the 1920’s existence and uniqueness of center
of mass for simply connected complete manifolds of negative
curvature for any compact subset. In Euclidean space, the
center of mass is defined for finite set of points EA - by

arithmetic mean: 1 Z
x('emer x[
M T

M .
= argMin> d*(x,x,)" This has been

x i=1

N
cemerx[

M .
or by 3 —¢- This
i=1

point also minimizes: |

center

extended to general Riemannian manifolds by Elie Cartan that
has proved that the function fimeMis %J'dz(m,a)da is
A

strictly convex (its restriction to any geodesic is strictly

convex as a function of one variable) and achieves a unique

minimum at a point called the center of mass of 4 for the

distribution da. Moreover, this point is characterized by being

the unique zero of the gradient vector field:

Vf = - J‘ exp:(@)da * where exp(.) is the “exponential map” and
A

exp.'(a) is the tangent vector at m e M of the geodesic from

m to a exp,'(a) e T,M . Hermann Karcher has then

introduced a gradient flow intrinsic on the Manifold M that
converges to the center of mass, called Karcher Barycenter:

M =7,,)=exp, (~1,Vf(m,)) with 7,(0)=-Vf(m,) )
In the discrete case, the center of mass for set of points is:

M
m,,; =CXp,, (tn Z exp/_nl” (x; )j ©)
=

I
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Figure 1. Fréchet-Karcher Flow on Cartan-Hadamard Manifold

But, center of mass is not useful for robust statistic.
Replacing L’ square geodesic distance by L’ geodesic
distance, we can extend this approach to estimate a Median in

metric space (called Fermat-Weber‘s point in Physic). Fréchet
studied Median statistic using ,, - Min EH x_m‘] compared

median

. , . . .

to m, = M,m Ehx—m\ J Classically, in Euclidean space,

Median point minimizes
Xmedian

M .
=arg MinZd(x, x)’ equivalently

x i=1

i v el 7 ¢l=g» with its Riemannian extension
median” i median” i || —
i=1
-1
h:meMHle(m,a)da:}Vh:—IMda ™
25 Min 4 Hexpm (a)H

We cannot directly extend Karcher Flow to median
computation in the discrete case:
m —exo. |1 i exp,, (x;) (8)
n+l m, | tn v Hexp;,l” (XA)H
because HeXp:nl,, (xk)H could vanish if ,, —x, . The uniqueness

of the geometric median of a probability measure on a
complete Riemannian manifold [4] has been investigated. By
regarding the Weiszfeld algorithm as a sub-gradient
procedure, a sub-gradient algorithm has been introduced [1] to
estimate the median and to prove that this algorithm always
converges :

mn+l = expm Z,,- Z M Wlth Gm” = {k/xk * mn} (9)
"\ k<G, Hexpm” (x, )H

Then, the median 4 of the N matrices B, can be computed
by sub-gradient Karcher flow :

log (4, "B, 4,2

1,
—1/2 —1/2
keGy, H]"g A, By A,

An+l = Allx/ze
Wlth GA" = {k/Bk # An}

n

F]A;'z (10)

= X! :E_rlny|_1":-"a_.\"""] rye

7, (=X x V2B x Y yi2

dy (1)
di

;-a=l‘fl 2 |E!g("1'_J :BP'L'_' :h-l 2

N . N
Zd’:’;:”g;:[, = x! l[ZIog[.‘.’ 13g x :]]_1-1 g

k=1 k=1

Figure 2. Fréchet-Karcher Flow on space HPD Matrices

IV. FOURIER HEAT FLOW EQUATION ON 1D GRAPH OF
HERMITIAN POSITIVE DEFINITE MATRICES

We can replace Median computation by anisotropic
diffusion. In normed vector space in ID, if we note
i, =(u,, +u,)/2,F ourier diffusion Equation is given by :

Oou o*u

ot ox?




2Vi. N
u =u,, + W[un,t _un,t] = (1 - p)'un,t tpu, =u,, °p U (1 1)
By analogy, we can define diffusion equation on a ID

nt+l

graph of HPD(n) by:
172 jvx? log( 7”2A'A7”2) 1/2 1/2( -1/2 % 71/2) 1/2
An,t+l € Ant An,t A?r,t A?r,tAn,t A?rt pAnt
. 2Vt ~ s \12
with p=Cs and 4, = 417,404, 415) " 415,
(12)

Obiously, we can introduce anisotropy by making adaptive
the parameter p.

From each Time covariance matrix, we can compute
Doppler Spectrum. In the following exemple, we give image
with range on X axis and Doppler frequency on Y axis.
Fourier heat Diffusion is applied on covariance matrices and
then, we draw associated Doppler spectrum of results :
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Figure 3. Fourier Heat Equation on a 1D graph of covariance matrices:
isotropic diffusion

Figure 4. Fourier Heat Equation on a /D graph of covariance matrices:
anisotropic diffusion

V. TOEPLITZ-CONSTRAINED FLOW FOR HERMITIAN POSITIVE
DEFINITE COVARIANCE MATRICES OF STATIONARY SIGNAL

Previous flow has a major drawback, it will not constrained
Toeplitz structure of covariance matrices M for stationary

signal . =, =E|z, Z:,k] but only the following
structure: JMJ = M  with J an anti-diagonal matrix.
E={M e HPD ,(C)/JMJ =M } is a closed sub-

manifold of gpp L(c).To take into account this constraint,

Partial ITwasawa decomposition should be considered. This is
equivalent for time or space signal to Complex
AutoRegressive (CAR) Model decomposition (see Trench

Theorem [5]) :
2\ 1 A (13)
a )|:A Q  +4,, .A;1j|

n-1
2 1 0 | with A2 12+ 14
W, = 1-|u, |:A Q”Z] Q,,=Q,5Q,5 (14)
n-1

n-1

Q, =(a,R) =w,Ww = (1—

where 41 = [1_ u,

’ Ja;ll A, = {A:)l} + ,u,,|:A'§-1) } and y©O =gy”

In the framework of Information Geometry, Information
metric could be introduced as Kéhlerian metric where Kéhler
potential is given by the process Entropy &R, ,P,) :

O(R,.P, 0)—log(detR’l) log(z.e =—Z(n k). log[l \yk\] nlogze.P,]

Information metric is then given by hessian of Entropy
_o0 # ] (15)
060700

with {;, }" Regularized [2] Burg reflection coefficient

g, = where 9 =[P,

[6,7] and p =¢,' mean signal Power. Kéhlerian metric is

finally :

ds? =0 g, ]dH("’—n[ OJ +Z(n—z)( s

/11
For Median autoregressive model computation, Karcher
flow could be trivial. For P,, We use classical median on real

(16)

value. For {4 }""!, we use homeomorphism of Poincaré’s unit

disk w0 = K —W, , to fix the point under action of karcher
- ﬂk,wW;
flow at the origin from where all geodesics are radials and

where the space is locally Euclidean. Dual Karcher Flow is:

w, =0 Y A with G, = /]| # 0} a7
keG, luk,n
Median is deduced from each w, at each iteration:
Honediann T W (18)

Honediannrt =

1 *
+ :umediun,n W

:uz,n

... Dual Median Flow .~
4 .- T, hE

------

Figure 5. Modified Karcher Flow in Poincaré disk by homeomorphism

Figure 6. Classical Karcher flow in Poincaré’s unit disk



Figure 7. Dual Karcher Flow centered at the origin

VI. BLOCK-TOEPLITZ CONSTRAINED KARCHER FLOW

We will extend previous approach to space-time covariance
matrix for STAP. Based on generalization of Trench
Algorithm [5], if we consider Toeplitz-block-Toeplitz
Hermitian Positive Definite matrix:

R, R - R,
o BB i (R, R (19)
pon+l . . . . Rl E'_:_ RO
R, R’ R,
' R . 0 - 0 J,
with - .| and S0 (20)
., = Vi V=
R 0 J, :

From Burg-like parameterization [11], we can deduced this
inversion of Toeplitz-Block-Toeplitz matrix :

R % a, 4, (21)
pontl T i -1 e
a,4, R, +a,d,.A,
and , _ a; +A;.Rf’n.An -A'R,, (22)
p.n+l _ Rp ., A” o
with o' =[1- 44" ]a, o =R,
All _ JPA::II Jp (23)
and 4,=| i |= { "1} + 4 n:_]*
) 0, J AT,
IP

Where we have the following Burg-like generalized
forward and backward linear prediction :

&la(k) = iAl"”(k)Z(k =D =g/ (k)+47e, (k-1)

n+l1
1=0

b (k)= JA (k) JZ(k —n+1) = &) (k= 1)+ JA! Je] (k)

yrs n+l
. {s{(k)=a§(k>=2(k)
with ot
4t =1,

N+n N+n N+n -1
A= —2{25;{(16)55(/( —1)+}{25,{(k)€;{ (k)" + Zaf(k)ef(k)*}

k=1 k=1 k=1
(24)
Using Schwarz’s inequality, it is easily to prove that 4!
Burg-Like reflection coefficient matrix lies in Siegel Disk

Al esD,-

n+l

VII. CARTAN-SIEGEL HOMOGENEOUS DOMAINS : SIEGEL
Disk

To solve median computation of Toeplitz-Block-Toeplitz
matrices, Karcher-Fréchet Flow has to be extended in Siegel
Disk. Siegel Disk has been introduced by Carl Ludwig Siegel
[8] through Symplectic Group sp, g that is one possible
generalization of the group SI,R=Sp,R (group of invertible

matrices with determinant 1) to higher dimensions. This
generalization goes further; since they act on a symmetric
homogeneous space, the Siegel upper half plane, and this
action has quite a few similarities with the action of §7,R on

the Poincaré’s hyperbolic plane. Let F be either the real or the
complex field, the Symplectic Group is the group of all
matrices Jf e GL, F satisfying :

Sp(n,F) = {M e GLQ2n,F)/M"JM = J | 25)

0 I,
J= e SL(2n,R)
-1 0

A B
or M = [C D] € Sp(n,F) <> A"Cand B'D symmetric (26)

and A"D-C'B=1,
The Siegel upper half plane is the set of all complex
symmetric nxn matrices with positive definite imaginary part:

SH, ={Z = X +iY € Sym(n,C)/Im(Z) = ¥ >0} (27)
The action of the Symplectic Group on the Siegel upper
half plane is transitive. The group PSp(n,R) = Sp(n,R)/{+1,,}

is group of gy biholomorphisms via generalized M&bius

transformations:

A
M=
¢

PSp(n,R) acts as a sub-group of isometries. Siegel has

i) = M (Z)=(4Z +B)CZ +D)" (28)

proved that Symplectic transformations are isometries for the
Siegel metric in g, . It can be defined on sm using the

distance element at the point Z = X +iY, as defined by:
dst,, = Tr(Y ' (dz)y (dz")) with Z =X +iv
with associated volume form: @ = Tr(y“dz A Y“dz*)

(29)

C.L. Siegel has proved that distance in Siegel Upper-Half
Plane is given by :
i 1
2, (7,.2,)=| Ylog? Vi | i 7.7, < SH,
= -r
and 7, eigenvalues of the cross-ratio :
+\! + + + !
R(Z2,2,)=(2,-2,)\2,-2;) (27 - 27 Nz - 2,) " €2))
This is deduced from the 2™ derivative of 7z — R(zl,z) in

(30)

Z, =7 givenby :

D'R=2dz(z-2")"dz* (2" -2)" =(1/2)dzy"dz" Y (32)

and gs> =Ty 'dzy'dz" )= 2.1#(DR) (33)
In parallel, in China in 1945, Hua Lookeng has given the

equations of geodesic in Siegel upper-half plane :
2

AR AT

ds ds ds

(34)




Using generalized Cayley transform w=(z-il, \z+il,)">
Siegel Upper-half Plane gz is transformed in unit Siegel
disk sp = {W IWW™ < ]n} where the metric in Siegel Disk is
given by :

as* =o|(r, ~ww* ) aw (1, -ww) aw-| (35)

Siegel Upper-Half Plane
SH, =4Z = X +i¥ = Sym(n,C)/Im(Z) =¥ > 0}
detl R R, R - ATI=0

AR, By =3 o (A,

k-1

ds® = Tmce[lR’ldR ‘2]

/ds‘ =Trivdz v tidzt |l
-

Zp=X 4%
RIZy 2y )= (0 -2, 02 - 2 rl'Z;_Z; lzy -z, r

detl RIZ),Z,\=rIi=0

Figure 8. Geometry of Siegel Upper Half-Plane

Contour of Siegel Disk is called its Shilov boundary
asD, = {W IWW* -1, = o} We can also defined horosphere.

Let U easp, and ke R, the following set is called

(36)

Hua Lookeng and Siegel have proved [8] that the previous
positive definite quadratic differential is invariant under the
group of automorphisms of the Siegel Disk. Considering
V=M@W)=(4Z+B)CZ+D)" =

4 B suchthat o5 0 | 11 0
c D 0 -1, 0 -1,
(r,-vvY'av(,-vv)ar =

(Bw*+aft, —ww ) aw (1, -ww) aw(Bw* + 4)'
= ds; =ds;,

horosphere in siegel disk :
AL
k

H(k,U):{Z/o<k(1—z*z)—(1—z*U)(1—U*z)}={Z/ o

(36)

Complementary, Hua Lookeng has also proved that, let V, W
be complex-valued matrices, if 7—-yy*>0 and 71-ww* >0,
then the following identity holds :

det(r —vv* )det(r - ww ) <|det(r -vw | (37)

det(7 — A" )det(7 - B*B)<det(7 ~ 4"B) i based on Hua’s
matrix identity :
(1-B*B)+(4-B) (1- 447 )" (4=B)=(1-B A)f1-4"4) (- 4°B)
(38)

using the intermediate equalities:
(1-B*a\1-47A4) ' (1-4"B)-(1-B"B)=(B—A) (I - 44"\ B- 4)
(39)

oo

(1—ara) =1+4(1-44')" 4

and (1-a74)' 4" =4 (1-a47)" (40)
Same kind of inequality is true for the trace :
Tr(1 - a (1 - B'B)<|1r(1 - 4°B) (41)

To go further to study Siegel Disk, we need now to define
what are the automorphisms of Siegel Disk sp . They are all

defined by:

V¥ € Au(SD,),3U € U(n,C)/¥(2)=U®, (Z)U" (42)
with

=0, 2)=1-2,2;)"(z-2,\1-2;2) (1 -2;2,)*  (43)
and its inverse :

G=(1-22)"s1-2;2,)" = (z-2z N1 -z 2)' )

Z=0,(2)=(GZ;+1)'(G+Z,)

= 1/2

with G =(1-2,2; )" 2(1-2;z,)
By analogy with Poincaré’s unit Disk, C.L. Siegel has
deduced geodesic distance in SD, :

VIII. MOSTOW/BERGER’S FIBRATION OF SIEGEL DISK

L+|@, )|
1+|@, (7))

VZ,W eSD,.d(Z,W)= ilog( (45)

Information metric will be introduced as a Kéhler potential
defined by Hessian of multi-channel entropy 5(Rp M) :

(5(RN ) = log(det R}

pan

)+ cte = —Tr(logR )+ cste = g = Hess[¢(pr,, )]
Using partitioned matrix structure of Toeplitz-Block-Toeplitz
X R recursively parametrized by Burg-Like

pon

pon+l >

k+1 |

reflection coefficients matrix {A,f }kzl with 4 e SD , we can
give Multi-variate entropy [3], matrix extension of previous

Entropy :
_ n—1
B(R,,)=-> (n—k)logdet]l - 4} 4} |- n.log[ze.det )] (40)
k=1

Paul Malliavin [3] has proved that this form is a Kahler
Potential of an invariant K&hler metric (Information Geometry
metric in our case) that is given by matrix extenstion of (14):

ds® = nTr[(Rg‘dRO)Z]+ "i(n - k)Tr[(In — ALY Al (r, - AL 4t )“dAf,*]
k=1

(47)

As we have defined a metric space, we can extend
Karcher/Frechet flow in Unit Siegel Disk to compute the
Median of N Toeplitz-Block-Toeplitz Hermitian Positive
Definite matrices. These matrices are parameterized by Burg-
Like generalized Reflection matrices {Af} with 4% e SD,

k=1
and Karcher/Frechet Flow in Siegel Disk will be solved by
analogy of our scheme used in Poincaré unit Disk, by mean of
Mostow Decomposition Theorem every matrix M of
GL(n,C) can be decomposed in A =Ue“e® where § is

n—1

symmetricS _ llog(Pl/z(P-l/zp*P-l/z )I/ZPI'/Z) With P = MM » A
2

is antisymmetric 4 _ ilog(e's pe-s) and finally, U = Me e is
2i



unitary. Median in Siegel disk could be then obtained by
analogy with scheme developed for median in Poincaré’s disk:
Initialisation : W, =0 and {WIVO,., mo} w,..w,}

median,0
Iterate on nuntil |G, |, <&

S:f Sk

_ iy Sk 2
W, =U,e"e" =H,, Vane

n

=Up,et =W e =e
with S, =1/2. 1og(P”2( ep pn) Pk{f)with P, =W, W,,

G, =7, 2 H,, with Y|H,], <o}
k=1
k=l

Fork =1,...m then W, =®, (W,,)

W =1-G,G;)"" W, -6 Ni-Gw,,) ' (1-6,6,)"
Wesinnn = (GG, +1)'(G+G,)

with G=(1-G,6;)"w, .. (1-GG, )"

IX. BEREZIN QUANTIZATION OF CARTAN-SIEGEL DOMAINS

Symmetric Bounded Domains of C" are key spaces for all
these approaches and are particular symmetric spaces of non-
compact type. Elie Cartan [4] has proved that there are only 6
types:

e 2 exceptionnal types (E6 et E7)

e 4 Classical Symmetric bounded Domains (extension of
Poincaré Unit disk):

Z : Complex Rectangular Matrix

7z <1 (

Typel: .Qf, .

s transposed — conjugate)

complex matrices with p lines and q rows (48)
TypeI1: Q, complex symmetric matrices of order p

Type II: Q;” complex skew symmetric matrices of order p

Type IV: Q" complex matrices with n rows and 1 line :

-277" >0

kernel function for all these domains were established by
Lookeng Hua:

Typel: Q) ,v=p+q

K(zw)= ﬁdet(l —zw*)" for {Typell: Q" v = p+1
Typelll: Q) ,v = p-1
Kz )=—L (v zzww —22w" )" for TypeIV: Q" v = n
#(22)
where 1(€2)is euclidean volume of the domain.
(49)

For the case (p=g=n=1), all these domains are reduced to
the classical Poincaré unit disk :
QL =0 =0" = Q" ={zeC/z <1}K(zw')= (50)
' (1 zw )2
Groups of analytic automorphisms of these domains are
locally isomorphic to the group of matrices which preserve
following forms:

Typel: Q'

P

. I, 0
AHA =H,H =| LdetA=1
0 -1,

; . I, 0 0 I
Typell: Q" , AHA" = H,AKA' =K, H =| " K = ’
’ 0 -1, -1,

1 * t ].” 0 0 ].”
Type l1: Q" | AHA" = H,ALA' = L,H = L= .
,

0 -7

w 1 _Iz 0

TypelV:Q!" , AHA" = H, AHA' = H,H = o 7
(51)

All classical domains are circular and considered in the
general framework of Elie Cartan Theory, where the origin is
a distinguished point for the potential:

. K(z,7') o
D(2,7")=1og =22 )| = logdet(l — 22+

(0.2)-tog KL gl - 2z

F.A. Berezin [3] has introduced on these Cartan-Siegel
domains the concept of quantization based on construction of
Hilbert spaces of analytical functions:

(52)

kz,zH]" .
(f.g)=c] f(Z)g(Z){ X0.0) } du(Z,2")
el (53)
e(h)" = f{%} du(2,2°)

K(eZ.97")j(2.2)j(8.2) = K(Z.2') with j(g.Z) = 6—22

One example is given in dimension 1 for Poincaré unit disk

D={ze Cll4 < 1}=sU(,1)/s' with  volume  element
1/2i(1-|4") 2 dz ndz”
geSU(,]) with g = [a b*} where ‘a‘z —‘b‘z =1

b a (54)

with Kéhler potential : F(z) = —log(l - ‘z‘z)
= F(gz) = 2Relog(b’z +a" )+ F(2)
O°F(gz) 0°F(2)

= dsz == -
0z0z 0z0z

It results from the last equation that the Ké&hlerian metric is
invariant under the action g e G (automorphisms of unit disk).

The transform of the base point > =0 of the disk by g e Gis
given by g(0)=ha’)".
associate to all paths in disk a lift in G. In the same way, we
can define a geometric lift of potential K in G:

g(0)=ba")"
= F(g(0)) = —log(l ~Jola’)’ zj‘a‘z_@::llog(l )
—b .
] =>F(g)=F(g)
a

L [d
g'=

Obviously, all these lifts could be extended to Cartan-Siegel
Domains sp, = {z/zz* < I:

It defines a lifting that allows to

(55)




4 B . . 0 I
Let g = 5 B and g'Jg = J with J = 1o

, {A*A ~B'B =1
A and B that verify .
B*"A-AB =0
2(2)=(4z+B)\B'Z+4)' (56)
of Kahler Potential :
F(z) = —logdet(l - 22*) = ~Tr[log(1 - 22" )|
F(g(2)) = F(Z)+2Re(Tr(log(4" + B'Z))
= 00'F(g(2))= 00" F(Z)
Geometric Lift in Cartan-Siegel domain is then given by the
following:
2(0)=B(4")'
= F(g(0)) = logdet(l + BB*) = Tr[log(r + BB" |
F.A. Berezin [3] has proved that for every symmetric
Riemannian space, there exist a dual space being compact.
The isometry groups of all the compact symmetric spaces are
described by block matrices (the action of the group in terms
of special coordinates is described by the same formula as the
action of the group of motions of the dual domain).

(57)

A, A
F:( , IZJDF(W):(A11W+A12)(A21W+A22)l

AZI 22 (58)
Isometry: I” = CIC™' with C = — Lo
= w =—
Y NEAUE
Berezin coordinates for Siegel domain are given by
A B A* B
r= . .|.I=
[B 4 J (B* A’J (59)

0 7
orequivalently: /77" =1 , ILI"' = L with L:(l 0)

2(0)=B(4")" = F(g(0)) = Indet(l + BB" )= traceIn(1 + BB*) (60)
For this dual space, the volume and the metric are invariant:

dulw. W)= H(W,W*)M”’W*)

. o log Hw,w") (61)
ds® = AW dw” with =———— ")
;g“"” & = owow”
where H(OW,W") = det(1 +ww* )"
For arbitrary Kéhlerian homogeneous space, the logarithm
of the density for the invariant measure is the potential of the
metric.

X. MEDIAN AND CONFORMAL BUSEMANN BARYCENTERS

The Fréchet-median barycentre, in Poincaré/Siegel unit disk
is equivalent to conformal Douady/Busemann barycenters
[12]. The principle is to assign to every probability measure 4

on 51:{‘2‘:1} a point B(ﬂ)epzﬂz‘d} so that the map
us B(u) is conform and satisfies: B(u)=0c Igdu(§)=0
s!

There is a unique conformally way to assign to each
probability measure , on §' a vector field ¢, on D such

that: £,(0)= j Cdu(C) =0 For general yw in D, if we set
Sl
g.(z)=——", the assignment is given by 4 &
v 1-w*z '
_ 1 _ 2 §-w _ (62)
500 = (@ =0 )f [1 = ;]du@) -0

Douady-Earle definition of conformal barycenter p(y) of
u is the unique zero of 3 in D. & (z)can be written

according to é(2) that is the unit tangent vector of geodesic
at z e D pointing toward: ¢ e Sl:;l(z) _ J‘ég(z)du(g)
S!
(63)

In Poincar¢ geometry of unit disk, the vector field ¢, is the
gradient of a function h, whose level lines are the horocycles
tangentto S' at £ ¢ §':

&, =Vh, with h,:zr> j h(2)du($)
S!

2
&

i Jdﬂ(é) = [2im[a(0.n - d(z, o)) @Y

1 -
h,(2)= ;log[ -

s ‘Z
with 4(z,w) the Poincaré¢ distance from z to w in D. We can

then observe that the Fréchet median of N points in D,
(W Wy Wy Wy is the conformal barycenter of associated

push forward N points {¢ £, £,,..¢,} on S':

Mediang,,,,,, {wl,wz,w3,..., WN} = Conforma17Baiycenter{é’l,(2,4’3,,..,4’1\,}

gi = ,l_'fﬁy% (z)(t) = ZL_KZ7;V' ®)
¢ =Limy, (0 =Limy" (nthe
to+o0’ %4 t—+00

association is given by the limit point when ¢ tends to infinity
along the geodesic from the barycenter toward .

where “push  forward”

A i -
syl o) v
S T [ as ==

Figure 9. Frechet Median Barycenter = Busemann Barycenter

All these results could be extended for Busemann
barycenter on Shilov boundary of Cartan Hadamard
manifolds. Following functional associated to median
barycenter . . J‘ d(x,2)dv(2) is simply connected and reached

o
its minimum. When z goes to infinity and converges to a point
6@ of gH", distance function to z normalized converges to
Busemann function: B,(x) = limd(x,2)~d(0,2) .Fixing the

origin O e H", let v finite measure on oH". The following
strictly convex function reaches its minimum at a unique
point, independent of origin and called Busemann



barycenter: 5 () _ [B,dv(0) (65)

OH"

XI. RADAR APPLICATIONS FOR ROBUST ORDERED-STATISTIC
PROCESSING: OS-HDR-CFAR AND OS-STAP

In the following, we will apply previous tools to built
Robust Ordered-Statistic (OS) processing. Ordered-Statistic is
a very useful tool used in Radar for a long time to be robust
againt outliers on scalar data from secondary data. We will
define an OS-HDR-CFAR (Ordered-Statistic High Doppler
Resolution Constant False Alarm Rate) algorithm jointly
taking into account robustness of “matrices median” and high
Doppler resolution of regularized Complex Auto-Regressive
model. We will define also an OS-STAP (Ordered Statistic
Space-Time Adaptive Processing), based on median
computation of secondary data space-time covariance matrix
with Mostow/Berger fibration applied on Multichannel
Autoregressive Model.

This paper will not address Polarimetric Data processing,
but obviously these tools could be extended to compact
manifold to define Ordered statistic for Polarimetric
covariance matrices.

STAP Processing
(Space-Time Covarinnce Mairix)

Doppler Processing
(Time Covariance Matrix)

"
Covarlance Matria
emtimamion

Figure 10. Doppler Processing, Antenna Processing, Space-Time Processing
& Polar processing

XII. ROBUST DOPPLER PROCESSING : OS-HDR-CFAR

The regularized Burg algorithm [2] is an alternative
Bayesian composite model approach to spectral estimation.
The reflection coefficients, defined in classical Burg algorithm
are estimated through a regularized method, based on a
Bayesian adaptative spectrum estimation technique, proposed
by Kitagawa & Gersch, who use normal prior distributions
expressing a smoothness priors on the solution. With these
priors, autoregressive spectrum analysis is reduced to a
constrained least squares problem, minimized for fixed
tradeoff parameters, using Levinson recursion between
autoregressive parameters. Then, a reflection coefficient is
calculated, for each autoregressive model order, by
minimizing the sum of the mean-squared values of the
forward and backward prediction errors, with spectral

smoothness constraints . Tradeoff parameters balance estimate
of the autoregressive coefficients between infidility to the data
and infidility to the frequency domain smoothness constraint.
This algorithm conserves lattice structure advantages, and
could be brought in widespread use with a multisegment
regularized reflection coefficient version. The regularized
Burg algorithm lattice structure offers implementation
advantages over tapped delay line filters because they suffer
from less round-off noise and less sensivity to coefficient
value perturbations.
. Initialisation :
fy(k) = by(k) = z(k) , k=1,..,N (N:nb.pulses per burst)

v

1
I’O:N.Z\z(k)\z and a =1

k=1
teration (n): for n=1to M

2 i S ()b, (k=1)+2.

N-n,55 k=

n—

1
(n) _(n-1) _(n-1)
Ba".a
1

H, =~ — )
ﬁk::ﬂ f;lil(k)‘z " bﬂil(k B 1)‘2 + Zgﬂl((n] al((nil)‘z
with A" = 7,.27)" (k= n)’
a" =1
aZn) — alfn—l) + /lwaf,:l)* kLo
a” = p,

b, (k) = b, (k=1 + 1., (k) (66)
In the following figures, regularization property is

illustrated with deletion of spurious peaks. We select the AR
model of maximum order (number of pulses minus one).

Poles du Bitre auloregress
-—

{fn(k) = fo (k) + 4,5, (k1)
and

o LSHR = AR db T

us \
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H
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Figure 11. (up) Non-regularized & (bottom) Regularized Doppler AR
Spectrum

We conserve the sliding window structure of classical
CFAR : we compare the AR model under test by computing



its Information Geometry distance with median AR model of
secondary data in the neighborhood. Median Autoregressive
model is computed by :

For P> We USC classical median on real values I

For {/‘k }:;; :

w, =7, Z Hin with G, = {k/‘,ukn * 0} (67)
keGy :uk,n
_ ﬂkm W, (68)
:uk,n+l - *
1_:uk,n'wn
Honediann T Wn 69
Honediann1 = . (69)

1+ lumediﬂn,nW:
The detection test is finally based on computation of the
robust Information Geometry distance:

d’ [(PO,k i M1k )’ (szdian,O HN 1 median )] =

2
P . plk} :
nlog?| Zmedan | | (N—k llog 1+, with &, =
Foi i=l 2 1-¢,
(70)

In the following figure, we compare the classical processing
chain with new OS-HDR-CFAR

,ul,median

Hix = i median
I
= Hi kM median

Case Classical
k-2 CFAR Chain CA-CFAR
Case |
k-1 i
OS-CFAR >Seuil
Case 18Q Doppler
k (z,...2,) Filters CA-CFAR
Case
k+1
OS-CFAR >Seuil

Cases distances

@— Advanced
- 0OS-HDR-CFAR Chain
Case
k1 High Doppler
Case 18Q Resolution
k (2,...2) Coefficients
Case | (Pgjobly o= M)
k+1

s~ Pupaten|
e

Figure 12. (top figure) Classical OS-CFAR after filter banks, (bottom figure)

OS-HDR-CFAR
Range Cells OS-HDR-CFAR
. Guard Cells
. y Data
Reference Cells
Inf " Cell under test
nformation (primary data)
Geometry 0S-HDR Median on
Distance reflection coefficient

=
‘/ :

Hi Ha

Figure 13. OS-HDR-CFAR Algorithm with illustration of two first reflection
coefficients

We have tested OS-HDR-CFAR on real recorded ground
Radar clutter with ingestion of synthetic slow targets.

vemaEs Expier (]

s aa wple iy

Figure 14. Reflectivity of ground clutter in recorded sector (top),Comparison
of FFT Doppler spectrum (middle) and High Resolution Regularized Doppler
spectrum (down)

In the following figures, we give ROC curves with
Probability of detection versus probability of false alarm. We
observe that OS-HDR-CFAR is better (Pd = 0.8) than OS-
CFAR/Doppler-Filters (Pd = 0.65) for arbitrary fixed Pfa. We
could also observe that Information Geometry approach
provides better results than Optimal Transport Theory
approach (based on Wasserstein distance/barycenter : black
curve).



O5-HDR-CFAR Pd-80%

Classical CFAR Pd=85%

Figure 15. ROC curves for 3 approaches : OS-HDR-CFAR, OS-

CFAR/Doppler-Filters, & method based on Wasserstein barycenter/distance

(optimal transport theory)

w=025 a=05

a=1

Figure 16. Probability of detection versus SNR for fixed Pfa=107, with o
relative position in Doppler of the target normalized by Doppler Clutter
Spectrum Width (a=1 means that the target is positioned on the edge in

Doppler of the ground clutter)

Figure 17. Comparison of “Mean” in red and “Median” in blue for clutter
level estimation (top) and through Pd/Pfa curves (down).
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XIII. CONCLUSION

Fréchet Median with Information Geometry and Geometry
of of HPD(n) matrices is a new tool for Radar Signal
Processing that could improve drastically performance and
robustness of classical methods, in Doppler processing and in
STAP. Obviously, these approaches could be extended to
Array Processing and Polar Data Processing in the same way
on respectively spatial covariance matrix and Polar covariance
matrix. Future works will be dedicated to deepen close
relations of Information Geometry with Lagrange Symplectic
Geometry and Geometric Quantization.
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Information Geometry of Covariance Matrix:
Cartan-Siegel Homogeneous Bounded Domains,
Mostow/Berger Fibration and Fréchet Median
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Abstract: Information Geometry has been introduced by C.R.Rao, and axio-
matized by N. Chentsov, to define a distance between statistical distributions
that is invariant to non-singular parameterization transformations. For Dop-
pler/Array/STAP Radar Processing, Information Geometry Approach will give
key role to Homogenous Symmetric bounded domains geometry. For Radar, we
will observe that Information Geometry metric could be related to Kéhler met-
ric, given by Hessian of Kéhler potential (Entropy of Radar Signal given by —
log[det(R)]). To take into account Toeplitz structure of Time/Space Covariance
Matrix or Toeplitz-Block-Toeplitz structure of Space-Time Covariance matrix,
Parameterization known as Partial Iwasawa Decomposition could be applied
through Complex Autoregressive Model or Multi-channel Autoregressive Mod-
el. Then, Hyperbolic Geometry of Poincaré Unit Disk or Symplectic Geometry
of Siegel Unit Disk will be used as natural space to compute “p-mean” (p=2 for
“mean”, p=1 for “median”) of covariance matrices via Karcher Flow derived
from Weiszfeld algorithm extension on Cartan-Hadamard Manifold. This new
mathematical framework will allow development of OS (Ordered Statistic) con-
cept for Hermitian Positive Definite Covariance Space/Time Toeplitz matrices
or for Space-Time Toeplitz-Block-Toeplitz matrices. We will define OS-HDR-
CFAR (Ordered Statistic High Doppler Resolution CFAR) and OS-STAP (Or-
dered Statistic Space-Time Adaptive Processing).

Keywords: Median, p-mean, Center of mass, Cartan-Hadamard Manifold, Car-
tan Symmetric spaces, Homogenous bounded domains, Siegel Upper-half
plane, Poincaré disk, Siegel disk, Fréchet metric space, Berger fibration,
Mostow decomposition, Radar, CFAR, STAP

1 Historical Preamble

Information Geometry has been introduced by Indian scientist Calyampudi Radha-
krishna Rao [15] (http://www.crraoaimscs.org/) PhD student of R.A. Fisher, and axi-
omatized by N. N. Chentsov [5], to define a distance between statistical distributions
that is invariant to nonsingular parameterization transformations. C.R. Rao introduced



this geometry in his 1945 seminal paper on Cramer-Rao Bound. This bound was dis-
covered in parallel by Maurice René Fréchet [6] in 1939 (in his Lecture of “Institut
Henri Poincaré” of Winter 1939, in Paris) and extended later to multivariate case by
Georges Darmois. We will see that this geometry could be considered in the frame-
work of Positive Definite Matrices Geometry for Complex circular Multivariate La-
place-Gauss Law. Same kind of geometry has been also introduced by Functional
Analysis approach by Prof. R. Bhatia in his recent Book [2]. For Doppler / Array /
STAP Radar Processing, Information Geometry Approach will give key role to Ho-
mogeneous Symmetric bounded domains geometry. For Radar, we will propose In-
formation Geometry metric as Kdhler metric, given by Hessian of Kéhler potential
(Entropy of Radar Signal given by —log det(R) where R is the covariance matrix),
which is also a Bergman metric. To take into account Toeplitz structure of
Time/Space Covariance Matrix or Toeplitz-Block-Toeplitz structure of Space-Time
Covariance matrix for stationary signal, Parameterization known as Partial Iwasawa
Decomposition [9] could be applied through Complex Autoregressive Model or Mul-
ti-channel Autoregressive Model. Then, Hyperbolic Geometry of Poincaré Unit Disk
[14] or Symplectic Geometry of Siegel Unit Disk [17, 18] will be used as natural
metric space to compute p-mean (p=2 for mean, p=1 for median) of covariance matri-
ces via Fréchet/Karcher Flow [7, 10] derived from Weiszfeld algorithm [108] exten-
sion on Cartan-Hadamard Manifold and on Fréchet Metric spaces. This new mathe-
matical framework will allow developing concept of OS (Ordered Statistic) for Her-
mitian Positive Definite Covariance Space/Time Toeplitz matrices or for Space-Time
Toeplitz-Block-Toeplitz matrices. We will then define OS-HDR-CFAR (Ordered
Statistic High Doppler Resolution CFAR) and OS-STAP (Ordered Statistic Space-
Time Adaptive Processing). This approach is based on the existence of a center of
mass in the large for manifolds with non-positive curvature that was proven and used
by Elie Cartan back in the 1920s [3]. The general case was employed by Calabi in an
unpublished note. In 1977, Hermann Karcher [10] has proposed intrinsic flow to
compute this barycenter, that we adapt for covariance matrices. This geometric foun-
dation of Radar Signal Processing is based on general concept of Cartan-Siegel do-
mains [4, 17, 18]. We will then give a brief history of Siegel domains studies in Eu-
rope, Russia and China. In 1935, Elie Cartan [4] proved that irreductible homogene-
ous bounded symmetric domains could be reduced to six types, included two excep-
tional ones. Four non-exceptionnal Cartans domains are now called classical models,
and their extension by Siegel are considered as the higher dimensional analogues of
the Poincaré unit disk [14] in the complex plane. After these seminal work of Elie
Cartan, in the framework of Sympletic Geometry [17, 18], Carl Ludwig Siegel has
introduced first explicit descriptions of symmetric domains, where the realization of
bounded domains as unbounded domains played fundamental role (for an important
class of them, these unbounded domains are Siegel domains of the first kind, with
important particular case of Siegel Upper Half Plane). In 1953, Loo-Keng Hua [8]
obtained the orthonormal system and the Bergman/Cauchy/Poisson kernel functions
for each of the four classical domains using group representation theory.

Elie Cartan proved that all bounded homogeneous complex domains in dimension
2 and 3 are symmetric and conjectured that is true for dimension greater than 3. Ilya



Piatetski-Shapiro [13], after Hua works, has extended Siegel description to other
symmetric domains and has disproved the Elie Cartan conjecture that all transitive
domains are symmetric with a counter example. In parallel, A. Borel showed that if in
a bounded homogeneous region a semi-simple Lie group operates transitively, then
that region is symmetric. These results were strengthened by Hano and obtained by
Jean-Louis Koszul [11, 12, 113] who also studied affinely homogeneous regions that
are fundamental for Information Geometry and real Hessian or complex Kéhlerian
geometries (see in book [16], Koszul’s references inside). Piatetski-Shapiro intro-
duced affinally general definition of a Siegel domain of the second kind (all symmet-
ric domains allow a generalization of Siegel tube domains), and has proved in 1963
with S.G. Gindikin and E. Vinberg that any bounded homogeneous domain has a
realization as a Siegel domain of the second kind with transitive action of linear trans-
formation. In parallel, E. Vinberg [19] worked on the theory of homogeneous convex
cones, as fundamental construction of Siegels domains (he introduced a special class
of generalized matrix T-algebras), and S.G. Gindikin worked on analytic aspects of
Siegels domains. More recently, classical complex Symmetric spaces have been stud-
ied by F. Berezin [1] in the framework of quantization. With Karpelevitch [114], Pi-
atetski-Shapiro explored underlying geometry of these complex homogeneous do-
mains manifolds, and more especially, the fibration of domains over components of
the boundary. Let a bounded domain, he constructed a fibration by looking at all the
geodesic that end in each boundary component and associating the end point to every
point on the geodesic. This fibration is important to understand Satake compactifica-
tions, and will be studied in the framework of Mostow/Fibration for our application.
For our Radar STAP and Toeplitz-Block-Toeplitz covariances matrices, we have used
Berger Fibration in Unit Siegel Disk based on the theorem that all symmetric spaces
are fibered on a compact symmetric space (Mostow decomposition [57,58,115]).

At the end of the paper, we will underline close relations between Fréchet median
in Poincaré Unit Disk with Conformal barycenter on its boundary introduced by Dou-
ady and Earle.



Structure of the paper is explained in the following image:
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Fig. 1. paper structure with associated sections

2 Information Geometry Foundation

Foundation of Information geometry can be deduced from consideration on Kull-
back-Leibler Divergence. Kulback Divergence can be naturally introduced by combi-

natorial approach and stiling formula. Let multinomial Law of N elements spread on
M levels {ni}:

M n . . M ni
PM(nl,nz,...,nM /ql,...,qM)=N!H% with g, Priors, Zni =N and p; =N M
i=1

i i=1

Stirling formula gives nlx n".e™" 27.n When n — +0. We could then observe that it
converges to discret version of Kullback-Leibler:

1 o pi|_ (2
zﬁrﬁoﬁlo‘g[PM ] = ;pi log{q} =K(p.q)

i

Based on variational approach, Donsker & Varadhan gave variational definition of
Kullback divergence:



K(p.q) = Sup|E, (#)~10g E, (¢*)] 3)

Consider : ¢(w) = log[ pgw))j

= E,(¢)~loglE, (¢"))= Zp(w)log[”( )] 1{2 (w)”( )} K(p.q)-log() = K(p.q)

This proves that the supremum over all ¢4 is no smaller than the divergence.

e?
i o ]

(o)
e

q(w)e
zq(g)ecﬁtf?) =
0

using the divergence inequality.

In the same context, link with « Large Deviation Theory » & Fenchel-Legendre
transform which gives that logarithm of generating function are dual to Kullback
Divergence. This relation is given by:

with ¢%(w) =

log|[ " q(x)ds| = Sup| [V (v) p(x)dx K (p. )

! 4)

< K(p,g) = Sup[j V(x)p(x)dx — log[[e””q(x)dx]]
V()

< K(p,q) = Sup[Ep (V)-logE, [eV(")]]
V()

Chentsov was the first to introduce the Fisher information matrix as a Riemannian
metric on the parameter space, considered as a differentiable manifold. Chentsov was
led by decision theory when he considered a category whose objects are probability
spaces and whose morphisms are Markov Kernels. Chentsov’s great achievement was
that up to a constant factor the Fisher information yields the only monotone family of
Riemannian metrics on the class of finite probability simplexes. In parallel, Burbea and
Rao have introduced a family of distance measures, based on the so-called a-order
entropy metric, generalizing the Fisher Information metric that corresponds to the
Shannon entropy. Such a choice of the matrix for the quadratic differential metric was
shown to have attractive properties through the concepts of discrimination and diver-
gence measures between probability distribution. As is well known from differential
geometry, the Fisher information matrix is a covariant symmetric tensor of the second
order, and hence, the associate metric is invariant under the admissible transformations
of the parameters. The information geometry considers probability distributions as
differentiable manifolds, while the random variables and their expectation appear as
vectors and inner products in tangent spaces to these manifolds.

Chentsov has introduced a distance between parametric families of probability
distributions G, = {p(.16):0 O} with @ the space of parameters, by considering, to

the first order, the difference between the log-density functions. Its variance defines a
positive definite quadratic differential form based on the elements of the Fisher matrix



and a Taylor expansion to the 2nd order of the Kullback divergence gives a Riemanni-
an metric:

S KO.D)) (5_p). 1 (5o TKEGD 5 (5)
K(€,6)99+dG_K(6,6)+[ = Le(e 6)+2(9 0)[ = J(e 0)
K[p(./0), p(.1 6+ d6)]= %Z, ¢,(0).d6,46" +0la6l') (6)
_ _ Jor0gp(x16) dlogp(x16) | [ logp(x/6) )
1(0) = [g,(®)] and g,(0) E{ 2 7 } E[aa_ag; }

If we model Signal by complex circular multivariate Gaussian distribution of zero
mean :

p(X,/R)= ()",
with R, =(X,-m, )(X,-m,) and E[f?n]z R

Rn‘*'.e—rr[é,,.le;‘] (8)

We conclude that Information metric can be written:

2 o _ 0 _ 2| _lp-1/2 -1/2)? 9
ds> = do'1(0)do = Tr[(R,, an)Z]_ Trl@mr, )= &R R,"] ©)
This metric is invariant under the action of the Linear matrix group(GL, (C),.):

R, —>W,R W' , W, eGL,(C) (10)

An intrinsic metric could be also introduced by geometric study of HPD(n) Lie
Group (Group of Hermitian Positive Definite Matrices nxn), that will be presented in
the following as a particular case of Siegel upper half plane.

Both approaches provide the same metric:

as* = R arf = R arr (11
This metric can be easily integrated and give the distance:
DR, R,) = logl® 2R = S log?(4,) (12)
P
where {3, }" are the extended eigenvalues between g and R,:
det(Ry" R, R = A1) = det(R, — AR,) = 0. (13)

We can observe that geodesic projection on a sub-manifold M defined by
11,,(P) = argmin dist(P,S)> s contractive :

dist(11,,(P),11,,(Q)) < dist(P,Q) (14)



In the same way, if R and Q are two points on sub-manifold M, we can define distance
from P to the geodesic [Q,R] by:

o.(t) = o‘(s,t) _ Pl/2[P71/2Q1/2(Q71/2RQ71/2)"‘Q1/2P71/2]’P1/2 (15)

3 Cartan’s symmetric spaces

For this differential geometry, we can also define the unique geodesic joining 2 matri-
ces A and B. If s - y(y) is the geodesic between 4 and B, where ¢ <[0,1] is such that

d(4,y(r)) =1d(4,B), then the mean of 4 and B is the matrix 4. B =y(1/2). The geo-
desic parameterized by the length as previously is given by:

(1) = Al/Zetlog(A ) g2 _ AI/Z(A—I,’ZBA—I/Z)’AI,’Z with 0<z <1 (16)
y(0)=A4 , y1)=B and y(1/2)=A-B

This space is a Riemannian Symmetric space of negative curvature, where for each
couple of matrices (4,B), there exist a bijective isometry Gium that verifies

Gnd=B and GunB=4" This isometry has one fixed point Z barycenter of (4,B),
givenby 4(G , , X, X)=2d(x,Z) :

Goop X =(40B)X" (40 B) With 40 B=A">(472B4™2 )" 42 (17)
By analogy, we can compare with classical Euclidean space :

GinX =(4B)-X +(40B) with A.BZ%B and |4 5|, (18)

Cund=B y(1/2)= Ao B

‘\ ¥(1)=B
(2) :Alfz(A—MzBA—lfz )‘Aliz
#(0)=4 with £<[0.1]

4oB~— Alfz(A—uzBA—l/z)“?Al/z

X
GunX =(42B)X"(40B)
GumB=A

Fig. 2. Cartan-Berger Symmetric Space of Hermitian positive Definite Matrices

This space is a Cartan-Hadamard Manifold, complete, simply connected with nega-
tive sectional curvature Manifold. But this is also a Bruhat-Tits space where the dis-
tance verify the semi-parallelogram inequality:



Vx,,x, 3z such that Vx (19)
d(xl,xz)2 + 4cl(x,z)2 < 2d(x,x,)2 + 261()6,)52)2 VxeX

Space of HPD(n) matrices is a metric space and a Riemannian Hermitian space of
negative curvature, where we can then defined a Karcher/Fréchet Barycenter to com-
pute mean of N covariance matrices.

4 Information Geometry versus Optimal Transport Theory

For a long time, main problem in statistics has been to define metrics in the space of
probability measures or metrics between random variables. Recent progresses on this
critical subject have been achieved in the framework of an other theory than Infor-
mation Geometry, named “Optimal Transport Theory” by use of Wasserstein metrics
for probability distribution and especially for multivariate Gaussian laws.

First work on probability metric was originally done by G. Monge in 1781 [91],
considering the following metric in the distribution function space:

d(P,0)=Inf E[x -] (20)
This was generalized by Appel: d(P,0)= Inf E[/Q X YD] 21

where the infinum is taken over all joint distributions of pairs (X,Y) with fixed mar-
ginal distribution functions P and Q. Global survey of Optimal Transport theory is
given in 2010 Field Medal Cédric Villani Book [96].

Then in 20" century, Maurice Fréchet [92,102] has proposed a metric on the space
of probability distributions given by:

dZ(P,Q)zlgjy’EhX—Y\zJ (22)

where the minimization is taken over all random variables X and Y having distribu-
tion P and Q respectively. Fréchet distance can be computed for n-dimensional distri-
butions family that are closed with respect to linear transformations of the ramdom
vector, and especially for Multivariate Gaussian laws. Others distance were studied
by Paul Levy [93] & R. Fortét [94].

In the following table, we will compare geometry of complex circular multivariate
gaussian law in two different frameworks : information geometry and geometry of
Optimal transport theory. For Optimal Transport theory, I invite you to read papers of
Takatsu [99], that has presented her work in Leon Brillouin Seminar in 2011 :
http://www.informationgeometry.org/Seminar/seminarBrillouin.html



Complex Gaussian Circular Law of zero mean :p(

Z/R)=

Information Geometry

Optimal Transport Theory

Distance between random variables:
ds® = do71(0)d0 = Tr((R"dR)Z)z |R"2dRR"?

8’ log p(X/0)
1(6)= [g,;ly/.ag,; = _E{aaae’f
i J

2
F

Distance between random variables:
a*(P,0)= Inf E|x - ¥['|
XY

Metric:
g,(Ry,R,) =Tr(P"R,.P"R,)

Metric:
gr(Ry,Ry)= Tr(Rx-P'RY)

Tangent space and Exponential map:
exp )= 2l

vy = grady (V) = —exp, (V)

vi=—x'? lOg(Xﬁl/zYXfl/z)Xl/z

(12 v 12
eXpX(V)};,t)=X1/ze dx20y x )XI/Z

Tangent space and Exponential map:
exp o)t X)=N(O,R, )

Ry o =(0=0I, +X)R,(1-0)I, +1.X)

Distance between covariance matrices:
d*(Ry.R, )= [log(Ry > R,.R 2

r
dz(RxaRY) = ZIOgZ(/‘Lk)
=1

det(Ry>R,.R}"> = A.I)= det(R, — AR, )= 0

Distance between covariance matrices:
d*(R,,R,)=Tv[R, ]+ TR, ]- 2.Tr[(R};2RYR;2)”2J

Geodesic between covariance matrices:
7(t) = R;/Ze' log(R3! 2R,R;(”?)R)l(/z

70 = RV (R, 2R, R Ry

yO) =R, , y)=R, and y(1/2)=R, o R,

Geodesic between covariance matrices:
(0 = (=01, +£.Dy R (=01, +£.D, )

with Dy, = RV (RY?R,RY) PRV = Ry o R,
d(y(5),7(6)) < (t = $).d(7(0), 7 (1))

Cartan Symmetric Space:
G(R,\,R,)RZ = (RX ° R, ) R;(RX °Ry)
1/2

with Ry oR, =RV (Ry"*R,R;) " R

Space associated to Optimal transport:

(emm, ) Ry (e = ) =[R2 (x =y )] Ry 2 (e =m, )]
:(y—my)+R;l(y—my)

x=Vy(y)= DX,Y(y - mY)+ my

w(v)= %(V_mY)+DX,Y(V_mY)+(mX _V)

Bruhat-Tits Space
(semi-parallelogram inequality):
Vx,,x, 3z suchthatVxe X

d(x,x,)* +4d(x,z)* <2d(xx)* +2d(xx,)

Alexandrov Space:
d(e.y()) =
(1-0).d(a,y(0)) +td(a,y (1)) (1 -1).d(7(0),y(1))’

Cartan-Hadamard Space:
Complete, simply connected with negative
sectional curvature Manifold

Wasserstein Space:
Non-negative sectional curvature Manifold




Sectional curvature: Sectional curvature:
k=-1{(1-2z") ' M(1-2zz") ' m*) Ko, (X1 =B/ 4)Tr(([v, X =] (v, x]-5))

1

with (1-2z")" = PP* when I-2Z" >0
K =-Tr(TT*)<0 where T =P"MP

Barycenter of N covariances matrices: Barycenter of N covariances matrices:
N N
- — 1/2
Zlog(R 1/2RkR 1/2):0 Z(Rl/szRl/z) -R
k=1 k=1
N 1/2
o Stog(R72 R, R )j
_ pli2 [ =R 1/2 _ 2 !/2 : _ pli2
L Ry Ky = Z(K(kaK(n)) with K, = R;
k=1

5 Cartan’s center of Mass and Emery’s Exponential Barycenter

We will then explained Robust Covariance Matrix Estimation based on Riemann-
ian Geometry with center of mass. This center of mass exists only locally, except in
special cases. Elie Cartan has proved back in the 1920’s existence and uniqueness of
center of mass for simply connected complete manifolds of negative curvature for any
compact subset. This holds because a symmetric space of non-positive curvature is
nothing but the quotient of a non-compact Lie group by one of its maximal compact
subgroups. All these irreducible symmetric spaces have been classified by E. Cartan
& M. Berger. In Euclidean space, the center of mass is defined for finite set of points

M M .
i<l X eonter = ﬁin or by X ponter = argMianxi . Appolonlus
i=1 x i=l

of Perga has discovered that this point also minimizes the function of distances:

X

center

= arg Mini P(x,x) This extends to general Riemannian manifolds. Elie Cartan
x i=1

[3,4] has proved that the function:

f:meMH%J.dZ(m,a)da (23)

is strictly convex (its restriction to any geodesic is strictly convex as a function of one
variable), achieves a unique minimum at a point called the center of mass of A for the
distribution da. Morever, this point is characterized by being the unique zero of the
gradient vector field:

Vf = —I exp, (a)da (24)

A

where exp(.) is the “exponential map” and exp.'(a) is the tangent vector at ;e M of

the geodesic from m to 4:

exp,' (a)e T, M (25)




Herman Karcher has introduced a gradient flow intrinsic on the Manifold A7 that
converges to the center of mass, called Karcher Barycenter :

m,., =y,(t)=exp, (~tVf(m,)) with 7,(0)==Vf(m,) (26)

In the discrete case, the center of mass for finite set of points is given by:

M
M, =€Xp,, (tz exp;:” (xi )j (27)

i=1

Fig. 3. Fréchet-Karcher Flow on Cartan-Hadamard Manifold

Maurice René Fréchet, inventor of Cramer-Rao bound in 1939 (published in Institut
Henri Poincaré Lecture of Winter 1939 on statistics) [7], has also introduced the en-
tire concept of Metric Spaces Geometry and functional theory on this space (any
normed vector space is a metric space by defining 4(x, y) = |y =4 but not the contra-

ry). On this base, Fréchet has then extended probability in abstract spaces.
A different point of view on center of mass or barycenter has been followed by
Emery [21]. He has defined the expectation E[x] as the set of all x such that:

w(x) < Ely(x)] (28)

for all continuous convex functions. A related point of view was used by Doss and
Herer who define E[x] to be the set of all x such that:

d(z,x)< Ed(z, X)) (29)

In this framework, expectation p= E[g(x)] of an abstract probabilistic variable g(x)
where x lies on a manifold is introduced by Emery [21] as an exponential barycenter :

Jexp;' (g(x))P(a) = 0 (30)

M

In Classical Euclidean space, we recover classical definition of Expectation EJ[.] :

PR = exp, (@) =g p = Elg(0)]= [2)P(dx) = [ g(x)p, ()l GD



Statistics on manifolds is a critical aspect of different fields of applied mathematic.
But Center of Mass is not useful for robust statistic. Replacing L’ square geodesic
distance by L’ geodesic distance, we can extend this approach to estimate a Median in
metric space (called Fermat-Weber ‘s point in Physic). Fréchet studied Median statis-
tic using Laplace’s results :

m

median = Min Eﬂx - m‘] compared to My = Mmm Ehx - m‘z J (32)
I would like to note that N.K. Sung and G. Stagenhaus [48] have defined an analogue
Cramer-Rao-Fréchet-Darmois lower bound for median-unbiaised estimators. Based
on a measure of dispersion proposed by Alamo, Stangenhaus and David, an analogue
of the classical Cramér-Rao lower bound for median-unbiased estimators has been
developed for absolutely continuous distributions with a single parameter, in which
mean-unbiasedness, the Fisher information, and the variance are replaced by median-
unbiasedness, the first absolute moment of the sample score, and the reciprocal of
twice the median-unbiased estimator's density height evaluated at its median point.
Could we conjecture that this result could be written by using the L’ analogue J of L’
Fisher information I:

Elo-4)= )] with )~ E{@lggé}f/ﬂ)} (33)

to compare with classical Cramer-Rao-Fréchet-Darmois Lower bound with Fisher
Information Matrix [:

EWL@HZK@'WMIW@L:EFb%gUQM%QSMq (34)

Classically, in Euclidean space, Median point minimizes:

N ivalentl Y ([ 35
xmedian = argMinZd(x3 xi) or equlva ent y xmedmn = argMinzxxi/ xxi ( )
x i=1 X i=1
This minimization could be extended for Riemannian manifold :
exp,, (a) (36)

h:meMl—)i.[d(m,a)daﬁVh——.[ da

exp,! ()

We cannot directly extend the Karcher Flow to median computation in the discret
case:

| L (37)
m,, =exp, [t; eXpm'(xk)]

. o ~
because He"pw (xk)H could vanish if », —x, .



We have investigated [85,86,87] the geometric median of a probability measure on
a complete Riemannian manifold and prove the uniqueness. By regarding the
Weiszfeld algorithm [108] as a sub-gradient procedure, we have introduced a sub-
gradient algorithm to estimate the median and prove that this algorithm always con-
verges :

—exp, [ Z eXpm ] with G, = {k/x, #m,} (38)

<, Jexpa ()]

Then, the median 4 of the N matrices B; can be computed by sub-gradient Karcher
flow :

log (4,'"?B, 4,2
log (4, 28,4,

£G4,

A, =A4"% [ F}A,‘,” with G ={k/B, # 4,} (39)

to compare with the mean A of the N matrices B, that can be computed by gradient
Karcher flow :

A REIIE (40)

n+l T “Tn

In this last case, we have the property thatfor 7, 4 - 4:

n—o

/N

N

det (A):[H det (Bk)J (1)
k=1

with consequence on Entropy:

~ log [det (4)] = —%zw log [det (B, )] = @ (4) = %ﬁ @ (B,) (42)

,71«(’) - ! Z(X—l szXfl z)le 2_ y! zerlag(X’”ZBkX’”z)Xl 2

.t
o

z”’/g(’)\,o X“(Zloo( g X’“)]X“—O

k=1 k=1

Fig. 4. Fréchet-Karcher Flow on space of Hermitian Positive Definite Matrices



6 Isobarycentric Flow

In this chapter, we propose an alternative flow to classical Frechet-Karcher Flow.
To compute the barycenter in a Cartan-Hadamard Space, in this new approach that we
call isobarycentric flow, the main idea is to define a flow that drives evolution of each
of N points that we are looking for the barycenter. We first illustrate the isobarycen-
tric flow in Euclidean space. For barycenter & of N points x, in Euclidean space :

i M}k —0- We are looking for a flow F(x,) acting on each of N points x, simultane-
k=1
ously at each step, so that the barycenter M is not modified such that i MF?X‘,):O'

k=1

This isobarycentric flow on x, is given by Karcher flow induced by other (N-1)

poins {x,},

X.F(x,)= ai){;\/k = F(X,)=X, +ai(Xk -X)) (43)

1
k#i ki

We can then easily proved that this flow doesn’t change the barycenter:

S(F(x)-M)= (X, M)+ ad S KX, )

Obviously, this isobarycentric flow could not be directly extended to Cartan-
Hadamard Manifold and more especially to the space of Hermitian Positive Definite
Matrices:

Ry = F|R, 0 | (45)

i,(n+1)

that should verify:

ilog(Rfl/zF[Ri,w]Rfl/z): 0 with ilog(RinRi,(”)Rf”z)z 0 (46)
=]

i=1

The isobarycentric flow could be approximated on HPDD(n) manifold when all
matrices are closed to each other by using following approximation:

/ g[ 3 log(R7 V2R, ,R7: ’)]
Ri,n+l = F[Ri,(n)] = Ri],nze . R;.;z (47)
If we note Rijzi/sz,nR;.:,/Z =1+ Rij)i/z(Rk,n - Ri,n)Rij:l/z =I+T, (48)

By using approximation of log(.) and exp(.):



log(1+G)=G—%G2 +§G3 .. and exp(H)=I+H+%H2+%H3 o

We are then in the same case than in Euclidean space:

k#i

Ri,n+1 = Ril,ilz |:I + 5( % Ri_,i/z (Rk,n - Ri,n )Ri_,rll/z j:lRil,/nz (49)
N

Ri,n+1 = Ri,n +é& Z (Rk,n - Ri,n)
k=i

In this case, barycentric flow convergence is obvious. To study convergence of bary-

centric flow when all matrices are not closed to each other, consideration on curvature
should be studied in the more general framework of potential theory.

7 Fourier Heat Equation Flow on 1D graph of HPD(n) matrices

We can replace Median computation by anisotropic diffusion. In normed vector space
in ID, if we note ;; = (w,, +u, )25 Fourier diffusion Equation is given by :

ou 0° 2Vt N .
ail: = axiiz un,H—l = un,t + 2 [un 13 - un,t] = (1 - p)'un,t + p'un,t = un,t Op un,t (50)
By analogy, we can define diffusion equation on a /D graph of HPD(n) by:
172 vy? 1 g(A_'”ZA A_l’/z) /2 _ 1/2( -1/2 71/2)" /2 _ )
Ant+1 Aw e An,t _Aw,t An,t An,tAn,t An,t _An,t Op Aw,t (51)
with p= 275 and 4, =4, (4124,,412) " 42,

Obiously, we can introduce anisotropy by making adaptive the parameter .

From each Time covariance matrix, we can compute Doppler Spectrum. In the fol-
lowing exemple, we give image with range on X axis and Doppler frequency on Y
axis. Fourier heat Diffusion is applied on covariance matrices and then, we draw as-

sociated Doppler spectrum of results :
160
140
2
100
&
&

80 100 1200 140 160 1680 200

160

140

120

100

WDD 120 MD WED WED QDD

Fig. 5. Fourier Heat Equation on a 1D graph of covariance matrices: isotropic diffusion
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Fig. 6. Fourier Heat Equation on a /D graph of covariance matrices: anisotropic diffusion

8 Flow preserving Covariance matrix Toeplitz structure

All previous approaches don’t take into account Toeplitz structure of covariance
matrices, in case where the signal is stationary E[Z,,Z:,k]= v, =r and , =, To

n,n—k
take into account this constraint, we have used Partial Iwasawa decomposition, that is
equivalent for time or space signal to complex autoregressive model decomposition
(link with Gohberg-Semencul inverse covariance matrix computation):

1 A"
'Qn = (an'Rn )71 = VVnVV; = (1 - ﬂn 2) " (52)
An—l Qn—l + An—l'A;—l
. 2| 1 0 X 53
T P (53)
with 4 = [a{’ a:]r and 4 = 4", respectively complex autoregressive vector and

reflection coefficient (see section 17.1 for more details) .

In the framework of Information Geometry (66), we consider Information metric
defined as Kéhlerian metric where the Kiahler potential is given by the Entropy of the
process @R, ) (called Ruppeiner metric in Physics). We describe link with Rao met-

ric in section 14 :

5(Rn) =log(detR,")—n log(ﬂ.e) = nz_l:(n - k).ln[l - ‘,uk‘z ]+ n.ln[;z.e.PO] (54)

k=1
Information metric is given by hessian of Entropy :

o’®  where 0" = - o] 53)

& = 2600



with {7 regularized Burg’s reflection coefficient and p mean Power. Kéhlerian

metric is finally :

ds? =do""[g, ko™ = [‘)j +Z(n—l)( s (56)

H;

')

This is linked with general result on Bergman Manifold and theory of homogeneous
complex manifolds. For complex manifold, where:

Q=i"K(2)dz, A...Adz, Ndz, A...AdZ, (57)
is the given exterior differential form, the Hermitian differential form:

2
ds? = ZM dz,dz, (58)
7 Oz,0z;

is independant of the choice of the coordinate system. Here, parameterization is con-
formal:

ﬂ[

)de du’ where @ =logk (59)

i i

g _OEnboen] g o*|- (n—i).logli -

'R, = O, 0u;

9 Median by Fibration of Conformal Poincaré’s unit disk

For Median autoregressive model, Karcher flow could be very simple. For p, we use
classical median on real value. For {;, }""', we use homeomorphism of Poincaré’s unit
disk u = My =W, | to fixe the point under action of karcher flow at the origin
kn+l T *
' 1 - fuk,n‘wn

where all geodesics are radials and space is quasi-euclidean. Equation of Dual Karch-
er Flow, in this new coordinate system, is then given by polar decomposition:

w, =7, YA with G, = /|, | = 0} (60)
keGy /ukm
Median is deduced taking into account each step y, :
_ Hoiann TV, (61)

Honediann+1 = 1 *
+ lumed[mz,nwn

In the following this polar decomposition will be replace by Mostow decomposition
in Siegel Disk. This fibration is not available for Klein model of unit disk [111].



Fig. 7. : Modified Karcher Flow in Poincaré disk by homeomorphism

Fig. 8. Classical Karcher flow (on the top), Dual Karcher Flow (on the bottom)

As hyperbolic Poincaré’s Model is conform model, angles are preserved and median
will be characterized by equality between angles of tangent vectors.

More recently, Marc Arnaudon [84] has proposed a stochastic Karcher flow that
converges alsmost surely to p-mean. For p=1, this stochastic flow is given by :



exp; (% i) (62)
|

m,., =exp, |, 7
exp,,, (Xani())

where for each iteration n, index of one point is selected randomly X, - Then,
m,,» driven by the flow, moves along the geodesic between ,, and Xyt Finally,
in Poincaré unit disk, index rqnd(n) is selected randomly in set G, = {k/‘ #kn‘ = ()},at

each step, displacement is given by:

). (63)

w, = Yn'(/umnd(n)m/Iumnd(n),n

Extension for Riemannian 1-Center has been applied in [112].

10 Geometry of Space-Time Covariance matrix

We will extend previous works developed for time or space covariance matrix, to
space-time covariance matrix, structured as Toeplitz-block-Toeplitz Hermitian Posi-
tive Definite matrices. The problem will be considered for complex multi-channel or
multi-variate data processing in the framework of Information Geometry.

Based on generalization of Trench Algorithm, if we consider Toeplitz-block-
Toeplitz Hermitian Positive Definite matrix [89] :

R, R - R,
X _ R1+ R, - _ le’n ﬁn (64)
p.n+l . X . . RI i ﬁ’:r R()
R R’ R,
| R oY
with ~ || where o 0 | and J :anti- diagonale matrix (65)
R, O
J, 0 e 0

We can apply the well-known inversion rule for a partitioned matrix, associated with
adapted parameterization by mean of Block-structured Partial Iwasawa Decomposi-
tion, deduced from Burg-like generalized forward and backward linear prediction.

From Burg-like parameterization [90], we can deduced this inversion of Toeplitz-
Block-Toeplitz matrix :

An+ } and R _ |:anl + A;'Rp,n ‘An - A; 'Rp,n (66)
pon+l



Al JFA::II*JF
1 - .
- . A : (67)
with o' =[l- 4747 ]e', a; =R, and 4, =| © |[=| 7 |+ar]
0, J AT
I,

4,

Where we have the following Burg-like generalized forward and backward linear
prediction :

n+l

gla(k) =2 AR Z(k 1) = &] (k) + 4\, (k ~1)
1=0

n

b (k)= JA (k) JZ(k —n+1) = &) (k=1)+ JA!1 " Je] (k)

n+l n
1=0

i 68
. {sof(k)wé’(k):Z(k) (68)
with

47" =1,
N+n . N+n . ‘ N+n -1
A= —2[251 (k)el (k —D*}{Z«a’ (el (k)" + > elk)el (k)*}
k=1 k=1 k=1

Using Schwarz’s inequality, it is easily to prove that 4! Burg-Like reflection coeffi-

cient matrix lies in Siegel Disk 4! ¢ SD, -

11  Cartan-Siegel Homogeneous Domains : Siegel Disk

To solve median computation of Toeplitz-Block-Toeplitz matrices, Karcher-
Fréchet Flow has to be extended in Siegel Disk. Siegel Disk has been introduced by
Carl Ludwig Siegel [17,18] through Symplectic Group sp, r that is one possible

generalization of the group SL,R = Sp,R (group of invertible matrices with determi-

nant 1) to higher dimensions. This generalization goes further; since they act on a
symmetric homogeneous space, the Siegel upper half plane, and this action has quite a
few similarities with the action of SL,R on the Poincaré’s hyperbolic plane. Let F be

either the real or the complex field, the Symplectic Group is the group of all matrices
M eGL, F satisfying :

Sp(n.F) = M € GL2n,F)/M"JM = J},J = ( (; IOJ e SL(2n,R) (69)

A B
or M = (C D] e Sp(n,F) < A"Cand B'D symmetric and A"D-C'B=1, (70)

The Siegel upper half plane is the set of all complex symmetric nxn matrices with
positive definite imaginary part:

SH, =17 = X +iY e Sym(n,C)/Im(Z) = Y > 0} (71)



The action of the Symplectic Group on the Siegel upper half plane is transitive. The
group PSp(n,R) = Sp(n, R)/{i 12”} is group of SH, biholomorphisms via generalized

Mobius transformations:
M= [g g] — M(2)=(4Z + B\CZ + D)" (72)

PSp(n,R) acts as a sub-group of isometries. Siegel has proved that Symplectic
transformations are isometries for the Siegel metric in gp . It can be defined on sp

using the distance element at the point Z = X +;Y, as defined by:
dst,, = THY (dZ)V(dz")) with Z = X +iY (73)

with associated volume form: = Tr(y"dz A Y*‘dz*)
C.L. Siegel has proved that distance in Siegel Upper-Half Plane is given by :

z 1
d5000(2,,2,) = [Zlogz[ +‘EJ] with Z,,Z, e SH, (74)
k=1 1- \/Z

and r; eigenvalues of the cross-ratio :

R(2,2,)=(2,-2,)\z,-2;) 'z} - z; \z; - 2,) " (75)

Siegel Upper-Half Plane
SH, ={Z = X +i¥ e Sym(n,C)/Im(Z) =¥ >0}
detl g2 Ry RTV - AT =0

dYR, R 1= logt (4, )

k=l

ds® = Tmce[l RdR lg]

/a{s2 =Trivde 74z )

z\k = x4y,
1

RIZ\,Zy)= 2= 2,2, - 23 rl'Z;_Z; lzy-2z, 7

detlRIZ,Z, 1-rd)=0

Fig. 9. Geometry of Siegel Upper Half-Plane



This is deduced from the 2™ derivative of 7z R(z,,Z)in z, =7 givenby :
D*R=2dZ(z-2")'dz*(z" - 2)" =(1/2)dzY"dz"Y" (76)
and ds* = 7v(v 'dzy 'dz" )= 2.1+(D?R) (77)

In parallel, in China in 1945, Hua Lookeng has given the equations of geodesic in
Siegel upper-half plane [8]:

2
A2 d2yadz (78)
ds ds ds

Using generalized Cayley transform w =(z il \z +i1,)", Siegel Upper-half Plane

SH, is transformed in unit Siegel disk SD, = {W IWW* < 1”} where the metric in Siegel
Disk is given by :

a5 =1o|(1, ~ww* ) aw (1, -ww) aw-| (79)

Contour of Siegel Disk is called its Shilov boundary gsp, = {W IWW* —1, = o”}. We
can also defined horosphere. Let {7 ¢ asD, and k¢ R, the following set is called

horosphere in siegel disk :

HkU)=1{z10<kl1-2'2)-(1-z°U)1-U"Z)}= {Z/Z - klﬂu} < ﬁ (80)

Hua Lookeng [8] has proved that the previous positive definite quadratic differen-
tial is invariant under the group of automorphisms of the Siegel Disk.

Considering ,, _| 4 & |suchthat |/ 0 |~ L, 0
c D 0 -1 0 -1,

V=MW)=(4Z+B)YCZ+D)" =

(t,-vv)'av(t,-vv)'av = (81)
(Bw* +a\t, —ww Y aw(t,-ww) aw* (Bw* + 4)"
= ds; =ds;,

Complementary, Hua Lookeng [20] has also proved that, let ¥, be complex-valued
matrices, if 7-yV* >0 and 7 —-wWw* >0, then the following identity holds :

det(r — vy )detls —ww ) <|det(r —vw | (82)
det(] _ A+A)det(1 _ B*B)s ‘det(l _ A+,5»12 is based on Hua’s matrix identity :

(1-B"B)+(4-B) (1-447) " (4-B)=(1-B 4 1 - 4"4) (1 - 4"B) (83)

using the intermediate equalities:



(1-B 414 4)'(1-4"B)-(1-B"B)=(B-4) (1- 44" B - 4) (84)
(—ara)' =1+4(1-a4°)'4 and (1-a"4)'a* = 4*(1- 44" )" (85)
Same kind of inequality is true for the trace :

Tr(1 — 4 a)rr(1 - B°B)<|1r(1 - 4°B) (86)

To go further to study Siegel Disk, we need now to define what are the automor-
phisms of Siegel Disk sp . They are all defined by:

V¥ e Aut(SD,),3U e U(n,C)/¥(2) =U®, (Z)U" (87)
with y = o, 2)=(1-2,2; " (-2, W1 -2;2) (1 - 2; 2,) " (88)

and its inverse :

G=1-22)"2(1-2;2,)" =(z-2,\1 -2 2)"
’ ! (89)

{z =@, (2)=(GZ; + 1) (G+2,)

=

with G =(1-2,2;) " 5(1-2;2,)'"

By analogy with Poincaré’s unit Disk, C.L. Siegel has deduced geodesic distance in
sp,[109] :

VZW < SD,.d(z.) = Liogl 22 (90)
2 1+ |e, )|

12 Mostow/Berger’s Fibration of Siegel Disk

As in previous case, Information metric will be introduced as a Kédhler potential
defined by Hessian of multi-channel/Multi-variate entropy qS(Rp o ), from (64) :

5(RM) = —log(det RM)+ cste = —Tr(long,,,),u +este = g = Hess[f(Rp’n)] o1

Using partitioned matrix structure of Toeplitz-Block-Toeplitz matrix R, . recursive-

n-1

ly parametrized by Burg-Like reflection coefficients matrix {4/ '

with 4f e SD, »
we can give a new expression of the Multi-variate entropy from (66)(67):

n—1
B(R,,)=-Y (n—k).Jogdet]l - 4 4 |- nloglre.detR,] (92)

psn
k=1

Paul Malliavin [52] has proved that this form is a Kéahler Potential of an invariant
Kéhler metric that is given by :



ds* = nTr|(R;'dR, ]+ S k)Tr[(]n — AR A (1, - Al ) dAk“] (93)
k=1

Median Matrix Estimation of N Radar Space-Time sample data Covariance matrices :
Study of Karcher/Frechet Barycenter and median in Siegel Disk based on Mostow
Decomposition

As we have defined a metric space, we can extend Karcher/Frechet flow in Unit
Siegel Disk to compute the Median of N Toeplitz-Block-Toeplitz Hermitian Positive
Definite matrices. These matrices are parametrized by Burg-Like generalized Reflec-

tion coefficient [90] matrices {Ak‘ }Z: with 4* e sp, and Karcher/Frechet Flow in

Siegel Disk will be solved by analogy of our scheme used in Poincaré unit Disk, by
mean of Mostow Decomposition Theorem. Mostow’s decomposition theorem is a
refinement of the polar decomposition [35,36,55,56,57,58]. This theorem is related to
geometric properties of the non-positively curved space of postive definite Hermitian
matrices and to a characterisation of its geodesic subspaces.

Mostow Theorem:

Every matrix M of GL(n,C) can be decomposed in:

M =Ue"e (94)

where U is unitary, 4 is real antisymmetric and § is real symmetric

Mostow Theorem is deduced from following Lemma and Corollary :

Lemma:

Let 4 and B two positive definite Hermitian matrices, there exist a unique
positive definite Hermitian matrix X such that :

XAX =B (95)

A"? is unique Hermitian positive definite square root of 4 :

XAX =B — Al/zX(Al/zAl/z)XAl/z — 4242 = (A1/2XA1/2)Z — f2p4\? (96)
— A2x42 = (szBAl/z)'/z — X = A—I/Z(AI/ZBAI/Z)'/ZA—I/Z
We can observe that X is geodesic center of 47'and B for symmetric space of
Hermitian positive definite matrices.
Corollary:
if M is Hermitian Positive Definite, there exist a unique real symmetric ma-
trix § such that :
M =M’ 7
M Positive Definite Hermitian Matrix, M"and M~ with same property. From previ-

ous Lemma, there exist a unique hermitian positive definite matrix X such that:

M =XM'X (98)



Exponential providing an homeomorphism between symmetric and positive defi-
nite symmetric spaces, it can be proved proof that X is positive definite

M=M)=xM X =M =x"Mx" M =x"MX’ (99)
because M =XM ' X=>X"=X

If we come back to Mostow Theorem : M = Ue™e’

L P MM oSS (100)

* S -2id S 28 -S _-2i4 _-S 28 * 28 p-1 28
=P =e¢’¢ e =e (ee’e )e =P =e¢”Pe

Lemma and corollary will induce :

P =Pl = 028 :PI/Z(P—I/ZP*P—I/Z)I/ZPI/Z (101)
And then :
S= 1/2.log(P”2(P’”2P*P’”2)MP”Z) with P=M"M (102)

Based on Exponential injectivity from ¢** = ¢=5 Pe~5, we can deduce that :

A*l

i

logle*Pe®) with P=M"M (103)

and finally, U = Me™Se™ (104)

Median in Siegel disk could be then obtained by analogy with numerical scheme de-
veloped for median in Poincaré’s disk. Numerical scheme based on Mostow Decom-
position theorem and Siegel Disk automorphism is given by :

{Zl,...,Zm} in Siegel Half - Plane
Fori=1,..m: W,=(Z,—il\Z, +il)" (105)
Initialisation :

w, :0 et {VVLO""’VVm,O}:{VVI""’VVm}

median,0



Iterate on 7 until HGH HF <g
w,

k,n

S, =V 2loglpt 2R L) PR it B =W, (106)

_ idgy  Spa _ idp =Sk _ 2 2 S
=U,e"e" =>H, =U, e" =W, e =e *W,_e with :

<)
F

G, =7, H,, with V|,
k=1
k#l
Fork=1l..,m then W,,, =@, (W,,)
w,.=-6,6:)"w, - \i-c:w,)'(1-6:6,)"
) {W = @5 W o) = (GG + D7 (G+G,)

W pediannss = @, _
e G=(1-G,G) Wyl - G1G,) "

w

median,n

13  Hua Kernel for Cartan-Siegel Domains, Berezin Quantization
& Geometric lift

Symmetric Bounded Domains of C" are key spaces for all these approaches and are
particular symmetric spaces of non-compact type. Elie Cartan [4] has proved that
there are only 6 types:

e 2 exceptionnal types (E6 et E7)
e 4 Classical Symmetric bounded Domains (extension of Poincaré Unit disk):

Z : Complex Rectangular Matrix
ZZ" <1 (":transposed — conjugate)

Type I:.Q['L , complex matrices with p lines and q rows (107)
Type I1: Q; complex symmetric matrices of order p
Type II1: Q" complex skew symmetric matrices of order p
TypeIV: 2" complex matrices with n rows and 1 line :
zz:|<11+|zz[ ~222" >0
kernel function for all these domains were established by Lookeng Hua:
1 Typel:Q) ,v=p+q
K(Z=W*)= @det(l - ZW*)ﬁV for 1 Typell: Q) ,v = p+1
ILI /4
Typelll: Q" ,v=p-1
(108)

K(zw")= ﬁ(l +ZZW W =22W")" for TypeIV: QY v =n

where 1(£2)is euclidean volume of the domain.

For the case (p=¢g=n=1), all these domains are reduced to the classical Poincaré¢ unit
disk :



911,1 = 91” = 91”1 = -QIIV = {Z eClzz" < l},K(z,W*): # (109)

(1 —zw*)Z

Groups of analytic automorphisms of these domains are locally isomorphic to the
group of matrices which preserve following forms:

I * In 0
Typel:Q,, ,AHA =H,H = 0 ] ,detA=1
P

. I, 0 0 I
Typell: Q" , AHA" = H,AKA' =K, H =| " K= » (110)
’ 0 -1 -1, 0
. I 0 0 I
TypelII: Q" , AHA" = H,ALA' =L,H =| * L= »
, 0 -1, I, 0

0 I

n

. -1, 0
TypeIV:Q! | 4HA —H,AHA’—H,H—[ ? ]

All classical domains are circular and considered in the general framework of Elie
Cartan Theory, where the origin is a distinguished point for the potential:

@(Z,Z*):log{K(Z’Z*)} = logdet(r - zz* )" (111

K(0,0)

F.A. Berezin [1] has introduced on these Cartan-Siegel domains the concept of quan-
tization based on construction of Hilbert spaces of analytical functions:

B K(Z,Z*) —1/h .
(f.g)=ch] f(Z)g(Z){K ©0) } du(Z,2")
e (112)
oty =] { X0.0) } du(z.2")
. . x e ogZ
K(gZ,gZ )j(g,Z)](g,Z) ZK(Z,Z ) Wlth J(gaz)zg

One example is given in dimension 1 for Poincaré wunit disk
D=1{zeClz<1}=SsU(l/s" with volume element 1/2;(1-|z[*)2dz nd:"

. a b 2 2
geSU) with g=| , .| where ‘a‘ —‘b‘ =1
b a

, (113)
with Kahler potential : F(z) = —log(l —‘z‘ ):> F(gz)= 2Relog(b*z + a*)+ F(z)
2 0’F(gz) 0°F(z)

=ds - = .
0z0z 0z0z

It results from the last equation that the Kéhlerian metric is invariant under the action
g € G (automorphisms of unit disk). The transform of the base point 7 =0 of the disk

by g e Gis given by g(0) = b(a’)ﬁl- It defines a lifting that allows to associate to all



paths in disk a lift in G. In the same way, we can define a geometric lift of potential K
in G:

112

20 =) = F(g(0) = —log(l )

2
)W—ﬁfﬂlog(wb‘ | (114)

a -b

g'=[ . JDF(g')=F(g)
b a

Obviously, all these lifts could be extended to Cartan-Siegel Domains
Sp, ={z/zz* < 1}:

4 B . . 0 I
Let g = 5 B and g'Jg = J with J = ;

(=

A*'A-B'B =1

A and B that verify .
B'A-AB =0

(115)
2(Z)=(4z+B\B'Z+4)"

of Kéhler Potential : F'(z) = —logdet([ -7z ) = —Tr[log(] - ZZ*)]

F(g(2)) = F(Z)+2Re(Tr(log(4" + B Z))) = 06 F(g(2)) = 60" F(2)

Geometric Lift in Cartan-Siegel domain is then given by the following:

2(0)=B(4')" = F(g(0)) = logdet(I + BB*) = Tr[log(1 + BB" | (116)

F.A. Berezin [1] has proved that for every symmetric Riemannian space, there exist a
dual space being compact. The isometry groups of all the compact symmetric spaces
are described by block matrices (the action of the group in terms of special coordi-
nates is described by the same formula as the action of the group of motions of the
dual domain).

A, A4
1—':[ ! 12]3F(W)=(A11W+A12)(A21W+A22)1

Ay Ay (117)
Tsometry: I" = CIC™ with C = — L
sometry:/ = Wi -
Y NV
Berezin coordinates for Siegel domain are given by
A B A+ Bz
r=\_. .|.I'=
[B A J (B* A’] 2 (118)
. . 0 7
orequivalently: /77" =1 , TLI"" =L with L= [1 OJ
!
2(0)=B(4')" = F(g(0)) = Indet(I + BB*)= traceIn(r + BB") (119)

For this dual space, the volume and the metric are invariant:



dulw.w*)= H(W,W*)M”’W*)
T

s logH(W,W*) (120)

ds® = Awedw”" with = -
;g“*ﬂ o oW ow”
where H(W,W") = det(1 + ww )"

For arbitrary Kéhlerian homogeneous space, the logarithm of the density for the
invariant measure is the potential of the metric.

14 Information metric, Entropy metric and Bergman metric

In previous chapter, we have first introduced Information Geometry metric and have
used Entropy metric that is also a Bergman metric. In 1984, Jacob Burbea [49] has
written a very interesting paper where he has studied relations of differential metrics
in probability spaces through entropy functionals with information metric and Berg-
man metric. He has considered probability density functions p(t/ z) where z e D and

D is a manifold imbedded in ¢” with Hermitian Fisher information matrix :

()= J‘p,l(t/z)('?pg/z) ap(z{z)dﬂ(t) _ J-p(t/z)élogp(t/z)élogp*(t/z)dﬂ(t) (121)
Z; 0z, 0Oz, 0z,
. N
with ds’(z) = Zglj.dz,.dzj = Hpm@log pHi (122)
i=1

that is locally invariant under holomorphic transformations of z.
Considering f(¢/z) function of an open subset of some Fréchet space, the tangent in

the direction of (u,v) e C"xC" 1s given by :
— . N N
diy f(/2)=0,f(/2)+3,f(/With 5 ¢y _ z%u and 3 r(/=3 D,

¥
k=1 Zk k=1 (’?Z,\,

He has defined the  -entropy functional, with , a concave function :

H, (p)=[e.[p@/H)du®) (123)
%(s):{(a—l) (s—s“) if a=#l (124)
—slogs if =1

Complex Hessian at p in the direction of f is then defined by Fréchet Derivatives:

dH, (53 ) =S, (p+57) oo = [0, TpO) Odu) (125)

d*H, (p;f.2) = [0."[PO) OgO)du(0) (126)



An Hermitian positive definite differential metric can be defined with £ =5 p:

8,p(t/ 2 du(ry (127)

2 1 "
dsi(z) = - 41 L H,, (p) =~ d*Hp,(p:é ,,p,al,p)——— [o."(ptt/2))

For ¢ =1, we recover the classical Rao metric, based on Shannon entropy.
To make the relation with Bergman metric, Burbea has defined (t/ z) has a square

of the modulus of a normalized function : plt/z)= ‘,/,(t / Z)‘ such that H,/,( / Z)H -1,

where a non normalized function is given by :
glt12)= K22 )y/2) where K(zw')=(g(t/2), g(t/w), (128)

where is K a sesqui-holomorphic Bergman Kernel on DxD by use of Hartog’s theo-
rem. To recover Bergman metric, Burbea has considered then a pseudo-distance in the

form of ;) \/1 J’ y/(t/z)l//(t/w)dy(t)‘ \/1 wlt/ 2w (t/w) \ with :

ASp g = d°Azw) =y} - \(V/,dw” = K’Z[KaéK - \aK\z]: d0log K (129)
5 = 3 2008K T (130)
=) Z,0z,,

Then, Burbea has showed that the projective pseudo distance is in fact the
Skwarczynski pseudo-distance:

Kl(z,w' ’
ﬂ(zw) Jl—‘agm%) (131)

Relation between Information metric and Bergman metric is given by this funda-
mental relation:

t/2) =/ z) . .
pitl2) "”( ) — log p(t/2) = log g(t/z) +logg (/) —logK (z,z) (132
t/z VK zz l//(t/Z)
By virtue of the Cauchy-Riemann equations, the following relation is given:
d’logp(t/z) _ &’logK(z,z) (133)

Bz[az; 62,.62:

We recover equivalence of Rao-Chentsov Information metric with Bergman metric
by taking expectation of previous equation:

o 6 log p(t/z) 62 logK(z,z") (134)
v 0Oz, 62 62,.62;



15 Complex Riccati Equation in Cartan-Siegel Domains

Recently, Russian M.1. Zelikin [61] has introduced Complex Riccati equations, re-
vealing an intrinsic connection between these Riccati equations as a flow on Cartan-
Siegel Homogeneous Domains. These Riccati equations that arise in the classical
calculus of variations define a flow on the generalized Siegel upper half-plane.

Let w = x +iy with Im(¥) >0 in the Siegel Upper-half-plane, then the following

complexified Riccati equation :
W=(C+w)a'(c"+w)-B with 4 B symmetric matrices (135)
W —WA'W —CA™'W —WA'C" —CA'C" +B =0 (136)

is a flow in this Siegel space. This Riccati equation is link with the following classical
calculus of variation for the functional:

s=1 | [<A(t)h,h> + 2<C(t)h,h> + <B(t)h,h>]dt (137)
2 o

This Riccati equation is obtained from the canonical Hamiltonian system of ordinary

differential equations :

Ry ( -4'C” A\ h (138)
p —CA'C"+B CcA'\p
where the previous block matrix belongs to the Lie algebra of the Lie group Sp(n,R)
for all t (we can observe the same block structure than in equation (52)).

16 Maslov index for shilov boundary of Poincaré/Siegel Disks

Before introducing Radar applications of previous flows, we introduce a last tool
that could be used for shilov boundary of Siegel Disk : Arnold-Maslov-Leray index .
We will provide Jean-Louis Clerc formula for computing the Arnold-Maslov-Leray
Index for Siegel dounded domains, analogue of Souriau index for Lagrangian Mani-
fold, using the automorphy kernel of the Siegel Disk, where the shilov boundary is the
manifold of Lagrangian subspaces. This Arnold-Maslov-Leray index could be studied
in the future in the framework of Information Geometry for Toeplitz-Block-Toeplitz
matrices.

In Poincare’s disk sp,, ideal triangle can be considered as a limit of geodesic

triangle in sp, when triangle points converge to shilov boundary, using aire A(T) of
oriented geodesic triangle:

A(T) = arg 1_2122 +arg| 1_Ziz3 +arg| I_ZiZ‘ (139)
-2z, 1-2z,z, 1-2z,z,




We recover canonical automorphism kernel of SD, :

Vz,we D k(z,w)=1—zw" |, k(z,w) =k (w,z)
(a ﬂJ (140)
g=| % 7 lepsuqy
f «a

= k(gz,gw) = (ﬂ*z + 05*)’1 k(z, w)(ﬁ’w* +a)”

As sp, is simply connected, there exist a unique computation of geodesic aire argu-

ment that is cancelled on {z;,z,z;}! from which we can deduce geodesic triangle aire
and Maslov-Leray index :

c(z,,2,,2) = k(z2,,2,)k(25,2,) " k(2y,2,)k(25,2,) " h(25,2)k(2,,23) (141)

. 1.
i(0,,0,,0,) =— lim arge(z,,z2,,2,)
”Z‘)U

10,
i=1,2,3

Maslov Index has been generalized in Siegel disk with Symplectic aire by J.L. Clerc,
using canonical automorphism kernel of Siegel disk sp and oriented Symplectic

aire:

D={zeViI-2zz">0}and S={zeV/z =7}

S;:{(0',,62,03)eS3/c7iTaj,Vi¢j} (142)
k(Z,W) = det(K(Z,W)””) with K(Z,W) canonical automorphism kernel of SD,

2,,2,,2,) = K(Z,,Z,)(Z,, Z,) "' k(Z,, Z)k(Z,, Z,) " k(Z,, Z)k(Z,, Z,) !

1 ..
i(0,,0,,03) = gzhf; argC(ZI’ZZsZ3)

i i
i=1,2,3

17 Radar Applications for Robust Ordered-Statistic Processing:
OS-HDR-CFAR and OS-STAP

In the following, we will apply previous tools to built Robust Ordered-Statistic (OS)
processing. Ordered-Statistic is a very useful tool used in Radar for a long time to be
robust againt outliers on scalar data from secondary data. We will define an OS-HDR-
CFAR (Ordered-Statistic High Doppler Resolution Constant False Alarm Rate) algo-
rithm jointly taking into account robustness of “matrices median” and high Doppler
resolution of regularized Complex Auto-Regressive model. We will define also an
OS-STAP (Ordered Statistic Space-Time Adaptive Processing), based on median
computation of secondary data space-time covariance matrix with Mostow/Berger
fibration applied on Multichannel Autoregressive Model.

This paper will not address Polarimetric Data processing, but obviously these tools
could be extended to compact manifold to define Ordered statistic for Polarimetric
covariance matrices.
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17.1 Robust Doppler Processing : OS-HDR-CFAR

The regularized Burg algorithm [62,63] is an alternative Bayesian composite model
approach to spectral estimation. The reflection coefficients, defined in classical Burg
algorithm are estimated through a regularized method, based on a Bayesian adaptative
spectrum estimation technique, proposed by Kitagawa & Gersch, who use normal
prior distributions expressing a smoothness priors on the solution. With these priors,
autoregressive spectrum analysis is reduced to a constrained least squares problem,
minimized for fixed tradeoff parameters, using Levinson recursion between auto-
regressive parameters. Then, a reflection coefficient is calculated, for each autoregres-
sive model order, by minimizing the sum of the mean-squared values of the forward
and backward prediction errors, with spectral smoothness constraints . Tradeoff pa-
rameters balance estimate of the autoregressive coefficients between infidility to the
data and infidility to the frequency domain smoothness constraint. This algorithm
conserves lattice structure advantages, and could be brought in widespread use with a
multisegment regularized reflection coefficient version. The regularized Burg algo-
rithm lattice structure offers implementation advantages over tapped delay line filters
because they suffer from less round-off noise and less sensivity to coefficient value
perturbations.



. Initialisation :
fy(k) = by(k) = z(k) , k=1,.,N (N:nb.pulses per burst)

N

P=L 3k and o =1
N k=1

. Iteration (n)' for n=1to M

Zﬂl(k)bn (k- 1)+22 B al " alnl

M, == N nk =n+1 > with 'B(n) =7, (2”) (k n)
N z S l(k)‘ b, (k —1)‘ + 2'213:”)-4,(("71)‘
M f=p+1 gt
(lén) =
k)= f,_ (k) + p,b,  (k—1
aA Y=a" + 0", k=l,..,n-1 and {fn( )= [ (k) +p, "71( )
b,(k)=b, (k=1)+ 1..f, (k)

:/'ln

In the following figures, regularization property is illustrated with deletion of spurious
peaks. We select the AR model of maximum order (number of pulses minus one).
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Fig. 11. (up) Non-regularized & (bottom) Regularized Doppler AR Spectrum

We conserve the sliding window structure of classical CFAR : we compare the AR
model under test by computing its Information Geometry distance with median AR
model of secondary data in the neighborhood. Median Autoregressive model is com-
puted by :

For p . . weuse classical median on real values B,

(143)



For

k=1

w, =7, Y L with G, = | = 0}

keGy |[Min

MWy
Hinsr =

1 *
~ Hin Wy

~ Hytiann + W, (144)

Hopediann+1t = 1 *
+ lumedian,nwn

The detection test is finally based on computation of the robust Information Geometry
distance:

dz[(Po,k Mg #N—Lk)’(Pmdian.o My median " luN—l,median)]: * (145)
ﬂi,k - /ui,median

2
P . N-1 .
nlog’| 42 14+ > (N —k l1og o with S = :
B i=1 2 1-9, U= 4 4 4 edian

In the following figure, we compare the classical processing chain with new OS-
HDR-CFAR

Case | Classical
k-2 CFAR Chain CA-CFAR
Case |
k-1
|
Case | | 1&Q Ly Doppler |—»
k (2,,...2,) Filters | —»
Case | ou
v| k+1 -
OS-CFAR | >Seuil |—*

Cases distances

Cka :2=e — Advanced
i 0S-HDR-CFAR Chain
Case |
k1 High Doppler
Case 18Q Resolution OS-HDR-CFAR
k (zy,...2,) ™ Coefficients (Doppler Spectrum Median)
Case | (P oMy e+ Hing)
¥ | k+1

Fog ™ Mo median )]2
Lopbpkt

Fig. 12. (top figure) Classical OS-CFAR after filter banks, (bottom figure) OS-HDR-CFAR



Range Cells OS-HDR-CFAR
——

. Guard Cells

> + Secondary Data
Reference Cells
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Information (primary data)
Geometry 0S-HDR Median on
Distance reflection coefficient
Hq M2

Fig. 13. OS-HDR-CFAR Algorithm with illustration of two first reflection coefficients

We have tested OS-HDR-CFAR on real recorded ground Radar clutter with ingestion
of synthetic slow targets.

Vitesse dopsler (ms)

50

Fig. 14. Comparison of FFT Doppler spectrum (at left) and High Resolution Regularized Dop-
pler spectrum (at right)

In the following figures, we give ROC curves with Probability of detection versus
probability of false alarm. We observe that OS-HDR-CFAR is better (Pd = 0.8) than
OS-CFAR/Doppler-Filters (Pd = 0.65) for arbitrary fixed Pfa. We could also observe
that Information Geometry approach provides better results than Optimal Transport
Theory approach (based on Wasserstein distance/barycenter : black curve).
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Fig.
based on Wasserstein barycenter/distance (optimal transport theory)

a=1

Fig. 16. Probability of detection versus SNR for fixed Pfa=10", with o relative position in
Doppler of the target normalized by Doppler Clutter Spectrum Width (a=1 means that the

target is positioned on the edge in Doppler of the ground clutter)



To prove that OS-HDR-CFAR is an Ordered-Statistic CFAR, robust against outli-
ers, we have compared the case where all targets are ingested every 33 range cells
(CFAR window are limited to 32 range cells), and the case where all targets are in-
gested every 7 range cells. We can observe that OS-HDR-CFAR performance are not
altered by targets in the secondary data window.
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Fig. 17. 0=0.25; SNRmean=17dB; target every 33 range cells
-
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Fig. 18. 0=0.25; SNRmean=17dB; 1 target every 7 range cells



17.2 Robust Space-Time Processing: OS-STAP

We propose in this second applicative part to study robust STAP (Space-Time Adap-
tative Processing) based on Median of Sample Covariance Matrix, with advantages to
be tolerant to the presence of targets or non-homogeneities in the secondary data.
First, we give some basic elements of STAP theory.

Brennan and Reed have proposed in 1973, STAP for radar target based on interfer-
ence covariance matrix estimation from target-free training data, weight vector calcu-
lation and threshold on statistical test. Signal snapshot Radar data model is given by:

Z, = aV(p,0)+n (146)

+R

noise clutter ammer

with R = E|(Z, - aV' )z, - aV)" | where R=R +R,
A single “primary” data may contain a target return with space-time steering vector
V(p,w) and unknown complex amplitude ¢, while other independent “secondary”

data vectors are available that are zero mean, and share the same space-time Covari-
ance matrix R for noise, clutter and jamming. Snapshot for range gate 1 is given by :

Zu Zimi n" element

(147)

V4 V4 th
21 : 2ml
Z,=|"¥| with z, =| " where z,,qm" pulse

1™ range gate

Zwm Z Nml

Optimal step filter can be interpreted by successive processing of a Matched filter
and a Whitening Filter :

Zo =W Z,=(SW) (572) 2, (148)

output

In this formula, 7z, is the primary data vector snapshot, and § is a sample covari-

ance matrix based on M secondary data vectors 7Z(k):

S=MR-= iZ(k)Z(k)* (149)

k=1
The Generalized Likelihood Ratio Test (GLRT) assumes that the covariance is

known, and is deduced by maximization over the unknown parameter ¢ :

N 2
w'Z,

visli+(z's'z,

(150)

Agppr = ] >n, with w=8"7

Classically, sample covariance matrix of secondary data is based on N.R. Good-
man’s Theorem. Consider M independent identically distributed N-variate complex
Gaussian random variable z(k), k=1,...,M as a sample of size N from a population

with PDF p(z / Rz)' Let HPD(n) be the set of NxN Hermitian positive definite matri-



ces. Over the domain HPD(n) the maximum likelihood estimator g, of the covari-
ance matrix R, is:

51y .. (151)
R, M;Zac)Z(k)

Proof is based on

do
Eyy a2 HE] = Tr(R ) = i (152)
dg 0=0
deduced from characteristic function of Hermitian form Z*HZ :
®, 1 (0)=E 0 e | = det (1= i0.R 1) (153)

In [88], authors have introduced the Parametric Adaptive Matched Filter (PAMF)
methodology for STAP and detection, approximating the interference spectrum with a
multichannel autoregressive (AR) model of low order, attaining modeling fidelity
using a small fraction of the Reed-Brennan rule training data set, and offering dra-
matic improvement in performance over the conventional AMF, with only a small
fraction of the secondary data required by the AMF. Multi-channel parameter identi-
fication algorithms considered were the Strand—Nuttall (SN) and the least-squares
(LS) algorithms for AR model identification.

Matched  Filter that is  deduced from LDU  decomposition
R'= (A" )+D’”2D’”2A" can be written as follow :

(o aw)orraz)] | (0] gy (154)
o = O a0 aw) (0 ) (0 ) . {5 :

t

Multi-channel element vectors are approximated at order P :
P
v(n)=D,"*e(n)=D,"*> A" (k)Z,(n—k+P)
F=0 (155)
»
$(m)=D," u(n)=D,"* Y A" (k)V (n—k+P)
k=0

with A"(0)=1, and n=0,1,...,N-P—1

Z,: {Z,(n) eC’/n= 0,1,...,N—1}time series of the data
z,=[z'o0) z'ay - zZ'v-of

with final PMF test given by: (156)



PAMF is deduced from Multivariate Autoregressive Model and Identification Al-
gorithms where for stability, all the system poles must lie inside the Siegel Disk. For
STAP PAMF, we use Multivariate Burg algorithm:

[ar, 4z, 4] =4, g 0 O]+ A2 [, g4 g4 T

n—12 n—1 n—1

n 0o - 0 1
gl (k)= A'(k)Z(k~1) C o

with J=| L A =T (157)
ey (k) =D JAy (k) JZ(k—n+1) N

= 1 0 -~ 0

va k — f k An+1 b k—l
{gnﬂ( ) gn( )+ n+lgn( ) Wlth Sof(k):&'g(k):Z(k)

&l1(k) = &,(k =)+ JA1 Je] (k)

N+n N+n N+n -1
A= —{Ze[(k)s:(k - 1)*}{25'{ (k)e] (k)" + Zs:(k)sf(k)*}
k=1 k=1 k=1

Multivariate Burg coefficient is in Siegel Unit disk sp . We have by Schwarz ine-
quality that 4=+ 41" o1

n+l n+l "
For the time being, we have not yet tested computation of Median Toeplitz-Block-
Toeplitz covariance matrix by Mostow/Berger Fibration and Frechet-Karcher Flow on
Reflection Coefficient matrix 4! of multichannel Autoregressive model: In collabo-

ration with DRDC Canada, we have planned to do that in near future. For the time
being, Balaji [80] from DRDC has tested the mean matrix iteration given by Karcher
Flow:

o Doe(rl*rR7L?)

R — R“I’L Ze keSecondarydata R,li, 2 Where Rk — Z( k) 7 ( k)+ ( 1 5 8)

in+1

A simulated covariance matrix is used as an example. The snapshots are drawn
from a clairvoyant clutter covariance matrix. The number of apertures and pulses are
chosen to be 12 and no dispersive effects, such as ICM, are assumed. A side-looking
array, satisfying the DPCA condition is chosen so that the clutter covariance matrix
rank is given by Brennan’s rule. The performance of the Riemmanian mean for a
single run is shown in following figure. In this instance, improvment over the LSMI is
evident in some area close to the clutter notch. If the improvement in performance is
due to the Riemannian mean algorithm more closely approximating the clairvoyant
covariance matrix. This confirms the conjecture that the improved performance is due
to better approximation of the true covariance matrix by the proposed Riemannian
mean algorithm.
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Fig. 19. LSMI STAP algorithm (blue : optimum, Red : LSMI with arithmetic mean, Green :
LSMI with Riemannian mean)

Apart from inversion, an eigenvector projection algorithm using the Riemannian
mean can also be investigated. Naively, one expects that the most important eigenvec-
tors are those corresponding to the strongest eigenvalues. Furthermore, theseeigenvec-
tors are better estimated using fewer samples. The EVP performance for a single run
using the Riemannian mean are shown in following figure. Once agian, clear im-
provement in performance is evident. In fact, improvement over the inversion is also
observed near the important clutternotch region .

Fig. 20. EVP STAP algorithm (blue : optimum, Red : EVP with arithmetic mean,
Green : EVP with Riemannian mean)



18 Miscellaneous: Shape Manifold

I would like to conclude with some remarks on “shape manifold”. In image pro-
cessing, it is very useful to make statistics on shape. We can use previous approach if
we can define “Shape manifold” or “shape space”, and in case of Metric space, we
can extend definition of Fréchet Mean for shapes.

I will give a very simple example. If we consider a set of right triangles {4 5,4},
where one right triangle could be defined by one point on the surface/manifold
S ={(a,b,h)/* = a* +b*} , then the Fréchet p-mean is defined by the minimum of:

S 159)
(8.1} g g 33 b 2.0 (
where geodesic is considered on the surface §.

If we consider no longer right triangles, but triangles such that the angle between a
and b is greater than 90°, £(4,b)>90°,0ne such triangle is one point in the cone
C= {(a,b, >+ bz}. Then, if we built the following Hermitian Positive Definite

matrix :

{ h a—ib

>0 W >a’ +b° (160)
a+ib h

The problem is then reduce to previous study of HPD(2) matrices, where the coor-

dinates system is given by (h, ) where U= a+ib is in Poincaré unit disk 4] <15 and
h
h e R*. Fréchet p-mean is computed by previous method in product space R*xD.

N
Right Triangle {A’B’ H}= B {%{g}; d;eodesic({ai ’bi > hi }’ {A’ B’ H})

h2=a2+b? o d (o) defined on surface {(a,b, h)/ W =a + bz}

cone

a.b. b with h*=a’+b>
{ 1 }1,1 i i I

P

Fig. 21. Shape manifold of Right triangles and cone for triangle where /(q,b) > 90°



19  From Fréchet-median barycentre in Poincaré’s disk to
Douady-Earle Conformal barycentre on its boundary

I would like to conclude this paper with some remarks to compare the Fréchet-
median barycentre in Poincaré unit disk with Douady-Earle Conformal barycentre on
its boundary [116,117].

Considering G the group of all conformal automorphisms of Poincaré unit disk
D= {Z eCl/ld< 1} and G; the subgroup, of index 2 in G, or orientation preserving

maps: ,,, 7 274 with |4 =1 and la| <1- The group G operates on D but also on
l—a*z

the set p(s') of probability measure on ' = {z e C/|z| =1}. The principle is to assign

to every probability measure , on §' a point B(y)e D so that the map 4 B(u) is

conform and satisfies:

B(u) =0 [£du(&)=0 (161)

There is a unique conformally way to assign to each probability measure , on §' a
vector field g, on D such that:

£,00)= [¢du¢)=0 (162)

For general w in D, the assignment is given by &

1 2 - 163

/00 = (o e rin 0= (™ )! [1 = ngu(C) -0 (163)
with gw(z): Z_‘: .
1-w*z

Douady-Earle definition of conformal barycenter is then the following:

The unique zero of ¢ in D is the conformal Barycenter p(y) of 4

Demonstration uses that the Jacobian of g atw=0 is strictly positive:

I, =€) Of ~[E).-0f = [[|2* ~¢2ldut)xdu(z) > 0 (164)
s'xs!
Douady and Earle provide a second proof of the uniqueness of p(y) that will un-

derline the link with Fréchet Median that we can compute by deterministic flow de-
fined in section 9 (or its stochastic version by Arnaudon [84]).
&,(z)can be written according to £ () that is the unit tangent vector of geo-

desic at z e D pointing toward ¢ e §':



£,(2) = [&(du(&) (165)

In Poincaré geometry of unit disk, the vector field & is the gradient of a function

h, whose level lines are the horocycles tangent to §' at ¢ e §':

£, =Vh, with h,:z> [h(2)du(C)

1 1—‘2‘2
h = | =1
,(z Jz og(z e

(166)

}w(:) = [Lim[d(0.r) - d(z.rO)Wu(&)

with d(z,w) the Poincaré distance from z to w in D.
Uniqueness of p(y), that is a critical point of h,> is given by strict convexity of

~h, restriction to Poincaré geodesics.
We can then observe that the Fréchet median of N points in D, {w,w,,w,,...,w,}> 18

the conformal barycenter of associated push forward N points {¢,¢,.¢,,...¢,} on S':

Median,, ;. W, W,,Wy,...,w, } = Conformal _Barycenter{(,,{y,spr iy } (167)
g = Limy;, (;)(t) = Limy (t)
t—>+o0 7ol t—>+0
where the “push forward” association ¢ = gﬁ Ve o) = ,Ljfﬁ yUi() 1s given by the

limit point when 7 tends to infinity along the geodesic from the barycenter toward .

Fig. 22. Vector Field Gradient and horocycles level lines
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Fig. 23. Fréchet Median and Douady-Earle Conformal Barycenter

For points on Poincaré Disk boundary, the Karcher Flow of Fréchet median con-
verges to Douady-Earle Conformal barycenter :

=y,(O) =exp, (-tVf(m,)) with 7,(0)=-Vf(m,)
exp,, (a)
exp, @]

(168)
f(m)=— jd(m a)da=Vf = j"

Frédéric Paulin [119] has constructed on the boundary of a hyperbolic group (in
GromovV's sense) a natural visual measure and a natural crossratio and has defined a
barycentre for every probability measure on the boundary, extending the Douady-
Earle construction. Extension of Conformal structure for boundary of CAT(-1) space
has also been studied by Marc Boudon in [118].

M. Itoh [120] has recently defined a map from complete Riemannian manifold of
negative curvature to its boundary in term of its Poisson Kernel, as Douady and Earle
map, to investigate geometry of the pull-back metric of the Fisher information metric
by this map based on a paper of Friedrich [121] that studied the space of probability
measure with respect to the Fisher information metric.

More recently, H. Airault, P. Malliavin and A. Thalmaier [122] have extended
study of Brownian motion on the diffeomorphism group of the circle to Brownian
motion on Jordan curves in C based on a Douady-Earle type conformal extension of
vector fields on the circle to the disk. The aim of one of Malliavin’s projects was the



construction of natural measures on infinite dimensional spaces, like Brownian
measures on the diffeomorphism group of the circle, on the space of univalent func-
tions of the unit disk and on the space of Jordan curves in the complex plane. He un-
derstood that unitarizing measures for representations of Virasoro algebra can be ap-
proached as invariant measures of Brownian motion on the diffeomorphism group
with a certain drift defined in terms of a Kéhler potential [50,51,52,53].

20 Conclusion

Fréchet Median with Information Geometry and Geometry of of HPD(n) matrices is
a new tool for Radar Signal Processing that could improve drastically performance
and robustness of classical methods, in Doppler processing and in STAP. Obviously,
these approaches could be extended to Array Processing and Polar Data Processing in
the same way on respectively spatial covariance matrix and Polar covariance matrix.
Future works will be dedicated to deepen close relations of Information Geometry
with Lagrange Symplectic Geometry and Geometric Quantization.

I would like to to give many thanks to all member of Brillouin seminar for interest-
ing discussion, hosted in IRCAM by Arshia Cont, since 2009. I am especially very
graceful for Le YANG under supervision of Marc Arnaudon, who has proven con-
sistency and convergence of all these algorithms with rigorous developments and
generalizations [86].

In 1943 seminal Maurice Fréchet’s paper [6], where he introduced for the first time
what it is called nowdays “Cramer-Rao Bound”, we can read at the bottom of first
page “Le contenu de ce mémoire a formé une partie de notre cours de statistique
mathématique de [’Institut Henri Poincaré pendant [’hiver 1939-1940”. With help of
Cédric Villani, new Intitut Henri Poincaré director, we have looked for this Fréchet
Lecture in IHP without success. I have recently visited in Archive of French Academy
of Science, quai Conti, the “Fonds Fréchet” that are made of 28 boxes with all origi-
nal manuscripts, papers and works of Maurice Fréchet. For the time being, I have
had only time to read papers of Box 16 where Fréchet study statistics of human pro-
files and cranes with computing resources of first IHP Computation Center. I hope to
have enough time soon to explore all these “Fonds Fréchet” to find this historical
Lecture. More recently, M. Emery gave me the advice to look for Fréchet’s document
in Pantheon-Sorbonne university Archive.



21  Appendix : Iwasawa, Cartan and Hua Coordinates

o Cartan Decomposition on Poincaré Unit Disk
D= {z / ‘z‘ < 1}

. a b az
geSU(L)) with g=| , ,|and g(z)=—
b a bz

Cartan Decomposition : g = u,d, u,

with uw:[e‘” 0 Jan y :[ch(t) sh(z))
0 ™ T sh()  ch(?)

a= ei((p*ﬁp)ch(r)
= o =z
b=e " )sh(r)

b here [dff b =1
+a

=bla")" = th(r)e”

ds =8(d7” + s (20)d6° )= 4,y = 2+ coth(2e) Ly L O
B ot ot sh(r) 0>
F(z)= —1n(1 I ): 2Inch(z)

o Iwasawa Decomposition on Poincaré Unit Disk Disk (Lemma of Iwasawa for
radial coordinates in Poincaré Disk)
D= {z / ‘z‘ < 1}

b
geSU(1]) with g—[; j and g(z)=
a

az
*
z

b here [dff b =1
bz+a

| =i
Iwasawa Dec.: g = h(K,D,N. ) with h(g)=CgC" , C= L .l

: \/5 1 i
X, :[ cos(6/2) sin(@/Z)J D, :[ch(t) sh(t)J and N :[(1) gJ

—sin(@/2) cos(@/2) sh(t)  ch(t) 1

a= e‘p/z(ch(r /2)+i % e?

= with u =&’



e Hua-Cartan Decomposition on Siegel Unit Disk (Lemma of Hua for radial coor-
dinates in Siegel Disk)
=z, 7, - r,]with 0<z, <7, <---<7

A,(7) = diag[ch(z,) ch(zy) - ch(z,)]
By(v) =diag[sh(z)) sh(z,) - sh(z,)]

ABS(H) U o4 BV o
= * * e bl =

e a8 0 ui|B, 4]0 v
there exist U and V' unitary complex matrices of order n
B=U'B,(r)V  \By(r) A7) Zy(r) 0
with Z,(r) =diag[r, ©, - 7,]

Let Z=B(4')' =U'PU, P> = B2(4;'} = diag|eigen(22" )|
P =diag[th(z)) th(z,) - th(z,)]

o Iwasawa Decomposition on Siegel Unit Disk (Iwasawa coordinates in Siegel
Disk)
SD,={z12z* <1} and g(2)=(4Z +B\B'Z+4")'

4B h(g)=CeC" with € =) Lo
* * s = W1 ==
g o) "8 TE G\

0 . 1(U+U —i{u-UT))_ (U 0
K=<g/h . |,U unitaryorderny = g =— . L =C . |C
{g (&)= Uj v } g 2[1‘(U—U) U+U ]

= A:[A°+BO 0 j:[diag[e’ em] 0
0 4 =B, 0 diag[e”' e g

1 S
N = {N/ N = {0 I} , S real matrix of order n}

A4, B, I+i/2.8S —i/2.8 4 B
h(A4) = 4 ,h(N)—[ ]:h(KAN)—[ ! ]

1

g

h

i/2.8 I1-i/28 B 4

1 1



e Iwasawa/Cartan Coordinates on Siegel Unit Disk (Iwasawa/Cartan coordi-
nates relation in Siegel Disk)

N

1+i/28 —-i/28) (4, B, 4, B,
My=|"" , , M =M,
il28 1-i/25)7\B, 4, B, 4,

with (4, +B,)S =S (4, - B,)

7=

with H = {BO(AO +BO)—é§

22

10.
11.
12.

13.

A=U'AV"
Cartan :
B=U'BJV
A B 1
B oA) A:UI[A()*"‘(Ao"'Bo)ES}
Iwasawa:

B= UI[BO —i(4, +BO)%S}

B(4')' =uHU! =U'PU
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« Il est clair que si ’'on parvenait a démontrer que tous les domaines

homogénes dont la forme 4, _ 252 lOgK(Z’E)dz.dE. est définie positive
o oz, o

sont symétriques, toute la théorie des domaines bornés homogenes se-

rait élucidée. C’est la un probleme de geométrie hermitienne certaine-

ment trés intéressant »

Last sentence in Elie Cartan, « Sur les domaines bornés de l'espace de

n variables complexes », Abh. Math. Seminar Hamburg, 1935



Radar Detection for Non-Stationary Time-Doppler Signal
based on Fréchet Distance of Geodesic Curves
on Covariance Matrix Information Geometry Manifold
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Voie Pierre-Gilles de Gennes, 91470 Limours, France
email: frederic.barbaresco@thalesgroup.com

Abstract: New challenge in Radar is the processing of non-stationary signal
corresponding to fast time variation of Doppler Spectrum in one burst. We can observe
this phenomenon for high speed or abrupt Doppler variations of clutter or target signal
but also in case of target migration during the burst duration due to high range
resolution. We will assume that each non-stationary target signal in one burst can be
split into several short signals with less Doppler resolution but stationary, represented by
time sequence of stationary covariance matrices or a geodesic polygon on covariance
matrix manifold. For micro-Doppler analysis of these cases, we adapt the Fréchet
distance between two curves in the plane with a natural extension to more general
geodesic curves in abstract metric spaces used for covariance matrix manifold. This new
approach could be used for robust detection of target with non-stationary Time-Doppler
spectrum (NS-OS-HDR-CFAR: Non-Stationary Ordered Statistic High Doppler
Resolution CFAR), False Alarm filtering for inhomogeneous clutter (statistics of plots
Time-Doppler fluctuation), but also emerging civil applications like wind-shear, micro-
burst, downdraft and wake-vortex detection.

1. Non-stationary Time-Doppler signal in Radar: Targets and Clutters

Non stationary Doppler signal is challenging for radar processing. Main processing chains
implemented in radars make the assumption of Doppler stationary signal during the burst
waveform duration. This assumption is not always true, especially in case of high speed
Doppler fluctuation or in case of abrupt Doppler changes as observed in figl. For helicopter.
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mmﬁgure 1. BELLMEm(")‘éhehcof)er Time-Doppler Signature in one radar cell in staring mode

Non stationarity of Doppler signal is also the main cause of false alarm due to abrupt/fast
Doppler variations of clutter like inhomogeneous sea clutter where spikes or breaking waves
echoes will generate false det

omogenesous Sea clutter (with rain clutter) : fast Doppler

spectrum fluctuation of sea clutter



Non stationary Time-Doppler signature could be also observed by civil radar in the
framework of safety airport issue, for wind hazards monitoring like wind-shear/micro-
burst/downdraft/wake-vortex, as illustrated in the following two images.

(see UFO: http: //www transport-research. 1nf0/web/pro1ects/pr01ect details. cmeID 45116)
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Figure 4. Doppler signature of wake-vortex in ground effect, with strength (circulation) depending of aircraft
(mass/wingspan x speed) ratio at generation time and decaying according to Eddy Dissipation Rate

Wake-Vortex Time-Doppler Signatures are also observed when they are generated by
helicopter blades or wind-farm blades.

Figure 5. Doppler signature of helico blades turbulences and vortices generating
during flights phases (landing/take-off/cruise) or behind a moutain crest-line before furtive helico pop-up

Last case is about radar where target is migrating during the burst duration due to high
range resolution. Target could be observed only on some pulses of the burst but not on all
pulses of the waveform.

In the following, we will consider Time-Doppler signature as a geodesic path on an
Information Geometry manifold (of covariance matrices) as explained in chapter 2 by
analyzing the time series in the burst with a short sliding window. In chapter 3, we recall
classical definition of distance between paths in Euclidean Space based on Fréchet’s works. In
chapter 4, we extend this classical Fréchet distance between paths to be used for our Time-
Doppler geodesic paths on Information Geometry Manifolds and for NS-OS-HDR-CFAR.

2. Covariance Matrix Information Geometry Manifold: Geodesic and
Distance between Micro Doppler spectrums



In the burst, we can consider through a sliding window a sub-set of pulses where we could
consider the signal as locally stationary. For this sub-set of pulses, we use the Trench theorem
[6] proving that their THPD (Toeplitz Hermitian Positive Definite) Covariance matrix could
be parameterized by Complex Auto-Regressive (CAR) model for the time series. All THPD
matrices are diffeomorphic to (ry, wy,..., 1) eR ' xD" (ro 1s a real “scale” parameter, u4 are
called reflection/Verblunsky coefficients of CAR model in D the complex unit Poincare disk,
and are “shape” parameters). This result has been found previously by Samuel Verblunsky in
1936 [7]. We have observed that this CAR parameterization of the THPD matrix could be
also interpreted as Partial Iwasawa decomposition of the matrix in Lie Group Theory [5]. At
this step, to introduce the “natural” metric of this model, we used jointly Burbea/Rao [5]
results in Information Geometry and Koszul [5] results in Hessian geometry, where the
conformal metric is given by the Hessian of the Entropy of the CAR model. This metric has
all good properties of invariances, and could be also recover as Information Geometry metric.
Distance between 2 THPD matrices is then easily computed by distance in product space : 7y
on R", and 4 in D" Poincare unit polydisk. To regularize the CAR inverse problem on very
short sub-set of Burst pulses, we have used a “regularized” Burg reflection coefficient [8]
avoiding prior selection of AR model order (impossible to retrieve with Ikaike criterion).

In 1945, Rao has introduced Information Geometry for parameterized density of probability
p(./0) with the metric given by the formula ds* = K[p(./0), p(./0+d0)]|=d6"1(6)d6
where 1(0) = lgij (H)J is the Fisher Information matrix. If we model Radar Signal by complex
circular multivariate Gaussian distribution of zero mean :
p(X,/R)=(m)"|R,| e Ko B o) (1)

then for m, = 0: ds* = d6"1(6)d6 = Tr[( “dR, ] HR Y24R R “Z“F 2)
This metric has been integrated by Siegel and the distance is given by:

dist*(R,.R,) = log(R;"*.R, R || Zlog ) with det(R, — 4, R,)=0 3)

This is a complete simply connected metric space of negative curvature with geodesic
betweean and R2 . ]/(t) — Rll/Zet.log(lel/szlel/z)Rll/2 - Rll/Z(Rl—l/ZRle—l/2)1R11/2 Wlth O <t Sl (4)
To take into account Toeplitz structure in case of stationary signal, Partial Iwasawa

decomposition should be considered. This is equivalent for time or space signal to Complex
AutoRegressive (CAR) Model decomposition (see Trench Theorem [6] or Verblunsky [7]) :
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In the framework of Information Geometry, Information metric could be introduced as

My
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Kéhlerian metric where Kédhler potential is given by the process Entropy CTD(R,, ,P)
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Information metric is then given by hessian of Entropy g, = Py OrYIod where
i J
0" = [PO Y7 T ]T with {,uk }Z;i Regularized [2] Burg reflection coefficient [6,7] and
P, = a;' mean signal Power. Kihlerian metric is finally :
, ar,) & s’
dsn =d0(n)+ [g” ]de(n) =n[?0] +Z(n—i) ! ; (6)
0 = 1_|,Ui|
The robust Information Geometry distance is then given in product space by:
2
. . F - 1 1+0,
N-1 N-1 0,2 i
AR (AR = ”logz{P—j * ZI(N -k {Ek’g(l ~5 D
0,1 = i
(7)
with &, = Hiy _/Ui;z
1= g0,

3. Fréchet Distance between curves and Geodesic extension on Manifold

In this chapter, we recall classical definition of distance between paths in Euclidean space.
If we consider two curves, we can define similarity between each other. Classically,
Hausdorff distance, that is the maximum distance between a point on one curve and its nearest
neighbor on the other curve, is classically used but it does not take into account the flow of
the curves, which is important for Time-Doppler analysis in our approach. The Fréchet
distance [1,2,4] between two curves is defined as the minimum length of a leash required to
connect a dog and its owner as they walk without backtracking along their respective curves
from one endpoint to the other. The Fréchet metric takes the flow of the two curves into
account; the pairs of points whose distance contributes to the Fréchet distance sweep
continuously along their respective curves.

A7)

Figure 6. Fréchet Distance between two polygonal curves (¢ and £ indexing all matching of points)

Let P and Q be two given curves, the Fréchet distance between P and Q is defined as the
infimum over all reparameterizations & and g of [0,1] of the maximum over all ¢ € [0,1] of
the distance in between P(«a(¢))and Q(f(¢)). In mathematical notation, the Fréchet distance

{d (P.Q)= Inf Maxld(P(a(1). QA1)

dFréchet (P’Q) is:
a and f:[0,1]] - [0,1] Nondecreasing and surjective

(8)

Alt and Godau [2] have introduced a polynomial-time algorithm to compute the Fréchet
distance between two polygonal curves in Euclidean space. For two polygonal curves with m
and n segments, the computation time is O(mn log(mn)). Alt and Godau have defined the

free-space diagram between two curves for a given distance threshold ¢ is a two-dimensional



region in the parameter space that consist of all point pairs on the two curves at distance at
most & D,(P,Q)= {(a, ﬂ) € [0,1]2 1d 1ysner (P(a(t)),Q( ,B(t))) < 8}. The Fréchet distance
d rin (P, Q) is at most ¢ if and only if the free-space diagram D, (P, Q) contains a path which

from the lower left corner to the upper right corner which is monotone both in the horizontal
and in the vertical direction.

In an nxm free-space diagram, shown in following figure, the horizontal and vertical
directions of the diagram correspond to the natural parametrizations of P and Q respectively.
Therefore, if there is a monotone increasing curve from the lower left to the upper right corner
of the diagram (corresponding to a monotone mapping), it generates a monotonic path that
defines a matching between point-sets P and Q.

' &
/ ¢ |
2\\ .'{l’r | ,,/‘/ ! —N
\ / g W .- .
N ——— Ml @& |

Figure 7. Fréchet free-space diagram for 2 polygonal curves P and Q with monotonicity in both directions

4. Fréchet Distance of Geodesic Curves representative of Time-Doppler
Signatures on Information Geometry Manifold

We extend previous distance between paths of chapter 3 to Information Geometry Manifold
of chapter 2. When the two curves are embedded in a more complex metric space, the
distance between two points on the curves is most naturally defined as the geodesic length of
the shortest path between them. If we consider N subsets of M Radar pulses in the burst, the
Doppler burst can then be described by a poly-geodesic lines on Information Geometry
Manifold. The set of N covariances matrices {R(t,),R(t,),...,R(t, )} describe a discrete
“polygonal” geodesic path on Information Geometry Manifold, and we can extend previous
Frechet Distance but with Geodesic distance of chapter 2:

i (Ris R )= Inf Maxid, (R (@(0). R, (B0}
B 9)
. _ B 2
with d2, (R (e(0),R,(B(1)))) = [log(R" (@(O)R, (BUNR (1))
As classical Fréchet distance doesn’t take into account with Inf[Max] close dependence of
elements between points of time series paths, we propose to define a new distance given by:

ooy (RIS R, ) = Ing{ [d o (R (), R, (ﬂ(f)))dr} (10)

We have then to find the solution for computing the geodesic minimal path on the Fréchet
free-space diagram. The length of the path is not given by euclidean metric ds*> = dt* (where
L= J.ds ) but geodesic metric weighted by d(.,.) of the free-space diagram :

L

L, =[gds={[ds, with ds, =d(R,(a(t), R,(B(®)))dt (11)
L L

This optimal shortest path could be computed by classical ”Fast Marching method” [9].

NS-OS-HDR-CFAR will be based on distance (10) between sequence of”’cell under test”

covariance matrices and median sequence of auxilary data covariance matrices as in [5].
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Figure 6. (on left) Geodesic Path on Information Geometry Manifold where 1 non stationary burst is
decomposed on a sequence of stationary covariance matrices onTHPD matrix manifold,
(on right) shortest path on free-space diagram
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Information/Contact Geometries and Koszul Entropy
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Abstract. Based on Koszul theory of sharp convex cone hessian geometry, In-
formation Geometry metric could be introduced by Koszul 2-form as hessian of
Koszul-Vinberg Characteristic function logarithm (KVVCFL). The front of the
Legendre mapping of this KVCFL is the graph of a convex function, the Le-
gendre transform of this KVCFL. By analogy in thermodynamic with Dual
Massieu-Duhem potentials (Free Energy & Entropy), in large deviation theory
with Cumulant Generating & Rate functions (Legendre duality by Laplace
Principle) or in Legendre duality in Mechanics, the Legendre transform of
KVCFL could be interpreted as a “Koszul Entropy”. This Legendre duality is
considered in more general framework of Contact Geometry, the odd-
dimensional twin of symplectic geometry, with Legendre fibration & mapping.

Keywords: Characteristic Function, Koszul forms, Laplace Principle, Massieu-
Duhem Potential, Legendre Duality, Contact Geometry, Information Geometry

1 Characteristic function in geometry/statistic/thermodynamic

We study use of Koszul Characteristic Function in Information Geometry, in Large
Deviations Theory with Laplace Principle, in Mechanics with Contact Geometry and
in Thermodynamics with Massieu-Duhem Potentials. We try to explore close inter-
relations between these 4 domains. First, derivatives of the Koszul-Vinberg Charac-
teristic Function Logarithm (KVCFL) logy, (x) = log Ie—<§,x>d§ are invariant by the

o

automorphisms of the convex cone, and KVCFL Hessian defines a Riemannian met-
ric, useful in Information Geometry. Tool of “characteristic function” was first intro-
duced by Henri Poincaré in Statistics and used systematically by Paul Levy, using
property that all moments of statistical laws could be deduced from its derivatives. In
Large Deviation Theory, Laplace Principle allows to introduce the (scaled cumulant)

Generating FUNction g(x)= zimZlogy, (x) With y, (x)= [ep(s, =c)ig as the
n—o n

more natural element to characterize behavior of statistical variable for large devia-
tions. In Mechanics, Legendre Duality gives the relation between the variational Eu-
ler-Lagrange and the symplectic Hamilton-Jacobi formulations of the equations of
motion. Finally, in thermodynamic, the Massieu characteristic function (Duhem po-
tential) ¢ is able to provide all body properties from their derivatives and is Legendre

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011



transform of Entropy S: g_4_L 99 . “Characteristic function” and its deriva-

T o(U/T)
tives capture all information of random variable/system/physical model.

2 Koszul Characteristic Function/Entropy by Legendre Duality

We define Koszul-Vinberg hessian metric of convex sharp cone, and observe that.
the Fisher information metric coincides with the canonical Koszul Hessian metric
(Koszul 2-form). Then, by Legendre duality, we introduce Koszul-Vinberg Entropy.
2.1  Koszul-Vinberg Characteristic Function and Metric of convex sharp cone

J.L. Koszul [1] and E. Vinberg have introduced an affinely invariant Hessian metric
on a sharp convex cone Q through its characteristic function y . In the following, Q

is a sharp open convex cone in a vector space E of finite dimension on R (a convex
cone is sharp if it does not contain any full straight line). In dual space E"of E, Q" is
the set of linear strictly positive forms on Q—{0}. Q" is the dual cone of Q and is a

sharp open convex cone. If £<Q”, then the intersection Qﬂ{er/<x,g>:1} is
bounded. G = Aur(Q) is the group of linear transform of £ that preserves Q.
G = Aur(Q2) operates on Q" by Vg e G = Autf(Q),VEc E” then g.&=Eog™.

Koszul-Vinberg Characteristic function definition: Let g& be the Lebesgue meas-
ure on E”, the following integral: wo(x)= J‘e—<:,x>d§ YreO (@))

Q
with Q" the dual cone is an analytic function on Q, with y_ (x) € [0,+[, called the

Koszul-Vinberg characteristic function of cone Q, with the properties:
e The Bergman kernel of O +;R""is written as K, (Re(z)) up to a constant where

K, is defined by the integral: g (. _ Ie*@'%/ (&) tas
Q

Q
ey, isanalytic function defined on the interior of Q and v, (x) — +w0 as x — oQ

o If geAu(Q) then y/Q(gx):\detg\’ly/Q(x) and since 1 e G = 4ut(Q) for any
>0, we have y ()=, (x)/t"
* y,, islogarithmically strictly convex, and ¢, (x) = log(y, (x)) is strictly convex

e  Koszul 1-form : The differential 1-form o = dg, =dlogy,, =dv,, v, )
is invariant by all automorphisms G = A4ur(Q) of Q. If xeQ and ueE then
(a,,u)= —j(g,u>.e’<5*‘>d§ and ¢_e-Q 3)

>

e Koszul 2-form B: The symmetric differential 2-form g = Da = d?logy,, (4)
is a positive definite symmetric bilinear form on £ invariant under G = Aur(Q).
Dea >0 (Schwarz inequality and ;2 1ogy, (4,v)= j(f,u)<§,v>e’<5“‘>d§)

o



e Koszul-Vinberg Metric: D¢ defines a Riemanian structure invariant by 4u(Q),

and then the Riemanian metric is given by g =42 logy,, ®)
,d*logy, du (dlogy, —dlog dudv
dzlogw(x)zdz[logjwudu] IV/ v 1”1//1// v v.)
[w, du 2 [[v.v dudv
A diffeomorphism is used to define dual coordinate : x" = —a_=-dlogy,, (x) 6)

With <a’f(x),u>=Duf(x):% f(x+ ) - When the cone Q is symmetric, the map
1=0
x" =—e, is a bijection and an isometry with a unique fixed point (the manifold is a

Riemannian Symmetric Space given by this isometry): (x")" =x , <x1x*>:n and
Vo (@, . (x7) = cste. x~ is characterized by x" =arg min{z//(y)/y e Q' (x,y)= n} and
x" is the center of gravity of the cross section {y eQ (x,y)= n} of Q:
¥ = [gedgl [eiag and (=x" ) =d, logy, (x) == [(£ m)e Vg [ ag )

o Q o o
From this last equation, we can deduce “Koszul Entropy” defined as Legendre
Transform of minus logarithm of Koszul-Vinberg characteristic function @(x):
O (x") = (x,x") ~d(x) With " =D ® and x=p .@" where ®(x) = ~logy, (x)
By (7), we can write: _ <x*'x> _ jlog o _ef<¢,x>d§/ J'e’“ ‘>d§

> .

Q
()= _J'Ioge%i,x) .ei<:'x>d(§/ Iei<§'x>d§+ log J'e*<s V>d(§
and o’ o &

O (x)= K fet 'X>d§]. log [e”¥"dg ~ [loge " e M ag |1 [e 7 ag
3 Q Q' Q

Q
We can then consider this Legendre transform as an entropy, named Koszul Entropy:

<§,x> 8
@ ‘—f f Sy f = d§d§=—££px(§)logpx(§)d§ ®)

Q

7<x,§>7|0g fe <:">dg"

With p @)=e™ felame e and = [¢p.(00a

J.L. Koszul [1] and J Vey [2] have proved more, by the foIIowmg theorem:
Koszul-Vey Theorem: Let M be a connected Hessian manifold with Hessian metric
g . Suppose that admits a closed 1-form ¢ such that Do = g and there exists a group
G of affine automorphisms of M preservingeg :

e If M /G is quasi-compact, then the universal covering manifold of As is affinely
isomorphic to a convex domain Q real affine space not containing any full
straight line.

o If M /G iscompact, then Q is a sharp convex cone.

If we denote by s the level surface of . S ={y,(x)=c} which is a non-

compact submanifold in Q, and by ¢_ the induced metric of 4°logy,, On S , then



assuming that the cone Q is homogeneous under G((2), Sasaki proved that s is a

homogeneous hyperbolic affine hypersphere and every such hyperspheres can be
obtained in this way .Sasaki also remarks that ¢ is identified with the affine metric

and §_is a global Riemannian symmetric space when Q is a self-dual cone. Let Q

be a regular convex cone and let g = d*logy,, be the canonical Hessian metric, then
each level surface of the characteristic function y , is a minimal surface of the Rie-
mannian manifold (Q3, g) .

2.2 Koszul Forms and Metric for Symmetric Positive Definite Matrices

Let v be the volume element of g. We define a closed 1-form « and £ a symmetric
bilinear form by: D v=a(X)v and g=Dqa. The forms « and S are called the first

Koszul form and the second Koszul form for a Hessian structure (D, g) respectively:
d 1 da, 16*logdet[g, ]
v =(det|g, |["?dx* A..dx" = a, =—logldet|g, |J2v and g, = —L === =Skl
( [gll i ax; g( [glj ]) ﬁ!/ ax_/ 2 axlax_/
A pair (D, g) of a flat connection D and a Hessian metric g is called a Hessian struc-
ture. J.L. Koszul studied a flat manifold endowed with a closed 1-form ¢ such that
Da is positive definite, whereupon D¢ is a Hessian metric. A Hessian structure (D;

g) is said to be of Koszul type, if there exists a closed 1-form ¢ such that g =Dq .

The 2™ Koszul form £ plays a role similar to the Ricci tensor for Kahlerian metric.
We can apply this Koszul geometry framework for Symmetric Positive Definite
Matrices. Let the inner product<x, y> = Tr(xy), Vx,y € Sym, (R), Q be the set of sym-

metric positive definite matrices is an open convex cone and is self-dual Q" = Q.

n+l

val)=[eag = - dety 2y(r,) ©)

x,3)=Tr(xy)
Q"=Q self-dual

g=d’logy, = —’%lez logdetx and x* = _dlogy,, = %rld logdet x :nTJrlx’1 (10)

Let be the regular convex cone consisting of all positive definite symmetric matrices
of degree n. Then (D, Dd logdetx) is a Hessian structure on Q, and each level surface
of detx is a minimal surface of the Riemannian manifold (3, ¢ = —Dd logdet x) .

J.L. Koszul has introduced a more general 1-form definition given by :
a= —%d‘P(X) with ¥(x)=7r,,,[ad(JX)-Jad(X)] VX eg (11)
We can illustrate it for Poincaré’s Upper Half Plane " = {z = x+ iy / y > 0}. Let vector

, and J tensor of complex structure V' defined by

fields X:y% and Y:yjy
JX =Y. As[x,Y]=—v and ad(v)z =[,z] then | T rlad(1X)-Jad(X)]=2 (15
Trlad(JY)-Jad(Y)]|=0

The Koszul 1-form and then the Koszul/Poincaré metric is given by:



2 2
)2 B g Lay Lind e A d? (13)
y

This could be also applied for Siegel’s Upper Half Plane 7 = {7 = X +iy /Y > 0}
SZ = *
(4Z +B)D with s=[* B) and s 0 I
A"D=1,B"D=D"B 0 D -7 0
1 3p+1

a=——d¥ =
4

ds® = %Tr(Y’leY’le )

-1 R
3pe1 1Y *dZ A Y dZ) 14)

W(dX +idY )= Ty 'dx )=

For covariance Hermitian Positive Definite (HPD) matrix, if we take
Z = iR (with X = 0), the metric 4s? = Tr[(RfldR)ZJ is equivalent to Information metric
for multivariate Gaussian law of covariance matrix R and zero mean.

2.3 Characteristic Function and Laplace Principle of Large Deviations

Let u be a positive Borel Measure on euclidean space V. Assume that the following

integral is finite for all x inan openset Q c v : y ()= J'e*<)"*>dﬂ(x) (15)

For x € Q, consider the probability measure : p(y.dx)= 1 ef<yvx>dﬂ(x) (16)
v, ()

then mean is given by : () = J.xp(y,dx) =-Vlogy_ (») a7)

and covariance (' (y)u,v) = [ (x~m(y).u){x~m(»),V)p(y.dx) = D,D, logy,(y) ~ (18)

In his book “Calcul des probabilités”, Poincaré introduced first the term “fonction
caractéristique” because of Massieu work developed in his “thermodynamique” book.

Large deviation principle [5]: Let {= } be a sequence of random variables indexed
by the positive integer n, and let P(z, e d¢)= P(Z, € [¢,¢ + d¢]) denote the probabil-
ity measure associated with these random variables. We say that 3 or P(3, e dc)
satisfy a large deviation principle if the limit the rate function
()= ggg—%log P(2, e dg) &Xists: P(Z, e dg)~e™'Wdg OF p(E, =¢)~ e

If we write the Legendre transform of a function pn(x) defined by
g(k) = Sup{k.x _ h(x)}, we can express the following principle and Laplace’s method:

Laplace Principle[5]: Let {(Q,,F,, P, ),n € N}be a sequence of probability spaces, ©
a complete separable metric space, {v,,n € N} a sequence of random variables such
that y maps  into ©,and / arate functionon @ . Then, y satisfies the Laplace
principle on ® with rate function 7 if for all bounded, continuous functions /" map-

ping © into R: Limllog E, [e"'f(y”)]z Sup{f(x)—I(x)} (19)
n—-® pn " xe®

F

n?



If y satisfies the large deviation principle on © with rate functions, then

P, (Yn € dx) ~ e Wdx iy 1 log E, [e"'f(y”)]: Lim 1 log Je"f(y”).dﬂ
n—w© pn " n—w© pn o,

Lim 1 log J.e"‘f(")P" (Yn € dx) = Lim 1 log Ie"‘f(")e'”‘l(x) dx = Lim 1 log Ie”'[f(")'l(")].dx
© n—o n ® ®

e 1 PR

The asymptotic behavior of the last integral is determined by the largest value of the

integrand [5]: fi’;’}%log E, [en-f(Yn)]:%|Og[sup{en.[f(x)—1(x)]}:| = Suplf(x) - I(x)) (20)

The generating function of x is defined as ,/,® (x): J’ewp(zn ng)dg. The function

¢(x)defined by the limit: #(x)= Limllog w (x) is called the (scaled cumulant) gen-
n- p

erating function of 3 . It is also called the log-generating function or free energy
function of 3 . In the following in thermodynamic, it will be called Massieu Poten-
tial. The existence of this limit is equivalent to writing y (x)~ e"*™.

Gartner/Varadhan Theorems: 7 () = Sup{x.c — p(x)} and y(y) = Supixc —1(c)}

2.4  Contact Geometry in Mechanics, Cartan invariant & Legendre Mapping

As described by Vladimir Arnold [6], in the general case, we can define the Hamil-
tonian H as the fiberwise Legendre transformation of the Lagrangian L:

H(p,q,1) =St_tp(p.q—L(q,q,t))' Due to strict convexity, H(p,q,t) = p.g—L(q,4.t)
q

supremum is reached in a unique point ¢ such that , = 0,L(q,4.1)» and we have also
¢ =0,H(p,q.t) If we consider total differential of Hamiltonian:

dH = dp + pdq -0 ,Ldq —0,Ldq —0,Ldt = 4dp — 0 ,Ldq — 6,Ldt} - {q =0,H

=0 ,Hdp + 0, Hdg + 0, Hdt -0,L=0H
Euler-Lagrange equation 0,0,L-9,L=0 with p = 0,L and — 0,L=0,H provides
the 2" Hamilton equation p = -0,H with 4 = 0, H in Darboux coordinates.
Considering Pfaffian form @ = p.dg — H .4 related to Poincaré-Cartan integral invari-
ant [11], based on =0, Ldg~(6,L4~L)dt = Ldt+0,La With @ =dq-qdt, P.
Dedecker [7] has observed, that the property that among all forms ¢ = L.drmod @ the
form @ = p.dg — H.dt is the only one satisfying d9 =0mod e , is a particular case of

more general T. Lepage congruence [8] related to transversality condition.

Legendre transform and contact geometry where used in Mechanic [6] and in Ther-
modynamic [9,10]. Integral submanifolds of dimension n in 2n+1 dimensional contact
manifold are called Legendre submanifolds. A smooth fibration of a contact manifold,
all of whose are Legendre, is called a Legendre Fibration. In the neighbourhood of
each point of the total space of a Legendre Fibration there exist contact Darboux co-
ordinates (z, g, p) in which the fibration is given by the projection (z, ¢, p) =>(z, g).



Indeed, the fibres (z, g) = cst are Legendre subspaces of the standard contact space. A
Legendre mapping is a diagram consisting of an embedding of a smooth manifold as a
Legendre submanifold in the total space of a Legendre fibration, and the projection of
the total space of the Legendre fibration onto the base. Let us consider the two Le-
gendre fibrations of the standard contact space R*"** of 1 -jets of functions on R”:
(u,p,q) [ERN (%CI) and (u,p,q) = (p,q —u,p) , the projection of the I-graph of a func-
tion y =S(g)onto the base of the second fibration gives a Legendre mapping

g (q‘;j_s(q)";jj. If S is convex, the front of this mapping is the graph of a

convex function, the Legendre transform of the function S: (5”(p), p) (21)

25  Massieu Characteristic Function & Duhem potentials in Thermodynamic

In 1869, Frangois MASSIEU, French Engineer from Corps des Mines, has presented
two papers to French Science Academy on « Characteristic function » in Thermody-
namic. Massieu has demonstrated that some mechanical and thermal properties of
physical and chemical systems could be derived from two potentials called “charac-
teristic functions”. The infinitesimal amount of heat 4O received by a body produces
external work of dilatation, internal work, and an increase of body sensible heat. The
last two effects could not be identified separately and are noted 4 (function E ac-
counted for the sum of mechanical and thermal effects by equivalence between heat
and work). The external work P4y is thermally equivalent to 4.P.dV (with 4 the
conversion factor between mechanical and thermal measures). The first principle
provides dQ =dE + A.P.dv . For a closed reversible cycle (Joule/Carnot princi-

ples) j@ _ 0 that is the complete differential s of a function s of jg _ 99 .
T T
If we select volume V and temperature T as independent variables:

T.dS = dQ = T.dS — dE = AP.dV = d(TS)-dE = S.dT + A.P.dV (22)

Ifweset H =7S—-E,thenwe have gy — S47 + APdV = aﬂ_dT 4 aﬂ_dy (23)
oT ov

Massieu has called A the “characteristic function” because all body characteristics

could be deduced of this function: g — o pP= 100 gng E=TS—H = Taﬂ_H
oT AoV oT

If we select pression P and temperature T as independent variables:

Massieu characteristic function is then given by H'= H — 4PV (24)
We have gr'— gH — AP.dV — AV.dP = S.dT — AV .dP = %[; dT + aa[; dP (25)
And we can deduce: g OH" and V= _loH (26)

or A OP
And inner energy: g =75 - H =TS - H'—APV = E = T%iT - H'+P.%—[; (27)

The most important result consists in deriving all body properties dealing with
thermodynamics from Massieu characteristic function and its derivatives :« je montre,



dans ce mémoire, que toutes les propriétés d’un corps peuvent se déduire d’une
fonction unique, que j’appelle la fonction caractéristique de ce corps» [3].

In thermodynamics, the Massieu potential (previously called generating function) is
the Legendre transform of the Entropy (previously called rate function), and depends
on the inverse temperature p =1/ kT :

#(p) = —kp.F =S —EIT where F isthe Free Energy F=E-TS (28)
_00(p) _OkpF) _ oy OF kp(aF) ( or j (29)
olko)  olkp) d(kp) or )\ alkp)
24(p) [ 1 J S (30)
-2 F 4 kp(-S)| - =F+—=—=(E-TS)+TS=E
alkp) (ko) kp
With E the inner energy. The Legendre transform of the Massieu potential provides
the Entropy S 1(4) = kp.g?lg’o ; ~§(p) = kp.(~E) —kp.F = kp(F —E)=-S 31)
0

On these bases, Duhem [4] has founded Mechanics on the principles of Thermody-
namics. Duhem has defined [4] a more general potential function Q= G(E -TS)+W

with G mechanic equivalent of heat. In case of constant volume, W =0, the potential
Q becomes Helmoltz Free Energy and in the case of constant pressure, w = PV, the
potential Q@ becomes Gibbs-Duhem Free Enthalpy. Duhem has written: “Nous avons
fait de la Dynamique un cas particulier de la Thermodynamique, une Science qui
embrasse dans des principes communs tous les changements d’état des corps, aussi
bien les changements de lieu que les changements de qualités physiques “ [4].
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Abstract: In the framework of Optimal Transport Theory, Fréchet-Wasserstein distance
could be used to define distance between multivariate Gaussian laws with positive
curvature geometry. We compare this approach with Information geometry for
Covariance Radar Matrices Processing, where Fisher metric and Siegel-Rao distance
provides geometry of negative curvature.

1. Optimal Transport Theory and Fréchet-Wasserstein distance

For a long time, one important problem in statistics is to define metrics in the space of
probability measures or metrics between random variables. Recent progresses on this critical
subject have been achieved in the framework of Optimal Transport Theory by use of
Wasserstein metrics for probability distribution and especially for multivariate Gaussian laws.
First work on probability metric was originally done by G. Monge in 1781 [1], considering

the following metric in the distribution function space : d (P, Q) =Inf E UX -Y |] (D)
XY
This was generalized by Appel for : d (P, Q) =InfE [ f QX -Y |)] 2)
XY

where the infinum is taken over all joint distributions of pairs (X,Y) with fixed marginal
distribution functions P and Q. Global survey of Optimal Transport theory is given in 2010
Field Medal Cédric Villani Book [6].

Then during 20™ century, Maurice Fréchet [2] has proposed a metric on the space of

probability distributions given by :d > (P, Q) =Inf E hX -Y |2J 3)
XY

where the minimization is taken over all random variables X and Y having distribution P and
O respectively. Fréchet distance can be computed for n-dimensional distributions family that
are closed with respect to linear transformations of the ramdom vector, and especially for
Multivariate Gaussian laws. Others distance were studied by Paul Levy [3] & R. Fortét [4].
Fréchet distance could be considered as Wasserstein distance W, (u,v) of order 2 (n=2),
when Wasserstein distance of order # is defined by [6] :

Let (go,d ) be a polish metric space, and let n [1,+oo). For any two probability measure u,v

on ¢, the Wasserstein distance of order n between x and v is defined by the formula :

Wn(u,v):[ Inf Id(x,y)"dﬁ(x,y)] :Inf{(E[d(X,Y)"])l/n,law(X):u,law(Y)=V}

mell (u,v)
K()
Probability measure 7 € ¢(X,Y) is called a coupling of x# and v with its projections
coincides with # and v. We call 7 an optimal coupling if it attains the infinum of previous
wasserstain distance. The metric space (go, Wn) is called L"-Wasserstein space.

Monge distance could be considered as Wasserstein distance of order n=1, Wl(y,v), also

called Kantorovich-Rubinstein distance. If X, Y are square integrable random variables with X
has distribution P and Y has distribution Q, then :

EhX ~y| J = E[Tr((X —Y)(x- Y))] —|E(X) - EQ)[ +Tr[R, |+ Tr[R, |- 2T[R, | )



with R, = Cov(X), R, = Cov(Y) and R Yy = Cov(X,Y). Then the problem is equivalent to
RX

+

b4
[7]:1f K= {S” e R /[ R J > 0} , then Cov(P,Q) < K, solution is given by
Y

Sup{Tr(¥ )/ ¥ € Cov(P,Q))} where Cov(P,Q)={¥ e R /3X ~ P,Y ~ Q,% = Cov(X,Y)}
For Multivariate Gaussian measures P and Q on R, with means m, and m, and non-singular
covariance matrices R, and R, , The Fréchet-Wasserstein distance is given by :

d*(N(my, R, L, N(my, R, ) =|m, —m,|* +Tr[R, ]+ Tr[R, ]~ 2.Tr[(R;;2RYR};2)”2J (5)

X
The proof could be given by considering the random vector W = {Y} and the covariance
matrix of W: R, = L’{ R } . If we consider the case of zero mean :
Y
We have directly that : E|X — Y[ |=Tr{R, + R, =% —%* |=Tr[R, ]+ Tv[R, |- vl + ¥ *]

Solution is given by extreme value of 7 r[&” +¥ +] subject to the constraint that R, isa
covariance matrix. Considering the Hermitian form :

x| X L
G:{ } RW[ }:x+RXx+y+RYy+x+¥§/+y+¥”x:>G:Z
r=1

2

Sx+ty

y y G=0

=R, = is,s:;RY = it,t:;ﬁ” = is,tf
r=1 r=1 r=1

Problem is then reduce to :

Tr{z st + Ztrsf} with the contraints that : R, = Zsrs: and R, = ZZ,Z:
r=1 r=1 r=1 r=l1

This problem is solved by introducing Lagrange Multipliers M and N :

L= T{Zm:srt: + Zm:trs:}+ Tr(zm:srs: jM + Tr(zm:trt: ]N
r=1

r=1 r=1 r=1

T . t, =M.,
Optimization provides :Z{MaxL = { N r=1L..,m
Sy oty s, =N,

As ¥ =51 then Y 1,67 =R, = M.R, .M =R,

r=1 r=1

From which we deduce : RY”.M.R, M.RY* = RY> R, R}> = (RY> M R\*} = RY> R, R\
And then finally R} M .RY? = (RY? R, RY?)"* = M = R} (RV*.R,.RY?) " R}

Butas ¥ = is,t: S Y= Zm:s,, (M.s,) =R,.M,we conclude that :

r=I1 r=1
Y =R, M= R}!z(R;z.Ry.R;z)l/zR;/z with properties of trace,
Tr(Yf + S’/+)= 2.Tr[(R}(/2.Ry.R}(/2 )”2 J, we can also prove that
Y =RV (RY2 R, RV )R X (6)

McCann [8] has defined the optimal transport plans between Gaussian measures on R* and has
proved that the displacement interpolation between any two Gaussian measures is also a



Gaussian measure. For two Gaussian measures N(m,,R, ) and N(m,,R, ), we can define a

positive definite Hermitian matrix : D, = R}’ (R;/ZRYR;/Z )_1/2 RY* =R, R} (7)

The geodesic between N(m,,R, ) and N(m,,R,) is then given by N(mm,R(,)) with [9] :
my, ={A=my +tmy
®)
R, =(1-0)1, +¢D,, R, (1-0)I, +2.D, )

It could be proved that : W, [(mm R ), (m(t) R, )J <(t-s)W, [(m(o) s R ), (mm R )J

with (m(O)’Rm)): (m,,R,) and (mu)’R(l)): (my,Ry)

If we define the following function : y(v) = %(v —m, )" Dy, (v=—my)+(m, —v) )
We could observe that if x=Vy(y)=D,, (y —m, )+ m,
(x=m ) R (x=m, )= [R)_(l/z(x My )]+ [R)_(l/z(x My )]: (r=my, ) R (y=m,)

= (x —my )+ Ry (x —my ) = [R)_(I/ZDX,Y (y —my )]+ [R)_(I/ZDX,Y (y —my )]
Proof is given by : = [(R;ngYR;Z)‘”ZR;;z(y —mY)T [(RQZRYR;;Z)‘”ZR;Z(y—mY)]

= (y—mY)+R;2(R;2RYR}(/2)_1R;2(y—my)z (y_my)+R;1(y_mY)
Using previous result and that detD, , = (detR, /detR,)"?, then (Ik,Vt//)#N(my,RY) is

the optimal transport between N(m,,R,) and N(m,,R, ). In the case of Gaussian measures
with zero mean, , the Wasserstein metric is given by [9] : gz, (X, ¥) =T r(X R, Y ) (10)

if we identify the tangent space at N (0, RY) via the exponential map :

exp oz ) X)) = N(O,R, ) with R, ., =(1-0I, +tX)R,((1-0)I, +1.X) (11)
We could observe that this space forms a Riemannian length space metrized by the
Wasserstein distance, geodesically convex and simply connected (uniqueness of geodesic).

This Riemannian manifold is of nonnegative curvature and is flat [6,9]. This space is also an
Alexandrov space because of the following property of Wasserstein distance :

Wy(a.7 (1) = A=W, (@, 7(0)) +tW,(a,7 (1)) -t =)W, (y(0),y (D))’

N
Wasserstein barycenter [11] is given by Inf ZW22 (u,v,). Wasserstein barycenter R of N

M k=1
N
multivariate Gaussian laws {N(0,R, )}, should verify: Z(R” *R.R" 2)1/2 = R. Wasserstein
=1

1/2

. . . . u / .
barycenter is given by iterative process : K" = (Z (K WEZK™ )1 ’ with K, = R!"*

k=1

2. Comparison of Fréchet-Wasserstein Distance with Siegel/Rao Distance
from Information Geometry
In Information Geometry, we equip N(m,,R,) with the Fisher information metric which is
different from the Wasserstein metric 7, . Fisher metric provides a negative constant sectional

curvature while Wasserstein metric is flat [6,9]. Foundation of Information geometry is based
on Kullback-Leibler Divergence. Kullback Divergence can be naturally introduced by
combinatorial elements and stirling formula. Let multinomial Law of N elements spread on M
levels {n,} :



M

P, (n,nyscnty, 1 Gyren gy ) = N!H%
i=1 i*

M
with ¢, priors, Zni =N and p, = n—]\’] Stirling formula gives nl=n".e™".4/27.n when
i=l1
n — +o . We could then observe that it converges to discret version of Kullback-Leibler :
1 p
le —lo logl =~ | = K(p,
m s loglP Zpl g{q} (P.9)

i=1 i

Donsker and Varadhan have proposed a variational definition of Kullback divergence :
K(p.q)=5uplE,(¢)-log B, ()]

Consider : ¢(w) = IH{M]

q(o)

= E,(¢)-In(E, (")) = me)ln[p( )] h{Z (co)p(( ))} K(p.q)~In() = K(p,q)

This proves that the supremum over all ¢ is no smaller than the divergence.

)

. (@) (@)
with q¢(a))=2qv‘qazee)e¢(a) :>K(p Q) [E (¢) h’l(E (e¢))] zp(a)){h{i( )J} 0

using the divergence inequality. Link with « Large Deviation Theory » & Fenchel-Legendre
transform which gives that logarithm of generating function are dual to Kullback Divergence is
given by :

log[[ eV(x)q(x)dx] = Sup” V(x)p(x)dx—K(p, q)]
< K(p,q)= Sup“ V(x)p(x)dx— log“ eV(x)q(x)dx]]
V()

& K(p,q) = Sup|E, (V) ~1og E, [ ]
()

Chentsov was the first to introduce the Fisher information matrix as a Riemannian metric on
the parameter space, considered as a differentiable manifold. Chentsov was led by decision
theory when he considered a category whose objects are probability spaces and whose
morphisms are Markov Kernels. Chentsov’s great achievement was that up to a constant factor
the Fisher information yields the only monotone family of Riemannian metrics on the class of
finite probability simplexes. In parallel, Burbea and Rao have introduced a family of distance
measures, based on the so-called a-order entropy metric, generalizing the Fisher Information
metric that corresponds to the Shannon entropy. Such a choice of the matrix for the quadratic
differential metric was shown to have attractive properties through the concepts of
discrimination and divergence measures between probability distribution. As is well known
from differential geometry, the Fisher information matrix is a covariant symmetric tensor of
the second order, and hence, the associate metric is invariant under the admissible
transformations of the parameters. The information geometry considers probability
distributions as differentiable manifolds, while the random variables and their expectation
appear as vectors and inner products in tangent spaces to these manifolds.



Chentsov has introduced a distance between parametric families of probability distributions
G, = {p(./ 0):0¢e @} with @ the space of parameters, by considering, to the first order, the
difference between the log-density functions. Its variance defines a positive definite quadratic
differential form based on the elements of the Fisher matrix and a Taylor expansion to the 2nd
order of the Kullback divergence gives a Riemannian metric:

KO.5),,. =K(0.0)+ (@%‘”l 5-0)+L6-0) [_ﬂ;;;g H)]( )
K[p(./0).p(/0+d0)]= Zgy(ﬁ)dﬁ a6 +0laa’) 12)

(13)

5

o6, )

1 1
where 1(0) = [g,-j(@)] and g, (0) :E{ﬁ np(x/0) & np(x/e)}
! J
Previous theory of information geometry can be developed for multivariate Gaussian laws. In
this section, we will illustrate information geometry on complex circular multivariate Gaussian

distribution of zero mean that classically models Radar data and given by :
p(X,/R) = () "R e r ] with R = (X, —m )(X,-m,) and E[R |-k~ (14)
Fisher matrix elements are provided by derivatives of first moments:

Alnp(X,/0,) 4 v pei
(0)=—F P OR, IR |+Im, R 0, 15
g,(©) [ o } gl [+om; & o,m, (1)

If we assume zero-mean process m, = 0, we deduce from R .R;'=1 = R, =-R R, R,
that : g, (0):Tr[(Rn.0”iR; 1)(RnﬂjRn_1 )] Then, we obtain an extended expression of the

i“tn Jjoon

metric: ds’ (6) :Tr{Rn {Zé’R dHJ . [Zﬁ R'.d6. H that can be simplified by using

that dR' = Z O.R.'dO, We conclude that Information metric can be written:

ds® = Tr[(lenam;1 i J: Tr[(R;‘dR;I J J: Tr{dmR, Y] (16)
We write this metric synthetically by mean of Frobenius Norm :
ds* =|[R;"dR R, with |A[' =(4,4) and (4,B)=Tr(4B") (17)

This metric is invariant under the action of the Linear matrix group (GLn (C ),.):
R —>W .R W', W e€GL (C). We can observe that this metric is also invariant by
inversion :AsR'R=1=dR'R=-R"'dR = dsfa = dsfrl

We have considered the case of zero mean m = 0, but for general case, we have :
ds> =dm*R™'dm + T r((R*IdR)Z) associated with the following isometries :
(m,R)—> (m',R) = (4"m +a, A"RA)

ds’ = ds”=ds* with (a,4)e C"xGL(n,C)
For the time being, there is no explicit expression of Information Geometry distance, when

means are not equal to zero m = 0 [10]. This problem is open in Information Geometry !
By integration, the distance between 2 Radar covariance matrices, R, and R, , is deduced from

(18)

their extended eigen-values {4, };_, :



d*(Ry.Ry)=[log(Ry"> R, Ry = S log?(, ) with det(R;" R, .R,* — 1.I) = det(R, — 1R, ) =0
k=1

We can also defined the unique geodesic joining 2 matrices , R, and R, . If ¢+ — y(¢)is the
geodesic between ,R,and R,, where ¢ €[0,1] is such that d(R,,y(¢))=td(R,,R,), then
the mean of R, and R, is the matrix R, o R, = y(1/2). The geodesic parameterized by the
length as previously is given by :
y(t) =R\ € l°g(R5f”2RyR5f”2)R}(/2 = R;Z(R;(” ‘R,R} zyR}(/z with 0 <7 <1
Y@ =Ry , y()=R, and y(1/2) =Ry~ R,

This space is a Bruhat-Tits space. A Bruhat-Tits space is a space with complete metric that
satisfies the semi-parallelogram law:

Vx,,x, € X 3z e X suchthat d(x,x, )’ +4d(x,z)’ <2d(xx, )" +2d(xx,)’ Vxe X (20)
This space is also a symmetric space as defined by Elie Cartan, such that for every pair
(4,B) of points of M there exists a bijective isometry G, 5, from M to itself with following

(19)

properties : G, A=B and G, ;B =4 (21)

G, 5 has aunique fixed point 40 B and d(G(A,B)X, X) = 2d(X, Ao B) (22)
For space of symmetric definite positive matrices, bijective isometry is given by :

GynX =(40B)X (40 B) with AoB=A"*(4"2Ba"?) 4" (23)

N
Barycenter R of N multivariate Gaussian laws {N (0, R, )},iv:l verify: Zlog(R "2R.R _”2)= 0.

k=1

N
. . . . 1/2 g(kEIIOg(R(jll] szR(r})/z )J 1/2
Barycenter is given by iterative process : R, = R, e s
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