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Abstract: This paper deals with geometry of covariance 

matrices to define new advanced Radar Doppler Processing 
based on Metric Space tools. Information Geometry has been 
introduced by C.R.Rao, and axiomatized by N. Chentsov, to 
define a distance between statistical distributions that is invariant 
to non-singular parameterization transformations. For 
Doppler/Array/STAP Radar Processing, Information Geometry 
Approach will give key role to Homogenous Symmetric bounded 
domains geometry. For Radar, we will observe that Information 
Geometry metric could be related to Kähler metric, given by 
Hessian of Kähler potential (Entropy of Radar Signal given by –
log[det(R)]). To take into account Toeplitz structure of 
Time/Space Covariance Matrix or Toeplitz-Block-Toeplitz 
structure of Space-Time Covariance matrix, Parameterization 
known as Partial Iwasawa Decomposition could be applied 
through Complex Autoregressive Model or Multi-channel 
Autoregressive Model. Then, Hyperbolic Geometry of Poincaré 
Unit Disk or  Symplectic Geometry of Siegel Unit Disk will be 
used as natural space to compute “p-mean” (p=2 for “mean”, 
p=1 for “median”) of covariance matrices via Karcher Flow 
derived from Weiszfeld algorithm  extension on Cartan-
Hadamard Manifold. This new mathematical framework will 
allow development of OS (Ordered Sta-tistic) concept for 
Hermitian Positive Definite Covariance Space/Time Toeplitz 
matrices or for Space-Time Toeplitz-Block-Toeplitz matrices. We 
will define OS-HDR-CFAR (Ordered Statistic High Doppler 
Resolution CFAR) and OS-STAP (Ordered Statistic Space-Time 
Adaptive Processing). 
 

Index Terms: Median, p-mean, Center of mass, Cartan-
Hadamard Manifold, Cartan Symmetric spaces, Homogenous 
bounded domains, Siegel Upper-half plane, Poincaré disk, Siegel 
disk, Fréchet metric space, Berger fibration, Mostow 
decomposition, Radar, CFAR, STAP 
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I. INTRODUCTION 

NFORMATION Geometry has been introduced by 
C.R.Rao, and axiomatized by N. Chentsov, to define a 

distance between statistical distributions that is invariant to 
non-singular parameterization transformations. For 
Doppler/Array/STAP Radar Processing, Information 
Geometry Approach will give key role to Symmetric spaces 
and Homogenous bounded domains geometry. For Radar, we 
will observe that Information Geometry metric could be 
identified to Kähler metric, given by Hessian of Kähler 
potential (Entropy of Radar Signal given by –log[det(R)]). To 
take into account Toeplitz structure of Time/Space Covariance 
Matrix or Toeplitz-Block-Toeplitz structure of Space-Time 
Covariance matrix, Parameterization known as Partial 
Iwasawa Decomposition could be applied through Complex 
Autoregressive Model or Multi-channel Autoregressive 
Model. Then, Hyperbolic Geometry of Poincaré Unit Disk or  
Symplectic Geometry of Siegel Unit Disk will be used as 
natural space to compute “p-mean” (p=2 for “mean”, p=1 for 
“median”) of covariance matrices via Karcher Flow for 
Weiszfeld algorithm extension on Manifold.  
   This new mathematical framework will allow development 
of (Ordered Statistic) concept [3] for Hermitian Positive 
Definite Covariance Space/Time Toeplitz matrices or for 
Space-Time Toeplitz-Block-Toeplitz matrices. We will define 
OS-HDR-CFAR (Ordered Statistic High Doppler Resolution 
CFAR) and OS-STAP (Ordered Statistic Space-Time 
Adaptive Processing) algorithms for radar detection.  

II. INFORMATION GEOMETRY MANIFOLD OF COVARIANCE 

HERMITIAN POSITIVE DEFINITE MATRICES 

In 1945, Rao has introduced Information Geometry for 
parameterized density of probability  /.p  with the metric 

given by the formula      dIddppKds  )/(.),/(.2               

where  )()(  ijgI   is the Fisher Information matrix. If we 

model Signal by complex circular multivariate Gaussian 
distribution of zero mean : 
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then for 0nm :  

     22/12/1212

Fnnnnn RdRRdRRTrdIdds                          (2)   

This metric has been integrated by Siegel and the distance is : 
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with 10  t  

III. FROM CARTAN CENTER OF MASS TO FRÉCHET MEDIAN 

Robust Covariance Matrix Mean Estimation can be 
addressed by Riemannian center of mass. Elie Cartan has 
proved back in the 1920’s existence and uniqueness of center 
of mass for simply connected complete manifolds of negative 
curvature for any compact subset. In Euclidean space, the 
center of mass is defined for finite set of points   Miix ,...,1

 by 

arithmetic mean: 
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2 ),(arg . This has been 

extended to general Riemannian manifolds by Elie Cartan that 
has proved that the function 

A

daamdmf ),(
2

1
: 2  is 

strictly convex (its restriction to any geodesic is strictly 
convex as a function of one variable) and achieves a unique 
minimum at a point called the center of mass of A for the 
distribution da. Moreover, this point is characterized by being 
the unique zero of the gradient vector field: 

 )(exp 1 
A

m daaf , where exp(.)  is the “exponential map” and 

)(exp 1 am
  is the tangent vector at m  of the geodesic from 

m  to a  : 
mm Ta)(exp 1 . Hermann Karcher has then 

introduced a gradient flow intrinsic on the Manifold   that 
converges to the center of mass, called Karcher Barycenter: 
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In the discrete case, the center of mass for set of points is: 
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Figure 1.  Fréchet-Karcher Flow on Cartan-Hadamard Manifold 

But, center of mass is not useful for robust statistic. 
Replacing L2 square geodesic distance by L1 geodesic 
distance, we can extend this approach to estimate a Median in 

metric space (called Fermat-Weber‘s point in Physic). Fréchet 
studied Median statistic using  mxEMinm

m
median   compared 

to  2
mxEMinm

m
mean  . Classically, in Euclidean space, 

Median point minimizes 
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We cannot directly extend Karcher Flow to median 
computation in the discrete case: 
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because )(exp 1
km x

n

  could vanish if   xm kn  . The uniqueness 

of the geometric median of a probability measure on a 
complete Riemannian manifold [4] has been investigated. By 
regarding the Weiszfeld algorithm as a sub-gradient 
procedure, a sub-gradient algorithm has been introduced [1] to 
estimate the median and to prove that this algorithm always 
converges :  
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Then, the median A of the N matrices Bk  can be computed 
by sub-gradient Karcher flow : 
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Figure 2.  Fréchet-Karcher Flow on space HPD Matrices 

IV. FOURIER HEAT FLOW EQUATION ON 1D GRAPH OF 

HERMITIAN POSITIVE DEFINITE MATRICES 

We can replace Median computation by anisotropic 
diffusion. In normed vector space in 1D, if we note 

  2/ˆ 11   nnn uuu , Fourier diffusion Equation is given by :  
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By analogy, we can define diffusion equation on a 1D 
graph of HPD(n) by: 
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(12) 
Obiously, we can introduce anisotropy by making adaptive 

the parameter  . 

From each Time covariance matrix, we can compute 
Doppler Spectrum. In the following exemple, we give image 
with range on X axis and Doppler frequency on Y axis. 
Fourier heat Diffusion is applied on covariance matrices and 
then, we draw associated Doppler spectrum of results : 

 
Figure 3.  Fourier Heat Equation on a 1D graph of covariance matrices:  

isotropic diffusion 

 
Figure 4.  Fourier Heat Equation on a 1D graph of covariance matrices: 

anisotropic diffusion 

V. TOEPLITZ-CONSTRAINED FLOW FOR HERMITIAN POSITIVE 

DEFINITE COVARIANCE MATRICES OF STATIONARY SIGNAL  

Previous flow has a major drawback, it will not constrained 
Toeplitz structure of covariance matrices M for stationary 
signal  *

, knnkknn zzErr    but only the following 

structure: MJMJ   with J an anti-diagonal matrix. 

 MJMJCHPDME n  /)(  is a closed sub-

manifold of )(CHPD n
.To take into account this constraint, 

Partial Iwasawa decomposition should be considered. This is 
equivalent for time or space signal to Complex 
AutoRegressive (CAR) Model decomposition (see Trench 
Theorem [5]) : 
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In the framework of Information Geometry, Information 
metric could be introduced as Kählerian metric where Kähler 
potential is given by the process Entropy  ,

~
0 )P(Rn  :  
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Information metric is then given by hessian of Entropy 
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For Median autoregressive model computation, Karcher 
flow could be trivial. For 

0P , we use classical median on real 

value. For   1

1
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kk , we use homeomorphism of Poincaré’s unit 

disk 
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, to fix the point under action of karcher 

flow at the origin from where all geodesics are radials and 
where the space is locally Euclidean. Dual Karcher Flow is:  
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Median is deduced from each 
nw  at each iteration: 
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Figure 5.  Modified Karcher Flow in Poincaré disk by homeomorphism 

 
Figure 6.  Classical Karcher flow in Poincaré’s unit disk 
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Figure 7.  Dual Karcher Flow centered at the origin 

VI. BLOCK-TOEPLITZ CONSTRAINED KARCHER FLOW 

We will extend previous approach to space-time covariance 
matrix for STAP. Based on generalization of Trench 
Algorithm [5], if we consider Toeplitz-block-Toeplitz 
Hermitian Positive Definite matrix: 
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From Burg-like parameterization [11], we can deduced this 
inversion of Toeplitz-Block-Toeplitz matrix : 
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Where we have the following Burg-like generalized 
forward and backward linear prediction : 
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(24) 
Using Schwarz’s inequality, it is easily to prove that 1

1
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Burg-Like reflection coefficient matrix lies in Siegel Disk 
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VII. CARTAN-SIEGEL HOMOGENEOUS DOMAINS : SIEGEL 

DISK 

To solve median computation of Toeplitz-Block-Toeplitz 
matrices, Karcher-Fréchet Flow has to be extended in Siegel 
Disk. Siegel Disk has been introduced by Carl Ludwig Siegel 
[8] through Symplectic Group RSp n2

 that is one possible 

generalization of the group RSpRSL 22   (group of invertible 

matrices with determinant 1) to higher dimensions. This 
generalization goes further; since they act on a symmetric 
homogeneous space, the Siegel upper half plane, and this 
action has quite a few similarities with the action of RSL2

 on 

the Poincaré’s hyperbolic plane.  Let F be either the real or the 
complex field, the Symplectic Group is the group of all 
matrices FGLM n2  satisfying :  
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    The Siegel upper half plane is the set of all complex 
symmetric nxn matrices with positive definite imaginary part:  

 0Im/),(  Y(Z)CnSymiYXZSH n
                       (27) 

   The action of the Symplectic Group on the Siegel upper 
half plane is transitive. The group  nIRnSpRnPSp 2/),(),(   

is group of 
nSH  biholomorphisms via generalized Möbius 

transformations:  
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   ),( RnPSp  acts as a sub-group of isometries. Siegel has 

proved that Symplectic transformations are isometries for the 
Siegel metric in 

nSH . It can be defined on 
nSH  using the 

distance element at the point iYXZ  , as defined by: 

     iYXZdZYdZYTrdsSiegel      with   112       (29) 

with associated volume form :     dZYdZYTr 11  

C.L. Siegel has proved that distance in Siegel Upper-Half 
Plane is given by : 
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This is deduced from the 2nd derivative of  ZZRZ ,1  in 

ZZ 1
 given by : 
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In parallel, in China in 1945, Hua Lookeng has given the 
equations of geodesic in Siegel upper-half plane : 
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Using generalized Cayley transform    1 nn iIZiIZW , 

Siegel Upper-half Plane 
nSH  is transformed in unit Siegel 

disk  nn IWWWSD  /  where the metric in Siegel Disk is 

given by : 

      dWWWIdWWWITrds nn

112          (35) 

 
Figure 8.  Geometry of Siegel Upper Half-Plane 

Contour of Siegel Disk is called its Shilov boundary 

 nnn IWWWSD 0/   . We can also defined horosphere. 

Let 
nSDU   and  *Rk , the following set is called 

horosphere in siegel disk : 
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Hua Lookeng and Siegel have proved [8] that the previous 

positive definite quadratic differential is invariant under the 
group of automorphisms of the Siegel Disk. Considering 
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Complementary, Hua Lookeng has also proved that, let V,W 
be complex-valued matrices, if 0 VVI  and 0 WWI , 
then the following identity holds : 
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      2
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matrix identity : 
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Same kind of inequality is true for the trace : 
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To go further to study Siegel Disk, we need now to define 
what are the automorphisms of Siegel Disk 

nSD  . They are all 
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By analogy with Poincaré’s unit Disk, C.L. Siegel has 
deduced geodesic distance in 

nSD  : 
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VIII. MOSTOW/BERGER’S FIBRATION OF SIEGEL DISK 

Information metric will be introduced as a Kähler potential 
defined by Hessian of multi-channel entropy  1,

~
npRΦ  : 
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1
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give Multi-variate entropy [3], matrix extension of previous 
Entropy : 
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Paul Malliavin [3] has proved that this form is a Kähler 
Potential of an invariant Kähler metric (Information Geometry 
metric in our case) that is given by matrix extenstion of (14): 
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   As we have defined a metric space, we can extend 
Karcher/Frechet flow in Unit Siegel Disk to compute the 
Median of N Toeplitz-Block-Toeplitz Hermitian Positive 
Definite matrices. These matrices are parameterized by Burg-
Like generalized Reflection matrices   n
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and Karcher/Frechet Flow in Siegel Disk will be solved by 
analogy of our scheme used in Poincaré unit Disk, by mean of 
Mostow Decomposition Theorem : every matrix M of  

),( CnGL  can be decomposed in SiAeUeM   where S  is 

symmetric    MMPPPPPPS     with log
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unitary. Median in Siegel disk could be then obtained by 
analogy with scheme developed for median in Poincaré’s disk: 
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IX. BEREZIN QUANTIZATION OF CARTAN-SIEGEL DOMAINS 

Symmetric Bounded Domains of Cn are key spaces for all 
these approaches and are particular symmetric spaces of non-
compact type. Elie Cartan [4] has proved that there are only 6 
types: 
 2 exceptionnal types (E6 et E7) 
 4 Classical Symmetric bounded Domains (extension of 

Poincaré Unit disk): 

02ZZ1,1ZZ
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porder  of matrices symmetriccomplex   : II Type
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kernel function for all these domains were established by 
Lookeng Hua: 
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For the case (p=q=n=1), all these domains are reduced to 

the classical Poincaré unit disk : 
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Groups of analytic automorphisms of these domains are 
locally isomorphic to the group of matrices which preserve 
following forms: 
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(51) 
All classical domains are circular and considered in the 

general framework of Elie Cartan Theory, where the origin is 
a distinguished point for the potential: 
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F.A. Berezin [3] has introduced on these Cartan-Siegel 
domains the concept of quantization based on construction of  
Hilbert spaces of analytical functions: 
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One example is given in dimension 1 for Poincaré unit disk 
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It results from the last equation that the Kählerian metric is 
invariant under the action Gg   (automorphisms of unit disk). 

The transform of the base point  0z  of the disk by Gg  is 

given by   1*)0(


 abg . It defines a lifting that allows to 

associate to all paths in disk a lift in G. In the same way, we 
can define a geometric lift of potential K in G: 
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Obviously, all these lifts could be extended to Cartan-Siegel 
Domains  IZZZSDn  / : 



 7

  

    
   

  )()(

logRe2)())((

logdetlog)(

 :PotentialKähler  of

)(

0
fy   that veriB andA 

0

0
  with   and  Let  

**

**

1**

*

*

**

ZFZgF

ZBATrZFZgF

ZZITrZZIzF

AZBBAZZg

BAAB

IBBAA

I

I
JJJgg

BB

BA
g

t

t

t















































          (56) 

Geometric Lift in Cartan-Siegel domain is then given by the 
following: 
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F.A. Berezin [3] has proved that for every symmetric 
Riemannian space, there exist a dual space being compact. 
The isometry groups of all the compact symmetric spaces are 
described by block matrices (the action of the group in terms 
of special coordinates is described by the same formula as the 
action of the group of motions of the dual domain). 
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Berezin coordinates for Siegel domain are given by 
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For this dual space, the volume and the metric are invariant: 
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For arbitrary Kählerian homogeneous space, the logarithm 
of the density for the invariant measure is the potential of the 
metric. 

X. MEDIAN AND CONFORMAL BUSEMANN BARYCENTERS 

The Fréchet-median barycentre, in Poincaré/Siegel unit disk 
is equivalent to conformal Douady/Busemann barycenters 
[12]. The principle is to assign to every probability measure   

on  1 1  zS  a point    1 zDB   so that the map 
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Douady-Earle definition of conformal barycenter )(B  of  

  is the unique zero of 
  in D. )(z can be written 

according to )(z  that is the unit tangent vector of geodesic 

at Dz   pointing toward: 1S : 
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      (63) 
In Poincaré geometry of unit disk, the vector field 

  is the 

gradient of a function 
h  whose level lines are the horocycles 

tangent to 1S  at 1S : 
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with  wzd ,  the Poincaré distance from z to w in D. We can 

then observe that the Fréchet median of N points in D, 

 Nwwww ,...,,, 321
, is the conformal barycenter of associated 

push forward N points  N ,...,,, 321
 on 1S : 
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 the “push forward” 

association  is given by the limit point when t tends to infinity 
along the geodesic from the barycenter toward  

iw . 

 
Figure 9.  Frechet Median Barycenter = Busemann Barycenter 

All these results could be extended for Busemann 
barycenter on Shilov boundary of Cartan Hadamard 
manifolds. Following functional associated to median 
barycenter  

nH

zdzxdx )(,   is simply connected and reached 

its minimum. When z goes to infinity and converges to a point 
  of nH , distance function to z normalized converges to 
Busemann function: ),(),(lim)( zOdzxdxB

z



.Fixing the 

origin nHO , let   finite measure on nH . The following 
strictly convex function reaches its minimum at a unique 
point, independent of origin and called Busemann 
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barycenter: 



nH

dBx )()(  
                      (65) 

XI. RADAR APPLICATIONS FOR ROBUST ORDERED-STATISTIC 

PROCESSING: OS-HDR-CFAR AND OS-STAP 

   In the following, we will apply previous tools to built 
Robust Ordered-Statistic (OS) processing. Ordered-Statistic is 
a very useful tool used in Radar for a long time to be robust 
againt outliers on scalar data from secondary data. We will 
define an OS-HDR-CFAR (Ordered-Statistic High Doppler 
Resolution Constant False Alarm Rate) algorithm jointly 
taking into account robustness of “matrices median” and high 
Doppler resolution of regularized Complex Auto-Regressive 
model.  We will define also an OS-STAP (Ordered Statistic 
Space-Time Adaptive Processing), based on median 
computation of secondary data space-time covariance matrix 
with Mostow/Berger fibration applied on Multichannel 
Autoregressive Model. 

   This paper will not address Polarimetric Data processing, 
but obviously these tools could be extended to compact 
manifold to define Ordered statistic for Polarimetric 
covariance matrices. 

 
Figure 10.  Doppler Processing, Antenna Processing, Space-Time Processing 

& Polar processing 

XII. ROBUST DOPPLER PROCESSING : OS-HDR-CFAR 

   The regularized Burg algorithm [2] is an alternative 
Bayesian composite model approach to spectral estimation. 
The reflection coefficients, defined in classical Burg algorithm 
are estimated through a regularized method, based on a 
Bayesian adaptative spectrum estimation technique, proposed 
by Kitagawa & Gersch, who use normal prior distributions 
expressing a smoothness priors on the solution. With these 
priors, autoregressive spectrum analysis is reduced to a 
constrained least squares problem, minimized for fixed 
tradeoff parameters, using Levinson recursion between 
autoregressive parameters. Then, a reflection coefficient is 
calculated, for each autoregressive model order, by 
minimizing the sum of the mean-squared values of the 
forward and backward prediction errors, with spectral 

smoothness constraints . Tradeoff parameters balance estimate 
of the autoregressive coefficients between infidility to the data 
and infidility to the frequency domain smoothness constraint. 
This algorithm conserves lattice structure advantages, and 
could be brought in widespread use with a multisegment 
regularized reflection coefficient version. The regularized 
Burg algorithm lattice structure offers implementation 
advantages over tapped delay line filters because they suffer 
from less round-off noise and less sensivity to coefficient 
value perturbations. 
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In the following figures, regularization property is 
illustrated with deletion of spurious peaks. We select the AR 
model of maximum order (number of pulses minus one). 

 

  
Figure 11.  (up) Non-regularized & (bottom) Regularized Doppler AR 

Spectrum 

We conserve the sliding window structure of classical 
CFAR : we compare the AR model under test by computing 
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its Information Geometry distance with median AR model of 
secondary data in the neighborhood. Median Autoregressive 
model is computed by : 

For 
0,medianP , we use classical median on real values 
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The detection test is finally based on computation of the 
robust Information Geometry distance: 
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(70) 
In the following figure, we compare the classical processing 

chain with new OS-HDR-CFAR 

 
Figure 12.   (top figure) Classical OS-CFAR after filter banks, (bottom figure) 

OS-HDR-CFAR  

 
Figure 13.  OS-HDR-CFAR Algorithm with illustration of two first reflection 

coefficients 

We have tested OS-HDR-CFAR on real recorded ground 
Radar clutter with ingestion of synthetic slow targets. 
 

 

 
 

Figure 14.  Reflectivity of ground clutter in recorded sector (top),Comparison 
of FFT Doppler spectrum (middle) and High Resolution Regularized Doppler 

spectrum (down) 

   In the following figures, we give ROC curves with 
Probability of detection versus probability of false alarm. We 
observe that OS-HDR-CFAR is better (Pd = 0.8) than OS-
CFAR/Doppler-Filters (Pd = 0.65) for arbitrary fixed Pfa. We 
could also observe that Information Geometry approach 
provides better results than Optimal Transport Theory 
approach (based on Wasserstein distance/barycenter : black 
curve). 
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Figure 15.  ROC curves for 3 approaches : OS-HDR-CFAR, OS-

CFAR/Doppler-Filters, & method based on Wasserstein barycenter/distance 
(optimal transport theory) 

 
Figure 16.  Probability of detection versus SNR for fixed Pfa=10-5, with  
relative position in Doppler of the target normalized by Doppler Clutter 
Spectrum Width (=1 means that the target is positioned on the edge in 

Doppler of the ground clutter) 

 

 
Figure 17.   Comparison of “Mean” in red and “Median” in blue for clutter 

level estimation (top) and through Pd/Pfa curves (down). 

XIII. CONCLUSION 

   Fréchet Median with Information Geometry and Geometry 
of of HPD(n) matrices is a new tool for Radar Signal 
Processing that could improve drastically performance and 
robustness of classical methods, in Doppler processing and in 
STAP. Obviously, these approaches could be extended to 
Array Processing and Polar Data Processing in the same way 
on respectively spatial covariance matrix and Polar covariance 
matrix. Future works will be dedicated to deepen close 
relations of Information Geometry with Lagrange Symplectic 
Geometry and  Geometric Quantization. 
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Abstract: Information Geometry has been introduced by C.R.Rao, and axio-
matized by N. Chentsov, to define a distance between statistical distributions 
that is invariant to non-singular parameterization transformations. For Dop-
pler/Array/STAP Radar Processing, Information Geometry Approach will give 
key role to Homogenous Symmetric bounded domains geometry. For Radar, we 
will observe that Information Geometry metric could be related to Kähler met-
ric, given by Hessian of Kähler potential (Entropy of Radar Signal given by –
log[det(R)]). To take into account Toeplitz structure of Time/Space Covariance 
Matrix or Toeplitz-Block-Toeplitz structure of Space-Time Covariance matrix, 
Parameterization known as Partial Iwasawa Decomposition could be applied 
through Complex Autoregressive Model or Multi-channel Autoregressive Mod-
el. Then, Hyperbolic Geometry of Poincaré Unit Disk or  Symplectic Geometry 
of Siegel Unit Disk will be used as natural space to compute “p-mean” (p=2 for 
“mean”, p=1 for “median”) of covariance matrices via Karcher Flow derived 
from Weiszfeld algorithm  extension on Cartan-Hadamard Manifold. This new 
mathematical framework will allow development of OS (Ordered Statistic) con-
cept for Hermitian Positive Definite Covariance Space/Time Toeplitz matrices 
or for Space-Time Toeplitz-Block-Toeplitz matrices. We will define OS-HDR-
CFAR (Ordered Statistic High Doppler Resolution CFAR) and OS-STAP (Or-
dered Statistic Space-Time Adaptive Processing). 

Keywords: Median, p-mean, Center of mass, Cartan-Hadamard Manifold, Car-
tan Symmetric spaces, Homogenous bounded domains, Siegel Upper-half 
plane, Poincaré disk, Siegel disk, Fréchet metric space, Berger fibration, 
Mostow decomposition, Radar, CFAR, STAP 

1 Historical Preamble 

Information Geometry has been introduced by Indian scientist Calyampudi Radha-
krishna Rao [15] (http://www.crraoaimscs.org/) PhD student of R.A. Fisher, and axi-
omatized by N. N. Chentsov [5], to define a distance between statistical distributions 
that is invariant to nonsingular parameterization transformations. C.R. Rao introduced 



this geometry in his 1945 seminal paper on Cramer-Rao Bound. This bound was dis-
covered in parallel by Maurice René Fréchet [6] in 1939 (in his Lecture of “Institut 
Henri Poincaré” of Winter 1939, in Paris) and extended later to multivariate case by 
Georges Darmois. We will see that this geometry could be considered in the frame-
work of Positive Definite Matrices Geometry for Complex circular Multivariate La-
place-Gauss Law. Same kind of  geometry has been also introduced by Functional 
Analysis approach by Prof. R. Bhatia in his recent Book [2]. For Doppler / Array / 
STAP Radar Processing, Information Geometry Approach will give key role to Ho-
mogeneous Symmetric bounded domains geometry. For Radar, we will propose In-
formation Geometry metric as Kähler metric, given by Hessian of Kähler potential 
(Entropy of Radar Signal given by –log det(R) where R is the covariance matrix), 
which is also a Bergman metric. To take into account Toeplitz structure of 
Time/Space Covariance Matrix or Toeplitz-Block-Toeplitz structure of Space-Time 
Covariance matrix for stationary signal, Parameterization known as Partial Iwasawa 
Decomposition [9] could be applied through Complex Autoregressive Model or Mul-
ti-channel Autoregressive Model. Then, Hyperbolic Geometry of Poincaré Unit Disk 
[14] or Symplectic Geometry of Siegel Unit Disk [17, 18] will be used as natural 
metric space to compute p-mean (p=2 for mean, p=1 for median) of covariance matri-
ces via Fréchet/Karcher Flow [7, 10] derived from Weiszfeld algorithm [108] exten-
sion on Cartan-Hadamard Manifold and on Fréchet Metric spaces. This new mathe-
matical framework will allow developing concept of OS (Ordered Statistic) for Her-
mitian Positive Definite Covariance Space/Time Toeplitz matrices or for Space-Time 
Toeplitz-Block-Toeplitz matrices. We will then define OS-HDR-CFAR (Ordered 
Statistic High Doppler Resolution CFAR) and OS-STAP (Ordered Statistic Space-
Time Adaptive Processing). This approach is based on the existence of a center of 
mass in the large for manifolds with non-positive curvature that was proven and used 
by Elie Cartan back in the 1920s [3]. The general case was employed by Calabi in an 
unpublished note. In 1977, Hermann Karcher [10] has proposed intrinsic flow to 
compute this barycenter, that we adapt for covariance matrices. This geometric foun-
dation of Radar Signal Processing is based on general concept of Cartan-Siegel do-
mains [4, 17, 18]. We will then give a brief history of Siegel domains studies in Eu-
rope, Russia and China. In 1935, Elie Cartan [4] proved that irreductible homogene-
ous bounded symmetric domains could be reduced to six types, included two excep-
tional ones. Four non-exceptionnal Cartans domains are now called classical models, 
and their extension by Siegel are considered as the higher dimensional analogues of 
the Poincaré unit disk [14] in the complex plane. After these seminal work of Elie 
Cartan, in the framework of Sympletic Geometry [17, 18], Carl Ludwig Siegel has 
introduced first explicit descriptions of symmetric domains, where the realization of 
bounded domains as unbounded domains played fundamental role (for an important 
class of them, these unbounded domains are Siegel domains of the first kind, with 
important particular case of Siegel Upper Half Plane). In 1953, Loo-Keng Hua [8] 
obtained the orthonormal system and the Bergman/Cauchy/Poisson kernel functions 
for each of the four classical domains using group representation theory. 

 Elie Cartan proved that all bounded homogeneous complex domains in dimension 
2 and 3 are symmetric and conjectured that is true for dimension greater than 3. Ilya 



Piatetski-Shapiro [13], after Hua works, has extended Siegel description to other 
symmetric domains and has disproved the Elie Cartan conjecture that all transitive 
domains are symmetric with a counter example. In parallel, A. Borel showed that if in 
a bounded homogeneous region a semi-simple Lie group operates transitively, then 
that region is symmetric. These results were strengthened by Hano and obtained by 
Jean-Louis Koszul [11, 12, 113] who also studied affinely homogeneous regions that 
are fundamental for Information Geometry and real Hessian or complex Kählerian 
geometries (see in book [16], Koszul’s references inside). Piatetski-Shapiro intro-
duced affinally general definition of a Siegel domain of the second kind (all symmet-
ric domains allow a generalization of Siegel tube domains), and has proved in 1963 
with S.G. Gindikin and E. Vinberg that any bounded homogeneous domain has a 
realization as a Siegel domain of the second kind with transitive action of linear trans-
formation. In parallel, E. Vinberg [19] worked on the theory of homogeneous convex 
cones, as fundamental construction of Siegels domains (he introduced a special class 
of generalized matrix T-algebras), and S.G. Gindikin worked on analytic aspects of 
Siegels domains. More recently, classical complex Symmetric spaces have been stud-
ied by F. Berezin [1] in the framework of quantization. With Karpelevitch [114], Pi-
atetski-Shapiro explored underlying geometry of these complex homogeneous do-
mains manifolds, and more especially, the fibration of domains over components of 
the boundary. Let a bounded domain, he constructed a fibration by looking at all the 
geodesic that end in each boundary component and associating the end point to every 
point on the geodesic. This fibration is important to understand Satake compactifica-
tions, and will be studied in the framework of Mostow/Fibration for our application. 
For our Radar STAP and Toeplitz-Block-Toeplitz covariances matrices, we have used 
Berger Fibration in Unit Siegel Disk based on the theorem that all symmetric spaces 
are fibered on a compact symmetric space (Mostow decomposition [57,58,115]). 

At the end of the paper, we will underline close relations between Fréchet median 
in Poincaré Unit Disk with Conformal barycenter on its boundary introduced by Dou-
ady and Earle. 



Structure of the paper is explained in the following image: 
 

 

Fig. 1. paper structure with associated sections 

2 Information Geometry Foundation  

   Foundation of Information geometry can be deduced from consideration on Kull-
back-Leibler Divergence. Kulback Divergence can be naturally introduced by combi-
natorial approach and stiling formula. Let multinomial Law of N elements spread on 
M levels  in : 
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Stirling formula gives nenn nn .2..!  when n . We could then observe that it 
converges to discret version of Kullback-Leibler: 
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Based on variational approach, Donsker & Varadhan gave variational definition of 
Kullback divergence: 
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This proves that the supremum over all   is no smaller than the divergence. 
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using the divergence inequality. 
In the same context, link with « Large Deviation Theory » & Fenchel-Legendre 

transform which gives that logarithm of generating function are dual to Kullback 
Divergence. This relation is given by: 
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 (4) 

   Chentsov was the first to introduce the Fisher information matrix as a Riemannian 
metric on the parameter space, considered as a differentiable manifold. Chentsov was 
led by decision theory when he considered a category whose objects are probability 
spaces and whose morphisms are Markov Kernels. Chentsov’s great achievement was 
that up to a constant factor the Fisher information yields the only monotone family of 
Riemannian metrics on the class of finite probability simplexes. In parallel, Burbea and 
Rao have introduced a family of distance measures, based on the so-called -order 
entropy metric, generalizing the Fisher Information metric that corresponds to the 
Shannon entropy. Such a choice of the matrix for the quadratic differential metric was 
shown to have attractive properties through the concepts of discrimination and diver-
gence measures between probability distribution. As is well known from differential 
geometry, the Fisher information matrix is a covariant symmetric tensor of the second 
order, and hence, the associate metric is invariant under the admissible transformations 
of the parameters. The information geometry considers probability distributions as 
differentiable manifolds, while the random variables and their expectation appear as 
vectors and inner products in tangent spaces to these manifolds. 

   Chentsov has introduced a distance between parametric families of probability 
distributions    :)/(.pG  with   the space of parameters, by considering, to 

the first order, the difference between the log-density functions.  Its variance defines a 
positive definite quadratic differential form based on the elements of the Fisher matrix 



and a Taylor expansion to the 2nd order of the Kullback divergence gives a Riemanni-
an metric: 
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If we model Signal by complex circular multivariate Gaussian distribution of zero 
mean : 
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We conclude that Information metric can be written: 

        22/12/12212 ln
Fnnnnnn RdRRRdTrdRRTrdIdds                                          (9) 

This metric is invariant under the action of the Linear matrix group  ),.(CGLn
: 

 )(  W,  .. n CGLWRWR nnnnn     (10) 

An intrinsic  metric could be also introduced by geometric study of HPD(n) Lie 
Group (Group of Hermitian Positive Definite Matrices nxn), that will be presented in 
the following as a particular case of Siegel upper half plane. 
Both approaches provide the same metric: 

     22/12/1212 ..
F
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This metric can be easily integrated and give the distance: 
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where  n

i 1i   are the extended eigenvalues between 
1R  and 

2R : 

     0det...det 12
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We can observe that geodesic projection on a sub-manifold M defined by 

 SPdistP
MS

M ,minarg)(


 ,  is contractive :  

   QPdistQPdist MM ,)(),(    (14) 



In the same way, if R and Q are two points on sub-manifold M, we can define distance 
from P to the geodesic [Q,R] by: 
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3 Cartan’s symmetric spaces 

For this differential geometry, we can also define the unique geodesic joining 2 matri-
ces A and B. If )(tt   is the geodesic between A and B, where ]1,0[t  is such that 

),(.))(,( BAdttAd  , then the mean of A and B is the matrix )2/1(BA  . The geo-

desic parameterized by the length as previously is given by: 
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This space is a Riemannian Symmetric space of negative curvature, where for each 
couple of matrices (A,B), there exist a bijective isometry 

),( BAG  that verifies 

 ),( BAG BA   and  ),( ABG BA  . This isometry has one fixed point Z barycenter of (A,B), 

given by    ZXdXXGd BA ,2,),(   :  

  )(X -1
),( BABAXG BA   with   2/12/12/12/12/1 ABAAABA  .  (17) 

By analogy, we can compare with classical Euclidean space :  
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Fig. 2.  Cartan-Berger Symmetric Space of Hermitian positive Definite Matrices 

This space is a Cartan-Hadamard Manifold, complete, simply connected with nega-
tive sectional curvature Manifold. But this is also a Bruhat-Tits space where the dis-
tance verify the semi-parallelogram inequality: 
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Space of HPD(n) matrices is a metric space and a Riemannian Hermitian space of 
negative curvature, where we can then defined a Karcher/Fréchet Barycenter to com-
pute mean of N covariance matrices. 

4 Information Geometry versus Optimal Transport Theory 

   For a long time, main problem in statistics has been to define metrics in the space of 
probability measures or metrics between random variables. Recent progresses on this 
critical subject have been achieved in the framework of an other theory than Infor-
mation Geometry, named “Optimal Transport Theory” by use of Wasserstein metrics 
for probability distribution and especially for multivariate Gaussian laws. 

First work on probability metric was originally done by G. Monge in 1781 [91], 
considering the following metric in the distribution function space: 

    YXEInfQPd
YX


,

,    (20) 

This was generalized by Appel:     YXfEInfQPd
YX


,

,                                          (21) 

where the infinum is taken over all joint distributions of pairs (X,Y) with fixed mar-
ginal distribution functions P and Q. Global survey of Optimal Transport theory is 
given in 2010 Field Medal Cédric Villani Book [96]. 

Then in 20th century, Maurice Fréchet [92,102] has proposed a metric on the space 
of probability distributions given by: 

   2

,

2 , YXEInfQPd
YX

                                                             (22) 

where the minimization is taken over all random variables X and Y having distribu-
tion P and Q respectively. Fréchet distance can be computed for n-dimensional distri-
butions family that are closed with respect to linear transformations of the ramdom 
vector, and especially for Multivariate Gaussian laws.   Others distance were studied 
by Paul Levy [93] & R. Fortét [94]. 
   In the following table, we will compare geometry of complex circular multivariate 
gaussian law in two different frameworks : information geometry and geometry of 
Optimal transport theory. For Optimal Transport theory, I invite you to read papers of 
Takatsu [99], that has presented her work in Leon Brillouin Seminar in 2011 : 
http://www.informationgeometry.org/Seminar/seminarBrillouin.html  



 

Complex Gaussian Circular Law of zero mean :    
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Space associated to Optimal transport: 
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Alexandrov Space: 
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Cartan-Hadamard Space: 
Complete, simply connected with negative 
sectional curvature Manifold 

Wasserstein Space: 
Non-negative sectional curvature Manifold 



Sectional curvature: 
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5 Cartan’s center of Mass and Emery’s Exponential Barycenter 

We will then explained Robust Covariance Matrix Estimation based on Riemann-
ian Geometry with center of mass. This center of mass exists only locally, except in 
special cases. Elie Cartan has proved back in the 1920’s existence and uniqueness of 
center of mass for simply connected complete manifolds of negative curvature for any 
compact subset. This holds because a symmetric space of non-positive curvature is 
nothing but the quotient of a non-compact Lie group by one of its maximal compact 
subgroups. All these irreducible symmetric spaces have been classified by E. Cartan 
& M. Berger. In Euclidean space, the center of mass is defined for finite set of points 

  Miix ,...,1
 by arithmetic mean: 
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of Perga has discovered that this point also minimizes the function of distances: 
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2 ),(arg . This extends to general Riemannian manifolds.  Elie Cartan 

[3,4] has proved that the function: 
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is strictly convex (its restriction to any geodesic is strictly convex as a function of one 
variable), achieves a unique minimum at a point called the center of mass of A for the 
distribution da. Morever, this point is characterized by being the unique zero of the 
gradient vector field:  

 )(exp 1 
A

m daaf   (24) 

where exp(.)  is the “exponential map” and )(exp 1 am
  is the tangent vector at m  of 

the geodesic from m  to a : 

 mm Ta  )(exp 1   (25) 



Herman Karcher has introduced a gradient flow intrinsic on the Manifold   that 
converges to the center of mass, called Karcher Barycenter : 
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In the discrete case, the center of mass for finite set of points is given by: 
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Fig. 3.  Fréchet-Karcher Flow on Cartan-Hadamard Manifold 

Maurice René Fréchet, inventor of Cramer-Rao bound in 1939 (published in Institut 
Henri Poincaré Lecture of Winter 1939 on statistics) [7], has also introduced the en-
tire concept of Metric Spaces Geometry and functional theory on this space (any 
normed vector space is a metric space by defining xyyxd ),(  but not the contra-

ry). On this base, Fréchet has then extended probability in abstract spaces. 
   A different point of view on center of mass or barycenter has been followed by 

Emery [21]. He has defined the expectation  xE  as the set of all x  such that: 

 )()( xEx     (28) 

for all continuous convex functions. A related point of view was used by Doss and 
Herer who define  xE  to be the set of all x  such that: 

    XzdExzd ,,    (29) 

In this framework, expectation   xgEb   of an abstract probabilistic variable )(xg  

where x  lies on a manifold is introduced by Emery [21] as an exponential barycenter : 

   0)(exp 1   dxPxg
M

b
  (30) 

In Classical Euclidean space, we recover classical definition of Expectation E[.] : 
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Statistics on manifolds is a critical aspect of different fields of applied mathematic. 
But Center of Mass is not useful for robust statistic. Replacing L2 square geodesic 
distance by L1 geodesic distance, we can extend this approach to estimate a Median in 
metric space (called Fermat-Weber ‘s point in Physic). Fréchet studied Median statis-
tic using Laplace’s results : 

 mxEMinm
m

median      compared  to      2
mxEMinm

m
mean   (32) 

I would like to note that N.K. Sung and G. Stagenhaus [48] have defined an analogue 
Cramer-Rao-Fréchet-Darmois lower bound for median-unbiaised estimators. Based 
on a measure of dispersion proposed by Alamo, Stangenhaus and David, an analogue 
of the classical Cramér-Rao lower bound for median-unbiased estimators has been 
developed for absolutely continuous distributions with a single parameter, in which 
mean-unbiasedness, the Fisher information, and the variance are replaced by median-
unbiasedness, the first absolute moment of the sample score, and the reciprocal of 
twice the median-unbiased estimator's density height evaluated at its median point.  
Could we conjecture that this result could be written by using the L1 analogue J of  L2 

Fisher information I: 

      1ˆ   JE   with     














 /log Xp

EJ  (33) 

to compare with classical Cramer-Rao-Fréchet-Darmois Lower bound with Fisher 
Information Matrix I: 
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Classically, in Euclidean space, Median point minimizes: 
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This minimization could be extended for Riemannian manifold : 
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We cannot directly extend the Karcher Flow to median computation in the discret 
case: 
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because )(exp 1
km x

n

  could vanish if   xm kn  . 



We have investigated [85,86,87] the geometric median of a probability measure on 
a complete Riemannian manifold and prove the uniqueness. By regarding the 
Weiszfeld algorithm [108] as a sub-gradient procedure, we have introduced a sub-
gradient algorithm to estimate the median and prove that this algorithm always con-
verges :  
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Then, the median A of the N matrices Bk  can be computed by sub-gradient Karcher 
flow : 
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to compare with the mean A of the N matrices Bk  that can be computed by gradient 
Karcher flow : 
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In this last case, we have the property that for AALim n
n
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with consequence on Entropy: 
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Fig. 4.  Fréchet-Karcher Flow on space of Hermitian Positive Definite Matrices 



6 Isobarycentric Flow 

In this chapter, we propose an alternative flow to classical Frechet-Karcher Flow. 
To compute the barycenter in a Cartan-Hadamard Space, in this new approach that we 
call isobarycentric flow, the main idea is to define a flow that drives evolution of each 
of N points that we are looking for the barycenter. We first illustrate the isobarycen-
tric flow in Euclidean space. For barycenter M  of N points 

kX  in Euclidean space : 

0
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k
kMX . We are looking for a flow  iXF  acting on each of N points 

iX  simultane-

ously at each step, so that the barycenter M is not modified such that   0
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k
kXMF . 

This isobarycentric flow on 
iX  is given by Karcher flow induced by other (N-1) 

points   ikkX 
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We can then easily proved that this flow doesn’t change the barycenter: 
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Obviously, this isobarycentric flow could not be directly extended to Cartan-
Hadamard Manifold and more especially to the space of Hermitian Positive Definite 
Matrices: 
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The isobarycentric flow could be approximated on HPDD(n) manifold when all 
matrices are closed to each other by using following approximation: 

 
 

2/1
,

log
2/1

,)(,1,

2/1
,,

2/1
,

ni

RRR

ninini ReRRFR

N

ik
ninkni 














 


 (47) 
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By using approximation of log(.) and exp(.): 
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We are then in the same case than in Euclidean space: 

 

  












  









N

ik
ninknini

ni

N

ik
nininkninini

RRRR

RRRRRIRR

,,,1,

2/1
,

2/1
,,,

2/1
,

2/1
,1,



  (49) 

In this case, barycentric flow convergence is obvious. To study convergence of bary-
centric flow when all matrices are not closed to each other, consideration on curvature 
should be studied in the more general framework of potential theory. 

7 Fourier Heat Equation Flow on 1D graph of HPD(n) matrices 

We can replace Median computation by anisotropic diffusion. In normed vector space 
in 1D, if we note   2/ˆ 11   nnn uuu , Fourier diffusion Equation is given by :  
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By analogy, we can define diffusion equation on a 1D graph of HPD(n) by: 
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  (51) 

Obiously, we can introduce anisotropy by making adaptive the parameter  . 

From each Time covariance matrix, we can compute Doppler Spectrum. In the fol-
lowing exemple, we give image with range on X axis and Doppler frequency on Y 
axis. Fourier heat Diffusion is applied on covariance matrices and then, we draw as-
sociated Doppler spectrum of results : 

 

Fig. 5. Fourier Heat Equation on a 1D graph of covariance matrices:  isotropic diffusion 



 

 

Fig. 6.  Fourier Heat Equation on a 1D graph of covariance matrices: anisotropic diffusion 

8 Flow preserving Covariance matrix Toeplitz structure 

   All previous approaches don’t take into account Toeplitz structure of covariance 
matrices, in case where the signal is stationary   kknnknn rrzzE   ,

*  and *
kk rr 

. To 

take into account this constraint, we have used Partial Iwasawa decomposition, that is 
equivalent for time or space signal to complex autoregressive model decomposition 
(link with Gohberg-Semencul inverse covariance matrix computation): 
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with   Tn
n

n
n aaA 1  and n

nn a , respectively complex autoregressive vector and 

reflection coefficient (see section 17.1 for more details) . 
In the framework of Information Geometry (66), we consider Information metric 
defined as Kählerian metric where the Kähler potential is given by the Entropy of the 
process  

~
)(RΦ n

 (called Ruppeiner metric in Physics). We describe link with Rao met-

ric in section 14 :  
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Information metric is given by hessian of Entropy : 
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kk  regularized Burg’s reflection coefficient and 
0P  mean Power. Kählerian 

metric is finally : 
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This is linked with general result on Bergman Manifold and theory of homogeneous 
complex manifolds. For complex manifold, where: 
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 is the given exterior differential form, the Hermitian differential form:  
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is independant of the choice of the coordinate system. Here, parameterization is con-
formal: 
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9 Median by Fibration of Conformal Poincaré’s unit disk 

For Median autoregressive model, Karcher flow could be very simple. For 
0P , we use 

classical median on real value. For   1

1




n

kk , we use homeomorphism of Poincaré’s unit 

disk 
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 11
, to fixe the point under action of karcher flow at the origin 

where all geodesics are radials and space is quasi-euclidean. Equation of Dual Karch-
er Flow, in this new coordinate system, is then given by polar decomposition: 

 0with 0
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Median is deduced taking into account each step 
nw :      

*
nmedian,n

nmedian,n
median,n wμ

wμ
μ




 11
  (61) 

In the following this polar decomposition will be replace by Mostow decomposition 
in Siegel Disk.  This fibration is not available for Klein model of unit disk [111]. 



 

Fig. 7.  : Modified Karcher Flow in Poincaré disk by homeomorphism 

     

 
 

 

Fig. 8. Classical Karcher flow (on the top), Dual Karcher Flow (on the bottom) 

As hyperbolic Poincaré’s Model is conform model, angles are preserved and median 
will be characterized by equality between angles of tangent vectors. 

 
More recently, Marc Arnaudon [84] has proposed a stochastic Karcher flow that 

converges alsmost surely to p-mean. For p=1, this stochastic flow is given by :  
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where for each iteration n, index of one point is selected randomly )(nrandx . Then, 

1nm , driven by the flow, moves  along the geodesic between 
nm  and 

)(nrandx . Finally, 

in Poincaré unit disk, index )(nrand  is selected randomly in set  00  k,nμk/G ,at 

each step, displacement is given by:  

)/.( ),(),( nnrandnnrandnn γw  .  (63) 

Extension for Riemannian 1-Center has been applied in [112]. 

10 Geometry of Space-Time Covariance matrix 

   We will extend previous works developed for time or space covariance matrix, to 
space-time covariance matrix, structured as Toeplitz-block-Toeplitz Hermitian Posi-
tive Definite matrices. The problem will be considered for complex multi-channel or 
multi-variate data processing in the framework of Information Geometry.   

Based on generalization of Trench Algorithm, if we consider Toeplitz-block-
Toeplitz Hermitian Positive Definite matrix [89] : 
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   and matrix diagonale-anti : pJ  (65) 

We can apply the well-known inversion rule for a partitioned matrix, associated with 
adapted parameterization by mean of Block-structured Partial Iwasawa Decomposi-
tion, deduced from Burg-like generalized forward and backward linear prediction.  

From Burg-like parameterization [90], we can deduced this inversion of Toeplitz-
Block-Toeplitz matrix : 
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Where we have the following Burg-like generalized forward and backward linear 
prediction : 
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Using Schwarz’s inequality, it is easily to prove that 1
1



n
nA  Burg-Like reflection coeffi-

cient matrix lies in Siegel Disk 
p

n
n SDA 


1
1

.  

11 Cartan-Siegel Homogeneous Domains : Siegel Disk 

To solve median computation of Toeplitz-Block-Toeplitz matrices, Karcher-
Fréchet Flow has to be extended in Siegel Disk. Siegel Disk has been introduced by 
Carl Ludwig Siegel [17,18] through Symplectic Group RSp n2

 that is one possible 

generalization of the group RSpRSL 22   (group of invertible matrices with determi-

nant 1) to higher dimensions. This generalization goes further; since they act on a 
symmetric homogeneous space, the Siegel upper half plane, and this action has quite a 
few similarities with the action of RSL2

 on the Poincaré’s hyperbolic plane.  Let F be 

either the real or the complex field, the Symplectic Group is the group of all matrices 
FGLM n2  satisfying :  
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  (69) 

n
TTTT IBCDADBCAFnSp

DC

BA
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     and   symmetric     and ),(or         (70) 

    The Siegel upper half plane is the set of all complex symmetric nxn matrices with 
positive definite imaginary part:  

 0Im/),(  Y(Z)CnSymiYXZSH n
                          (71) 



   The action of the Symplectic Group on the Siegel upper half plane is transitive. The 
group  nIRnSpRnPSp 2/),(),(   is group of 

nSH  biholomorphisms via generalized 

Möbius transformations:  

   1)( 







 DCZBAZZM

DC

BA
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   ),( RnPSp  acts as a sub-group of isometries. Siegel has proved that Symplectic 

transformations are isometries for the Siegel metric in 
nSH . It can be defined on 

nSH  

using the distance element at the point iYXZ  , as defined by: 

     iYXZdZYdZYTrdsSiegel      with   112  (73) 

with associated volume form :     dZYdZYTr 11  

C.L. Siegel has proved that distance in Siegel Upper-Half Plane is given by : 
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log,    (74) 

and  rk   eigenvalues of the cross-ratio : 

        1

2121

1

212121

  ZZZZZZZZ,ZZR .  (75) 

 
Fig. 9. Geometry of Siegel Upper Half-Plane 



This is deduced from the 2nd derivative of  ZZRZ ,1  in ZZ 1
 given by : 

    11112 .2/1)(2   YdZdZYZZdZZZdZRD   (76) 

and    RDTrdZdZYYTrds 2112 .2    (77) 

In parallel, in China in 1945, Hua Lookeng has given the equations of geodesic in 
Siegel upper-half plane [8]: 

01
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Zd                          (78) 

Using generalized Cayley transform    1 nn iIZiIZW , Siegel Upper-half Plane 

nSH  is transformed in unit Siegel disk  nn IWWWSD  /  where the metric in Siegel 

Disk is given by : 

      dWWWIdWWWITrds nn

112   (79) 

Contour of Siegel Disk is called its Shilov boundary  nnn IWWWSD 0/   . We 

can also defined horosphere. Let 
nSDU   and  *Rk , the following set is called 

horosphere in siegel disk : 
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Hua Lookeng [8] has proved that the previous positive definite quadratic differen-
tial is invariant under the group of automorphisms of the Siegel Disk. 
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 (81) 

Complementary, Hua Lookeng [20] has also proved that, let V,W be complex-valued 
matrices, if 0 VVI  and 0 WWI , then the following identity holds : 

      2
detdetdet   VWIWWIVVI   (82) 

      2
detdetdet BAIBBIAAI    is based on Hua’s matrix identity : 

            BAIAAIABIBAAAIBABBI  
1**1  (83) 

using the intermediate equalities: 



           ABAAIABBBIBAIAAIABI   1  (84) 

    AAAIAIAAI
11     and      11   AAIAAAAI  (85) 

Same kind of inequality is true for the trace : 

     2
BAITrBBITrAAITr      (86) 

To go further to study Siegel Disk, we need now to define what are the automor-
phisms of Siegel Disk 

nSD  . They are all defined by: 
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and its inverse : 
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By analogy with Poincaré’s unit Disk, C.L. Siegel has deduced geodesic distance in 

nSD [109] : 
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12 Mostow/Berger’s Fibration of Siegel Disk 

   As in previous case, Information metric will be introduced as a Kähler potential 
defined by Hessian of multi-channel/Multi-variate entropy  1,

~
npRΦ , from (64) : 

        npjinpnpnp RHessgcsteµRTrcsteRRΦ ,,,,

~
logdetlog

~   (91) 

Using partitioned matrix structure of Toeplitz-Block-Toeplitz matrix 
1, npR , recursive-

ly parametrized by Burg-Like reflection coefficients matrix   n
k
k

n

k
k
k SDAA 



    with  
1

1
 , 

we can give a new expression of the Multi-variate entropy from (66)(67): 
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Paul Malliavin [52] has proved that this form is a Kähler Potential of an invariant 
Kähler metric that is given by : 
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Median Matrix Estimation of N Radar Space-Time sample data Covariance matrices : 
Study of Karcher/Frechet Barycenter and median in Siegel Disk based on Mostow 
Decomposition 

   As we have defined a metric space, we can extend Karcher/Frechet flow in Unit 
Siegel Disk to compute the Median of N Toeplitz-Block-Toeplitz Hermitian Positive 
Definite matrices. These matrices are parametrized by Burg-Like generalized Reflec-
tion coefficient [90] matrices   n

k
k

n

k
k
k SDAA 



    with  
1

1
 and Karcher/Frechet Flow in 

Siegel Disk will be solved by analogy of our scheme used in Poincaré unit Disk, by 
mean of Mostow Decomposition Theorem. Mostow’s decomposition theorem is a 
refinement of the polar decomposition [35,36,55,56,57,58]. This theorem is related to 
geometric properties of the non-positively curved space of postive definite Hermitian 
matrices and to a characterisation of its geodesic subspaces. 

Mostow Theorem: 
Every matrix M of  ),( CnGL  can be decomposed in:  

SiAeUeM     (94) 

where U is unitary, A  is real antisymmetric and S  is real symmetric 
 
Mostow Theorem is deduced from following Lemma and Corollary : 

Lemma:  
Let A  and B  two positive definite Hermitian matrices, there exist a unique 
positive definite Hermitian matrix X  such that :  

BXAX    (95) 

2/1A  is unique Hermitian positive definite square root of A  : 

   
    2/12/12/12/12/12/12/12/12/12/1

2/12/122/12/12/12/12/12/12/12/1

                



ABAAAXBAAXAA

BAAXAABAAXAAAXABXAX  (96) 

We can observe that X  is geodesic center of 1A and B  for symmetric space of 
Hermitian positive definite matrices.  

Corollary:  
if M  is Hermitian Positive Definite, there exist a unique real symmetric ma-
trix S    such that :  

SS eMeM 1*    (97) 

M  Positive Definite Hermitian Matrix, *M and 1M  with same property. From previ-
ous Lemma, there exist a unique hermitian positive definite matrix X  such that: 

XXMM 1*    (98) 



Exponential providing an homeomorphism between symmetric and positive defi-
nite symmetric spaces, it can be proved proof that X  is positive definite 
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If we come back to Mostow Theorem : SiAeUeM   
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Lemma and corollary will induce : 

  2/12/12/1*2/12/12212* PPPPPeePeP SSS    (101) 

And then :  

   MMPPPPPPS      with  log.2/1 2/12/12/1*2/12/1  (102) 

Based on Exponential injectivity from SSiA Peee 2 , we can deduce that :  

  MMPPee
i

A SS      with   log
2

1    (103) 

and finally, iAS eMeU    (104) 

Median in Siegel disk could be then obtained by analogy with numerical scheme de-
veloped for median in Poincaré’s disk. Numerical scheme based on Mostow Decom-
position theorem and Siegel Disk automorphism is given by : 
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13 Hua Kernel for Cartan-Siegel Domains, Berezin Quantization 
& Geometric lift 

Symmetric Bounded Domains of Cn are key spaces for all these approaches and are 
particular symmetric spaces of non-compact type. Elie Cartan [4] has proved that 
there are only 6 types: 

 2 exceptionnal types (E6 et E7) 
 4 Classical Symmetric bounded Domains (extension of Poincaré Unit disk): 

02ZZ1,1ZZ

:line 1 and rowsn  with matricescomplex   : IV Type

porder   of matrices symmetric skewcomplex   : III Type

porder  of matrices symmetriccomplex   : II Type
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kernel function for all these domains were established by Lookeng Hua: 
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For the case (p=q=n=1), all these domains are reduced to the classical Poincaré unit 
disk : 
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Groups of analytic automorphisms of these domains are locally isomorphic to the 
group of matrices which preserve following forms: 
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All classical domains are circular and considered in the general framework of Elie 
Cartan Theory, where the origin is a distinguished point for the potential: 
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F.A. Berezin [1] has introduced on these Cartan-Siegel domains the concept of quan-
tization based on construction of  Hilbert spaces of analytical functions: 
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One example is given in dimension 1 for Poincaré unit disk 
  1/)1,1(1/ SSUzCzD   with volume element  *22

)1.(2/1 dzdzzi    : 
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It results from the last equation that the Kählerian metric is invariant under the action 
Gg   (automorphisms of unit disk). The transform of the base point  0z  of the disk 

by Gg  is given by   1*)0(


 abg . It defines a lifting that allows to associate to all 



paths in disk a lift in G. In the same way, we can define a geometric lift of potential K 
in G: 

     

)()(

1log1log))0(()0(

1

*

*
1

2

1

21*1*

22

gFgF
ab

ba
g

babgFabg
ba





















 







 (114) 

Obviously, all these lifts could be extended to Cartan-Siegel Domains 
 IZZZSDn  / : 
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Geometric Lift in Cartan-Siegel domain is then given by the following: 

      
 BBITrBBIgFABg logdetlog))0(()0(

1*  (116) 

F.A. Berezin [1] has proved that for every symmetric Riemannian space, there exist a 
dual space being compact. The isometry groups of all the compact symmetric spaces 
are described by block matrices (the action of the group in terms of special coordi-
nates is described by the same formula as the action of the group of motions of the 
dual domain). 
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Berezin coordinates for Siegel domain are given by 
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 BBItraceBBIgFABg lndetln))0(()0(

1*  (119) 

For this dual space, the volume and the metric are invariant: 
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For arbitrary Kählerian homogeneous space, the logarithm of the density for the 
invariant measure is the potential of the metric. 

14 Information metric, Entropy metric and Bergman metric 

In previous chapter, we have first introduced Information Geometry metric and have 
used Entropy metric that is also a Bergman metric. In 1984, Jacob Burbea [49] has 
written a very interesting paper where he has studied relations of  differential metrics 
in probability spaces through entropy functionals with information metric and Berg-
man metric. He has considered probability density functions  ztp /  where Dz   and 

D  is a manifold imbedded in nC  with Hermitian Fisher information matrix : 
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with 22/1*
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that is locally invariant under holomorphic transformations of z. 
Considering )/( ztf  function of an open subset of some Fréchet space, the tangent in 

the direction of   nnxCCvu ,  is given by : 
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  a concave function : 

  )()/()( tdztppH 
  (123) 

   










1   if                log

1   if   1
)(

1







ss

ss
s   (124) 

Complex Hessian at p in the direction of f is then defined by Fréchet Derivatives: 

     )()()(');( 0 tdtftpsfpH
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  )()()()(''),;(2 tdtgtftpgfpHd 
  (126) 



An Hermitian positive definite differential metric can be defined with pf u : 
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For 1 , we recover the classical Rao metric, based on Shannon entropy. 
To make the relation with Bergman metric, Burbea has defined  ztp /  has a square 

of the modulus of a normalized function :   2
)/(/ ztztp   such that 1)/(.

2 


 z , 

where a non normalized function is given by :  

    )/(.,/ * ztzzKztg     where    


)/(),/(, * wtgztgwzK   (128) 

where is K a sesqui-holomorphic Bergman Kernel on DxD by use of Hartog’s theo-
rem. To recover Bergman metric, Burbea has considered then a pseudo-distance in the 
form of    


 )/(,/1)()/()/(1, wtzttdwtztwz    with : 

  KKKKKddwzdds
zwBergman log,),(

22
2222  

 
  (129) 

  *

1,

*
2 ,log

ki

N

ji ki
Bergman dzdz

zz

zzK
ds 

 


   (130) 

Then, Burbea has showed that the projective pseudo distance is in fact the 
Skwarczynski pseudo-distance: 
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Relation between Information metric and Bergman metric is given by this funda-
mental relation: 
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By virtue of the Cauchy-Riemann equations, the following relation is given: 
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We recover equivalence of Rao-Chentsov Information metric with Bergman metric 
by taking expectation of previous equation: 
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15 Complex Riccati Equation in Cartan-Siegel Domains 

Recently, Russian M.I. Zelikin [61] has introduced Complex Riccati equations, re-
vealing an intrinsic connection between these Riccati equations as a flow on  Cartan-
Siegel Homogeneous Domains. These Riccati equations that arise in the classical 
calculus of variations define a flow on the generalized Siegel upper half-plane. 

Let iYXW    with  0)Im( Y  in the Siegel Upper-half-plane, then the following 

complexified Riccati equation  : 

    BWCAWCW T  1   with  BA,  symmetric matrices (135) 

01111   BCCACWAWCAWWAW TT  (136) 

is a flow in this Siegel space. This Riccati equation is link with the following classical 
calculus of variation for the functional: 
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This Riccati equation is obtained from the canonical Hamiltonian system of ordinary 
differential equations : 
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where the previous block matrix belongs to the Lie algebra of the Lie group Sp(n,R) 
for all t (we can observe the same block structure than in equation (52)).  

16 Maslov index for shilov boundary of Poincaré/Siegel Disks 

  Before introducing Radar applications of previous flows, we introduce a last tool 
that could be used for shilov boundary of Siegel Disk : Arnold-Maslov-Leray index . 
We will provide Jean-Louis Clerc formula  for computing the Arnold-Maslov-Leray 
Index for Siegel dounded domains, analogue of Souriau index for Lagrangian Mani-
fold, using the automorphy kernel of the Siegel Disk, where the shilov boundary is the 
manifold of Lagrangian subspaces. This Arnold-Maslov-Leray index could be studied 
in the future in the framework of Information Geometry for Toeplitz-Block-Toeplitz 
matrices. 

     In Poincaré’s disk 
1SD , ideal triangle can be considered as a limit of geodesic 

triangle in 
1SD  when triangle points converge to shilov boundary, using aire A(T) of 

oriented geodesic triangle: 



































1

*
3

*
13

3
*
2

*
32

2
*
1

*
21

1

1
arg

1

1
arg

1

1
arg)(

zz

zz

zz

zz

zz

zz
TA  (139) 



We recover canonical automorphism kernel of 
1SD  :  
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As 
1SD  is simply connected, there exist a unique computation of geodesic aire argu-

ment that is cancelled on {z1,z2,z3} from which we can deduce geodesic triangle aire 
and Maslov-Leray index :  
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Maslov Index has been generalized in Siegel disk with Symplectic aire by J.L. Clerc, 
using canonical automorphism kernel of Siegel disk 

nSD  and oriented Symplectic 

aire: 
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17 Radar Applications for Robust Ordered-Statistic Processing: 
OS-HDR-CFAR and OS-STAP 

   In the following, we will apply previous tools to built Robust Ordered-Statistic (OS) 
processing. Ordered-Statistic is a very useful tool used in Radar for a long time to be 
robust againt outliers on scalar data from secondary data. We will define an OS-HDR-
CFAR (Ordered-Statistic High Doppler Resolution Constant False Alarm Rate) algo-
rithm jointly taking into account robustness of “matrices median” and high Doppler 
resolution of regularized Complex Auto-Regressive model.  We will define also an 
OS-STAP (Ordered Statistic Space-Time Adaptive Processing), based on median 
computation of secondary data space-time covariance matrix with Mostow/Berger 
fibration applied on Multichannel Autoregressive Model. 
   This paper will not address Polarimetric Data processing, but obviously these tools 
could be extended to compact manifold to define Ordered statistic for Polarimetric 
covariance matrices. 



 

Fig. 10.  Doppler Processing, Antenna Processing, Space-Time Processing & Polar processing 

17.1 Robust Doppler Processing : OS-HDR-CFAR 

   The regularized Burg algorithm [62,63] is an alternative Bayesian composite model 
approach to spectral estimation. The reflection coefficients, defined in classical Burg 
algorithm are estimated through a regularized method, based on a Bayesian adaptative 
spectrum estimation technique, proposed by Kitagawa & Gersch, who use normal 
prior distributions expressing a smoothness priors on the solution. With these priors, 
autoregressive spectrum analysis is reduced to a constrained least squares problem, 
minimized for fixed tradeoff parameters, using Levinson recursion between auto-
regressive parameters. Then, a reflection coefficient is calculated, for each autoregres-
sive model order, by minimizing the sum of the mean-squared values of the forward 
and backward prediction errors, with spectral smoothness constraints . Tradeoff pa-
rameters balance estimate of the autoregressive coefficients between infidility to the 
data and infidility to the frequency domain smoothness constraint. This algorithm 
conserves lattice structure advantages, and could be brought in widespread use with a 
multisegment regularized reflection coefficient version. The regularized Burg algo-
rithm lattice structure offers implementation advantages over tapped delay line filters 
because they suffer from less round-off noise and less sensivity to coefficient value 
perturbations. 
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In the following figures, regularization property is illustrated with deletion of spurious 
peaks. We select the AR model of maximum order (number of pulses minus one). 

 

 

Fig. 11. (up) Non-regularized & (bottom) Regularized Doppler AR Spectrum 

We conserve the sliding window structure of classical CFAR : we compare the AR 
model under test by computing its Information Geometry distance with median AR 
model of secondary data in the neighborhood. Median Autoregressive model is com-
puted by : 
For 

0,medianP , we use classical median on real values 
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The detection test is finally based on computation of the robust Information Geometry 
distance: 
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In the following figure, we compare the classical processing chain with new OS-
HDR-CFAR 

 

Fig. 12.  (top figure) Classical OS-CFAR after filter banks, (bottom figure) OS-HDR-CFAR  



 

Fig. 13.  OS-HDR-CFAR Algorithm with illustration of two first reflection coefficients 

We have tested OS-HDR-CFAR on real recorded ground Radar clutter with ingestion 
of synthetic slow targets. 

 
 

Fig. 14. Comparison of FFT Doppler spectrum (at left) and High Resolution Regularized Dop-
pler spectrum (at right) 

   In the following figures, we give ROC curves with Probability of detection versus 
probability of false alarm. We observe that OS-HDR-CFAR is better (Pd = 0.8) than 
OS-CFAR/Doppler-Filters (Pd = 0.65) for arbitrary fixed Pfa. We could also observe 
that Information Geometry approach provides better results than Optimal Transport 
Theory approach (based on Wasserstein distance/barycenter : black curve). 



 

Fig. 15. ROC curves for 3 approaches : OS-HDR-CFAR, OS-CFAR/Doppler-Filters, & method 
based on Wasserstein barycenter/distance (optimal transport theory) 

 

Fig. 16.  Probability of detection versus SNR for fixed Pfa=10-5, with  relative position in 
Doppler of the target normalized by Doppler Clutter Spectrum Width (=1 means that the 

target is positioned on the edge in Doppler of the ground clutter) 



To prove that OS-HDR-CFAR is an Ordered-Statistic CFAR, robust against outli-
ers, we have compared the case where all targets are ingested every 33 range cells 
(CFAR window are limited to 32 range cells), and the case where all targets are in-
gested every 7 range cells. We can observe that OS-HDR-CFAR performance are not 
altered by targets in the secondary data window. 

 

Fig. 17. α=0.25; SNRmean=17dB; target every 33 range cells 

 

Fig. 18. α=0.25; SNRmean=17dB; 1 target every 7 range cells 



17.2 Robust Space-Time Processing: OS-STAP 

We propose in this second applicative part to study robust STAP (Space-Time Adap-
tative Processing) based on Median of Sample Covariance Matrix, with advantages to 
be tolerant to the presence of targets or non-homogeneities in the secondary data. 
First, we give some basic elements of STAP theory. 
Brennan and Reed have proposed in 1973, STAP for radar target based on interfer-

ence covariance matrix estimation from target-free training data, weight vector calcu-
lation and threshold on statistical test.  Signal snapshot Radar data model is given by: 

   nVZt   ,   (146) 

    jammerclutternoisett RRRRVZVZER       wherewith    

  A single “primary” data may contain a target return with space-time steering vector 
 ,V  and unknown complex amplitude  , while other independent “secondary” 

data vectors are available that are zero mean, and share the same space-time Covari-
ance matrix R  for noise, clutter and jamming. Snapshot for range gate l is given by : 
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Optimal step filter can be interpreted by successive processing of a Matched filter 
and a Whitening Filter : 

    ttoutput ZSVSZwZ
  2/12/1ˆ   (148) 

In this formula, 
tZ  is the primary data vector snapshot, and S  is a sample covari-

ance matrix based on M secondary data vectors )(kZ :  
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The Generalized Likelihood Ratio Test (GLRT) assumes that the covariance is 
known, and is deduced by maximization over the unknown parameter  : 
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Classically, sample covariance matrix of secondary data is based on N.R. Good-
man’s Theorem. Consider M independent identically distributed N-variate complex 
Gaussian random variable )(kZ , k=1,…,M as a sample of size N from a population 

with PDF  ZRZp / . Let HPD(n) be the set of NxN Hermitian positive definite matri-



ces. Over the domain HPD(n) the maximum likelihood estimator 
ZR̂  of the covari-

ance matrix 
ZR  is: 




 )()(

1ˆ
1

kZkZ
M

R
M

k
Z

.   (151) 

Proof is based on  
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deduced from characteristic function of Hermitian form HZZ   : 

      HRiIeE Z
HZZi

RZpHR ZZ
.det 1.

/,     . (153) 

    In [88], authors have introduced the Parametric Adaptive Matched Filter (PAMF) 
methodology for STAP and detection, approximating the interference spectrum with a 
multichannel autoregressive (AR) model of low order, attaining modeling fidelity 
using a small fraction of the Reed-Brennan rule training data set, and offering dra-
matic improvement in performance over the conventional AMF, with only a small 
fraction of the secondary data required by the AMF. Multi-channel parameter identi-
fication  algorithms considered were the Strand—Nuttall (SN) and the least-squares 
(LS) algorithms for AR model identification.     

   Matched Filter that is deduced from LDU decomposition 

  12/12/111   ADDAR  can be written as follow : 
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Multi-channel element vectors are approximated at order P : 
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with  final PMF test given by: 
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PAMF is deduced from Multivariate Autoregressive Model and Identification Al-
gorithms where for stability, all the system poles must lie inside the Siegel Disk. For 
STAP PAMF, we use Multivariate Burg algorithm: 
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Multivariate Burg coefficient is in Siegel Unit disk 
nSD . We have by Schwarz ine-

quality that
1

1
1

1
1 . 





  n

n
n

n
n IAA . 

For the time being, we have not yet tested computation of Median Toeplitz-Block-
Toeplitz covariance matrix by Mostow/Berger Fibration and Frechet-Karcher Flow on 
Reflection Coefficient matrix 1

1



n
nA of multichannel Autoregressive model: In collabo-

ration with DRDC Canada, we have planned to do that in near future. For the time 
being, Balaji [80] from DRDC has tested the mean matrix iteration given by Karcher 
Flow:   
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A simulated covariance matrix is used as an example. The snapshots are drawn 
from a clairvoyant clutter covariance matrix. The number of apertures and pulses are 
chosen to be 12 and no dispersive effects, such as ICM, are assumed. A side-looking 
array, satisfying the DPCA condition is chosen so that the clutter covariance matrix 
rank is given by Brennan’s rule. The performance of the Riemmanian mean for a 
single run is shown in following figure. In this instance, improvment over the LSMI is 
evident in some area close to the clutter notch. If the improvement in performance is 
due to the Riemannian mean algorithm more closely approximating the clairvoyant 
covariance matrix. This confirms the conjecture that the improved performance is due 
to better approximation of the true covariance matrix by the proposed Riemannian 
mean algorithm. 



 

Fig. 19. LSMI STAP algorithm (blue : optimum, Red : LSMI with arithmetic mean, Green : 
LSMI with Riemannian mean) 

Apart from inversion, an eigenvector projection algorithm using the Riemannian 
mean can also be investigated. Naïvely, one expects that the most important eigenvec-
tors are those corresponding to the strongest eigenvalues. Furthermore, theseeigenvec-
tors are better estimated using fewer samples. The EVP performance for a single run 
using the Riemannian mean are shown in following figure. Once agian, clear im-
provement in performance is evident. In fact, improvement over the inversion is also 
observed near the important clutternotch region . 

 

Fig. 20.  EVP STAP algorithm (blue : optimum, Red : EVP with arithmetic mean, 
Green : EVP with Riemannian mean) 



18 Miscellaneous: Shape Manifold 

I would like to conclude with some remarks on “shape manifold”. In image pro-
cessing, it is very useful to make statistics on shape. We can use previous approach if 
we can define “Shape manifold” or “shape space”, and in case of Metric space, we 
can extend definition of Fréchet Mean for shapes. 

I will give a very simple example. If we consider a set of right triangles  N

iiii hba 1,, 
, 

where one right triangle could be defined by one point on the surface/manifold  
  222/,, bahhbaS   , then  the Fréchet p-mean is defined by the minimum of: 
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where geodesic is considered on the surface S . 
   If we consider no longer right triangles, but triangles such that the angle between a 
and b is greater than 90°,  90),( ba ,one such triangle is one point in the cone 

  222/,, bahhbaC  . Then, if we built the following Hermitian Positive Definite 

matrix : 

2220 bah
hiba

ibah











   (160) 

The problem is then reduce to previous study of HPD(2) matrices, where the coor-
dinates system is given by  ,h  where 

h

iba 
  is in Poincaré unit disk 1 , and 

 Rh . Fréchet p-mean is computed by previous method in product space xDR . 

 

Fig. 21. Shape manifold of Right triangles and cone for triangle where  90),( ba  



19 From Fréchet-median barycentre in Poincaré’s disk to 
Douady-Earle Conformal barycentre on its boundary 

I would like to conclude this paper with some remarks to compare the Fréchet-
median barycentre in Poincaré unit disk with Douady-Earle Conformal barycentre on 
its boundary [116,117].   

 Considering G the group of all conformal automorphisms of  Poincaré unit disk  
 1 /  zCzD  and G+ the subgroup, of index 2 in G, or orientation preserving 

maps : 
za

az
z

*1
  with  1z   and  1a . The group G operates on D but also on 

the set  1SP  of probability measure on  1 / 1  zCzS . The principle is to assign 

to every probability measure   on 1S  a point   DB   so that the map   B  is 

conform and satisfies: 
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There is a unique conformally way to assign to each probability measure   on 1S  a 

vector field 
  on D such that: 
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For general w  in D, the assignment is given by 
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Douady-Earle definition of conformal barycenter is then the following: 
 
The unique zero of 

  in D is the conformal Barycenter )(B  of    

Demonstration uses that the Jacobian of 
  at 0w  is strictly positive: 
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Douady and Earle provide a second proof of the uniqueness of  B  that will un-

derline the link with Fréchet Median that we can compute by deterministic flow de-
fined in section 9 (or its stochastic version by Arnaudon [84]). 

)(z can be written according to )(z  that is the unit tangent vector of geo-

desic at Dz   pointing toward 1S : 
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In Poincaré geometry of unit disk, the vector field 
  is the gradient of a function 

h  whose level lines are the horocycles tangent to 1S  at 1S : 
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with  wzd ,  the Poincaré distance from z to w in D. 

Uniqueness of  )(B , that is a critical point of 
h , is given by strict convexity of 

h  restriction to Poincaré geodesics.  

We can then observe that the Fréchet median of N points in D,  Nwwww ,...,,, 321
, is 

the conformal barycenter of associated push forward N points  N ,...,,, 321
 on 1S : 
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where the “push forward” association )()()(
1

tLimtLim iw
z

t
z

t
i 

 
  is given by the 

limit point when t tends to infinity along the geodesic from the barycenter toward  
iw . 

 

Fig. 22. Vector Field Gradient and horocycles level lines 



 

Fig. 23.  Fréchet Median and Douady-Earle Conformal Barycenter 

For points on Poincaré Disk boundary, the Karcher Flow of Fréchet median con-
verges to Douady-Earle Conformal barycenter : 
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Frédéric Paulin [119] has constructed on the boundary of a hyperbolic group (in 
Gromov's sense) a natural visual measure and a natural crossratio and has defined a 
barycentre for every probability measure on the boundary, extending the Douady-
Earle construction. Extension of Conformal structure for  boundary of CAT(-1) space 
has also been studied by Marc Boudon in [118]. 

M. Itoh [120] has recently defined a map from complete Riemannian manifold of 
negative curvature to its boundary in term of its Poisson Kernel, as Douady and Earle 
map, to investigate geometry of the pull-back metric of the Fisher information metric 
by this map based on a paper of Friedrich [121] that studied the space of probability 
measure with respect to the Fisher information metric. 

More recently, H. Airault, P. Malliavin and A. Thalmaier [122] have extended 
study of Brownian motion on the diffeomorphism group of the circle to Brownian 
motion on Jordan curves in C based on a Douady-Earle type conformal extension of 
vector fields on the circle to the disk. The aim of one of Malliavin’s projects was the 



construction of natural measures on infinite dimensional spaces, like Brownian 
measures on the diffeomorphism group of the circle, on the space of univalent func-
tions of the unit disk and on the space of Jordan curves in the complex plane. He un-
derstood that unitarizing measures for representations of Virasoro algebra can be ap-
proached as invariant measures of Brownian motion on the diffeomorphism group 
with a certain drift defined in terms of a Kähler potential [50,51,52,53]. 

20 Conclusion 

   Fréchet Median with Information Geometry and Geometry of of HPD(n) matrices is 
a new tool for Radar Signal Processing that could improve drastically performance 
and robustness of classical methods, in Doppler processing and in STAP. Obviously, 
these approaches could be extended to Array Processing and Polar Data Processing in 
the same way on respectively spatial covariance matrix and Polar covariance matrix. 
Future works will be dedicated to deepen close relations of Information Geometry 
with Lagrange Symplectic Geometry and  Geometric Quantization. 
   I would like to to give many thanks to all member of Brillouin seminar for interest-
ing discussion, hosted in IRCAM by Arshia Cont, since 2009. I am especially very 
graceful for Le YANG under supervision of Marc Arnaudon, who has proven con-
sistency and convergence of all these algorithms with rigorous developments and 
generalizations [86]. 
   In 1943 seminal Maurice Fréchet’s paper [6], where he introduced for the first time 
what it is called nowdays “Cramer-Rao Bound”, we can read at the bottom of first 
page “Le contenu de ce mémoire a formé une partie de notre cours de statistique 
mathématique de l’Institut Henri Poincaré pendant l’hiver 1939-1940”. With help of 
Cédric Villani, new Intitut Henri Poincaré director, we have looked for this Fréchet 
Lecture in IHP without success. I have recently visited in Archive of French Academy 
of Science, quai Conti, the “Fonds Fréchet” that are made of 28 boxes with all origi-
nal manuscripts, papers and works of Maurice Fréchet.   For the time being, I have 
had only time to read papers of Box 16 where Fréchet study statistics of human pro-
files and cranes with computing resources of first IHP Computation Center. I hope to 
have enough time soon to explore all these “Fonds Fréchet” to find this historical 
Lecture. More recently, M. Emery gave me the advice to look for Fréchet’s document 
in Pantheon-Sorbonne university Archive. 



21 Appendix : Iwasawa, Cartan and Hua Coordinates 

 Cartan Decomposition on Poincaré Unit Disk  
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 Iwasawa Decomposition on Poincaré Unit Disk Disk (Lemma of Iwasawa for 
radial coordinates in Poincaré Disk) 
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 Hua-Cartan Decomposition on Siegel Unit Disk (Lemma of Hua for radial coor-
dinates in Siegel Disk) 
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 Iwasawa Decomposition on Siegel Unit Disk (Iwasawa coordinates in Siegel 
Disk) 
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 Iwasawa/Cartan Coordinates on Siegel Unit Disk (Iwasawa/Cartan coordi-
nates relation in Siegel Disk) 
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 « Il est clair que si l’on parvenait à démontrer que tous les domaines 
homogènes dont la forme  
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,

2 ,log  est définie positive 

sont symétriques, toute la théorie des domaines bornés homogènes se-
rait élucidée. C’est là un problème de géométrie hermitienne certaine-
ment très intéressant » 
Last sentence in Elie Cartan, « Sur les domaines bornés de l'espace de 
n variables complexes », Abh. Math. Seminar Hamburg, 1935 
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Abstract: New challenge in Radar is the processing of non-stationary signal 
corresponding to fast time variation of Doppler Spectrum in one burst. We can observe 
this phenomenon for high speed or abrupt Doppler variations of clutter or target signal 
but also in case of target migration during the burst duration due to high range 
resolution.  We will assume that each non-stationary target signal in one burst can be 
split into several short signals with less Doppler resolution but stationary, represented by 
time sequence of stationary covariance matrices or a geodesic polygon on covariance 
matrix manifold. For micro-Doppler analysis of these cases, we adapt the Fréchet 
distance between two curves in the plane with a natural extension to more general 
geodesic curves in abstract metric spaces used for covariance matrix manifold. This new 
approach could be used for robust detection of target with non-stationary Time-Doppler 
spectrum (NS-OS-HDR-CFAR: Non-Stationary Ordered Statistic High Doppler 
Resolution CFAR), False Alarm filtering for inhomogeneous clutter (statistics of plots 
Time-Doppler fluctuation), but also emerging civil applications like wind-shear, micro-
burst, downdraft and wake-vortex detection.  

1. Non-stationary Time-Doppler signal in Radar: Targets and Clutters 
   Non stationary Doppler signal is challenging for radar processing. Main processing chains 
implemented in radars make the assumption of Doppler stationary signal during the burst 
waveform duration. This assumption is not always true, especially in case of high speed 
Doppler fluctuation or in case of abrupt Doppler changes as observed in fig1. For helicopter. 

  
Figure 1.  BELL 206 helicoper Time-Doppler Signature in one radar cell in staring mode 

   Non stationarity of Doppler signal is also the main cause of false alarm due to abrupt/fast 
Doppler variations of clutter like inhomogeneous sea clutter where spikes or breaking waves 
echoes will generate false detection due to these furtive events, as illustrated in fig. 2.  

 
Figure 2.  Non-homogenesous Sea clutter (with rain clutter) : fast Doppler spectrum fluctuation of sea clutter 



    
Non stationary Time-Doppler signature could be also observed by civil radar in the 
framework of safety airport issue, for wind hazards monitoring like wind-shear/micro-
burst/downdraft/wake-vortex, as illustrated in the following two images. 
(see UFO: http://www.transport-research.info/web/projects/project_details.cfm?ID=45116 ) 

 
Figure 3.  Time Doppler signatures of wind shear instabilities and fast downdrafts 

  
Figure 4.  Doppler signature of wake-vortex in ground effect, with strength (circulation) depending of aircraft 

(mass/wingspan x speed) ratio at generation time and decaying according to Eddy Dissipation Rate 
    
Wake-Vortex Time-Doppler Signatures are also observed when they are generated by 
helicopter blades or wind-farm blades. 

 
Figure 5.  Doppler signature of helico blades turbulences and vortices generating                                                      

during flights phases (landing/take-off/cruise) or behind a moutain crest-line before furtive helico pop-up 
 

   Last case is about radar where target is migrating during the burst duration due to high 
range resolution. Target could be observed only on some pulses of the burst but not on all 
pulses of the waveform.  
     In the following, we will consider Time-Doppler signature as a geodesic path on an 
Information Geometry manifold (of covariance matrices) as explained in chapter 2 by 
analyzing the time series in the burst with a short sliding window. In chapter 3, we recall 
classical definition of distance between paths in Euclidean Space based on Fréchet’s works. In 
chapter 4, we extend this classical Fréchet distance between paths to be used for our Time-
Doppler geodesic paths on Information Geometry Manifolds and for NS-OS-HDR-CFAR. 
 

2. Covariance Matrix Information Geometry Manifold: Geodesic and 
Distance between Micro Doppler spectrums  



  In the burst, we can consider through a sliding window a sub-set of pulses where we could 
consider the signal as locally stationary. For this sub-set of pulses, we use the Trench theorem 
[6] proving that their THPD (Toeplitz Hermitian Positive Definite) Covariance matrix could 
be parameterized by Complex Auto-Regressive (CAR) model for the time series. All THPD 

matrices are diffeomorphic to (r0, 1,…, n)R+xDn (r0  is a  real “scale” parameter, k are 
called reflection/Verblunsky coefficients of CAR model in D the complex unit Poincare disk, 
and are “shape” parameters). This result has been found previously by Samuel Verblunsky in 
1936 [7]. We have observed that this CAR parameterization of the THPD matrix could be 
also interpreted as Partial Iwasawa decomposition of the matrix in Lie Group Theory [5]. At 
this step, to introduce the “natural” metric of this model, we used jointly Burbea/Rao [5] 
results in Information Geometry and Koszul [5] results in Hessian geometry, where the 
conformal metric is given by the Hessian of the Entropy of the CAR model. This metric has 
all good properties of invariances, and could be also recover as Information Geometry metric. 
Distance between 2 THPD matrices is then easily computed by distance in product space :  r0 

on R+, and k in Dn Poincare unit polydisk. To regularize the CAR inverse problem on very 
short sub-set of Burst pulses, we have used a “regularized” Burg reflection coefficient [8] 
avoiding prior selection of AR model order (impossible to retrieve with Ikaike criterion). 

In 1945, Rao has introduced Information Geometry for parameterized density of probability 
 /.p  with the metric given by the formula      dIddppKds  )/(.),/(.2               

where  )()(  ijgI   is the Fisher Information matrix. If we model Radar Signal by complex 

circular multivariate Gaussian distribution of zero mean : 
   nnnnn mXRmX
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This metric has been integrated by Siegel and the distance is given by: 
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To take into account Toeplitz structure in case of stationary signal, Partial Iwasawa 
decomposition should be considered. This is equivalent for time or space signal to Complex 
AutoRegressive (CAR) Model decomposition (see Trench Theorem [6] or Verblunsky [7]) : 
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In the framework of Information Geometry, Information metric could be introduced as 

Kählerian metric where Kähler potential is given by the process Entropy  ,
~
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Information metric is then given by hessian of Entropy 
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The robust Information Geometry distance is then given in product space by: 
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3. Fréchet Distance between curves and Geodesic extension on Manifold 
   In this chapter, we recall classical definition of distance between paths in Euclidean space. 
If we consider two curves, we can define similarity between each other. Classically,  
Hausdorff distance, that is the maximum distance between a point on one curve and its nearest 
neighbor on the other curve, is classically used but it does not take into account the flow of 
the curves, which is important for Time-Doppler analysis in our approach. The Fréchet 
distance [1,2,4] between two curves is defined as the minimum length of a leash required to 
connect a dog and its owner as they walk without backtracking along their respective curves 
from one endpoint to the other. The Fréchet metric takes the flow of the two curves into 
account; the pairs of points whose distance contributes to the Fréchet distance sweep 
continuously along their respective curves.  

 
Figure 6.  Fréchet Distance between two polygonal curves (  and   indexing all matching of points) 

 
Let P and Q be two given curves, the Fréchet distance between P and Q is defined as the 
infimum over all reparameterizations   and   of  1,0  of the maximum over all  1,0t  of 
the distance in between ))(( tP  and ))(( tQ  . In mathematical notation, the Fréchet distance 

 QPd Fréchet ,  is:                     
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Alt and Godau [2] have introduced a polynomial-time algorithm to compute the Fréchet 
distance between two polygonal curves in Euclidean space. For two polygonal curves with m 
and n segments, the computation time is  )log(mnmnO . Alt and Godau have defined the 
free-space diagram between two curves for a given distance threshold ε is a two-dimensional 



region in the parameter space that consist of all point pairs on the two curves at distance at 

most ε:         ))(()),((/1,0,),( 2 tQtPdQPD Fréchet . The Fréchet distance 

 QPd Fréchet ,  is at most ε if and only if the free-space diagram ),( QPD contains a path which 

from the lower left corner to the upper right corner which is monotone both in the horizontal 
and in the vertical direction. 
   In an n×m free-space diagram, shown in following figure, the horizontal and vertical 
directions of the diagram correspond to the natural parametrizations of P and Q respectively.  
Therefore, if there is a monotone increasing curve from the lower left to the upper right corner 
of the diagram (corresponding to a monotone mapping), it generates a monotonic path that 
defines a matching between point-sets P and Q.  

 
 

Figure 7.  Fréchet free-space diagram for 2 polygonal curves P and Q with monotonicity in both directions 

4. Fréchet Distance of Geodesic Curves representative of Time-Doppler 
Signatures on Information Geometry Manifold 
   We extend previous distance between paths of chapter 3 to Information Geometry Manifold 
of chapter 2. When the two curves are embedded in a more complex metric space, the 
distance between two points on the curves is most naturally defined as the geodesic length of 
the shortest path between them. If we consider N subsets of M Radar pulses in the burst, the 
Doppler burst can then be described by a poly-geodesic lines on Information Geometry 
Manifold. The set of N covariances matrices       NtRtRtR ,...,, 21  describe a discrete 

”polygonal” geodesic path on Information Geometry Manifold, and we can extend previous 
Frechet Distance but with Geodesic distance of chapter 2: 
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As classical Fréchet distance doesn’t take into account with Inf[Max] close dependence of 
elements between points of time series paths, we propose to define a new distance given by: 
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We have then to find the solution for computing the geodesic minimal path on the Fréchet 
free-space diagram. The length of the path is not given by euclidean metric 22 dtds   (where 


L

dsL ) but geodesic metric weighted by d(.,.) of the free-space diagram :  

 
L

g

L

g dsdsgL .   with  dttRtRddsg .))((),(( 21                                                         (11) 

This optimal shortest path could be computed by classical ”Fast Marching method” [9]. 
NS-OS-HDR-CFAR will be based on distance (10) between sequence of”cell under test” 
covariance matrices and median sequence of auxilary data  covariance matrices as in [5]. 



       
Figure 6. (on left) Geodesic Path on Information Geometry Manifold where 1 non stationary burst is 

decomposed on a sequence of stationary covariance matrices onTHPD matrix manifold,                                                 
(on right) shortest path on free-space diagram 

References: 
[1] M. Fréchet, “Sur quelques points du calcul fonctionnel », Rendiconti del Circolo Mathematico 

di Palermo, n°22, p1-74, 1906 

[2] M. Fréchet, « L’espace des courbes n’est qu’un semi-espace de Banach », General Topology 
and Its Relation to Modern Analysis and Algebra, pp.155-156, Prague, 1962 

[3] H. Alt, and M. Godau. “Computing the Fréchet distance between two polygonal curves”. 
Internat. J. Comput. Geom. Appl., n°5, pp.75-91, 1995. 

[4] Fréchet M.R., « Les éléments aléatoires de nature quelconque dans un espace distancié », 
Ann. 551 Inst. Henri Poincaré, vol.10 n°4, pp. 215–310, 1948 

[5] Barbaresco F., “Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous 
Bounded Domains, Mostow/Berger Fibration and Fréchet Median”, In R. Bhatia & F. Nielsen 
Ed., “Matrix Information Geometry”, Springer Lecture Notes in Mathematics,  2012     

[6] Trench W.F.,”An algorithm for the inversion of finite Toeplitz matrices”, J. Soc. Indust. Appl. 
Math. 12, pp.515–522, 1964 

[7] Verblunsky S., “On positive harmonic functions”, Proc. London Math. Soc. 38, pp. 125-157, 
1935; Proc. London Math. Soc. 40, pp. 290-320., 1936 

[8] Barbaresco, F., “Super Resolution Spectrum Analysis Regularization: Burg, Capon and Ago-
antagonistic Algorithms”, EUSIPCO-96, pp. 2005–2008, Trieste, Sept. 1996 

[9] Barbaresco F. , “Computation of Most Threatening Radar Trajectories Areas and Corridors 
based on Fast-Marching  & Level Sets”, IEEE CISDA Symposium, Paris, 2011 

[10] P.W. Michor and D. Mumford, “An overview of the Riemannian metrics on spaces of curves 
using the Hamiltonnian approach”, Appl. Comput. Harm. Analysis 23 (1): 74-113, 2007 

[11] A.Chouakria-Douzal and P.N. Nagabhushan, “Improved Fréchet distance for time series”, in 
Data Sciences and Classification, Springer, pp 13-20, 2006 

[12]  M. Bauer & al., “Constructing reparametrization invariant metrics on spaces of plane curves”, 
preprint http://arxiv.org/abs/1207.5965 

[13] M. Fréchet, « L’espace dont chaque élément est une courbe n’est qu’un semi-espace de 
Banach », Annales scientifiques de l’ENS, 3ème série, tome 78, n°3, p.241-272, 1961 

[14] M. Fréchet, « L’espace dont chaque élément est une courbe n’est qu’un semi-espace de 
Banach II», Annales scientifiques de l’ENS, 3ème série, tome 80, n°2, p.135-137, 1963 

[15] Frédéric Chazal & al., “Gromov-Hausdorff  Stable Signatures for Shapes using Persistence”, 
Eurographics Symposium on Geometry Processing 2009, Marc Alexa and Michael Kazhdan 
(Guest Editors), Volume 28, Number 5, 2009 

[16] F. Cagliari, B. Di Fabio, and C. Landi, “The Natural Pseudo-Distance as a quotient pseudo 
metric, and applications”, Preprint, http://amsacta.unibo.it/3499/1/Forum_Submission.pdf  

[17] P. Frosini and C. Landi, “No embedding of the automorphisms of a topological space into a 
compact metric space endows them with a composition that passes to the limit”, Appl. Math. 
Lett. 24, no. 10, 1654–1657, 2011 



adfa, p. 1, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Information/Contact Geometries and Koszul Entropy  

Frédéric Barbaresco 

Thales Land & Air Systems, Voie Pierre-Gilles de Gennes, F91470 Limours, France 
frederic.barbaresco@thalesgroup.com 

Abstract. Based on Koszul theory of sharp convex cone hessian geometry, In-
formation Geometry metric could be introduced by Koszul 2-form as hessian of 
Koszul-Vinberg Characteristic function logarithm (KVCFL). The front of the 
Legendre mapping of this KVCFL is the graph of a convex function, the Le-
gendre transform of this KVCFL. By analogy in thermodynamic with Dual 
Massieu-Duhem potentials (Free Energy & Entropy), in large deviation theory 
with Cumulant Generating & Rate functions (Legendre duality by Laplace 
Principle) or in Legendre duality in Mechanics, the Legendre transform of 
KVCFL could be interpreted as a “Koszul Entropy”. This Legendre duality is 
considered in more general framework of Contact Geometry, the odd-
dimensional twin of symplectic geometry, with Legendre fibration & mapping.  

Keywords: Characteristic Function, Koszul forms, Laplace Principle, Massieu-
Duhem Potential, Legendre Duality, Contact Geometry, Information Geometry 

1 Characteristic function in geometry/statistic/thermodynamic 

  We study use of Koszul Characteristic Function in Information Geometry, in Large 
Deviations Theory with Laplace Principle, in Mechanics with Contact Geometry and 
in Thermodynamics with Massieu-Duhem Potentials. We try to explore close inter-
relations between these 4 domains. First, derivatives of the Koszul-Vinberg Charac-
teristic Function Logarithm (KVCFL) 




 

*

,log)(log   dex x  are invariant by the 

automorphisms of the convex cone, and KVCFL Hessian defines a Riemannian met-
ric, useful in Information Geometry. Tool of “characteristic function” was first intro-
duced by Henri Poincaré in Statistics and used systematically by Paul Levy, using 
property that all moments of statistical laws could be deduced from its derivatives. In 
Large Deviation Theory, Laplace Principle allows to introduce the (scaled cumulant) 
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more natural element to characterize behavior of statistical variable for large devia-
tions. In Mechanics, Legendre Duality gives the relation between the variational Eu-
ler-Lagrange and the symplectic Hamilton-Jacobi formulations of the equations of 
motion. Finally, in thermodynamic, the Massieu characteristic function (Duhem po-
tential)   is able to provide all body properties from their derivatives and is Legendre 
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  . “Characteristic function” and its deriva-

tives capture all information of random variable/system/physical model. 

2 Koszul Characteristic Function/Entropy by Legendre Duality 

We define Koszul-Vinberg hessian metric of convex sharp cone, and observe that. 
the Fisher information metric coincides with the canonical Koszul Hessian metric 
(Koszul 2-form). Then, by Legendre duality, we introduce Koszul-Vinberg Entropy. 
2.1 Koszul-Vinberg Characteristic Function and Metric of convex sharp cone 

   J.L. Koszul [1] and E. Vinberg have introduced an affinely invariant Hessian metric 
on a sharp convex cone  through its characteristic function  . In the following,   

is a sharp open convex cone in a vector space E  of finite dimension on R  (a convex 
cone is sharp if it does not contain any full straight line). In dual space *E of E , *  is 
the set of linear strictly positive forms on   0 . *  is the dual cone of   and is a 

sharp open convex cone. If * , then the intersection  1,/  xEx  is 

bounded.   AutG  is the group of linear transform of E  that preserves  . 

  AutG  operates on *  by   *, EAutGg    then 1.~  gg  . 

                                   
Koszul-Vinberg Characteristic function definition: Let d  be the Lebesgue meas-

ure on *E , the following integral:   



 xdex x    )(
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,                                     (1) 

with *  the dual cone is an analytic function on  , with   ,0)(x , called the 

Koszul-Vinberg characteristic function of cone  , with the properties: 
 The Bergman kernel of 1 niR is written as ))(Re(zK  up to a constant where 

K  is defined by the integral:  
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0t , we have   ntxtx /)(   

   is logarithmically strictly convex, and  )(log)( xx     is strictly convex 

 Koszul 1-form: The differential 1-form    /log ddd         (2) 

is invariant by all automorphisms   AutG  of  . If x  and Eu  then 
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 Koszul 2-form  : The symmetric differential 2-form   log2dD         (4) 

is a positive definite symmetric bilinear form on E invariant under   AutG . 

0D  ( Schwarz inequality and   
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 Koszul-Vinberg Metric: D  defines a Riemanian structure invariant by  Aut , 

and then the Riemanian metric is given by   log2dg                           (5) 
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A diffeomorphism is used to define dual coordinate : )(log* xdx x            (6) 
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. When the cone   is symmetric, the map 

xx *  is a bijection and an isometry with a unique fixed point (the manifold is a 

Riemannian Symmetric Space given by this isometry): xx ** )(  , nxx *,  and  

cstexx 
 )()( *

* . *x  is characterized by  nyxyyx  ,,/)(minarg **   and 
*x  is the center of gravity of the cross section  nyxy  ,,*  of * : 
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From this last equation, we can deduce “Koszul Entropy” defined as Legendre 
Transform of minus logarithm of Koszul-Vinberg characteristic function )(x :   

)(,)( *** xxxx   with  xDx*  and *
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Dx   where )(log)( xx    

By (7), we can write: 
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We can then consider this Legendre transform as an entropy, named Koszul Entropy: 
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J.L. Koszul [1] and J. Vey [2] have proved more, by the following theorem: 
Koszul-Vey Theorem: Let M  be a connected Hessian manifold with Hessian metric 
g . Suppose that admits a closed 1-form   such that gD   and there exists a group 

G  of affine automorphisms of M  preserving : 
 If GM /  is quasi-compact, then the universal covering manifold of M  is affinely 

isomorphic to a convex domain   real affine space not containing any full 
straight line. 

 If GM /  is compact, then   is a sharp convex cone. 
If we denote by 

cS  the level surface of    :  cxSc   )(  which is a non-

compact submanifold in  , and by 
c  the induced metric of log2d  on 

cS , then 



assuming that the cone   is homogeneous under )(G , Sasaki proved that 
cS  is a 

homogeneous hyperbolic affine hypersphere and every such hyperspheres can be 
obtained in this way .Sasaki also remarks that 

c  is identified with the affine metric 

and 
cS  is a global Riemannian symmetric space when   is a self-dual cone. Let   

be a regular convex cone and let  log2dg  be the canonical Hessian metric, then 

each level surface of the characteristic function    is a minimal surface of the Rie-

mannian manifold ),( g . 

2.2 Koszul Forms and Metric for Symmetric Positive Definite Matrices  

Let v be the volume element of g. We define a closed 1-form  and  a symmetric 
bilinear form by: vXvDX )(  and  D . The forms  and  are called the first 

Koszul form and the second Koszul form for a Hessian structure (D; g) respectively: 
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   A pair (D; g) of a flat connection D and a Hessian metric g is called a Hessian struc-
ture.  J.L. Koszul studied a flat manifold endowed with a closed 1-form   such that 
D   is positive definite, whereupon D   is a Hessian metric. A Hessian structure (D; 

g) is said to be of Koszul type, if there exists a closed 1-form  such that Dg  . 

The 2nd  Koszul form   plays a role similar to the Ricci tensor for Kählerian metric. 

  We can apply this Koszul geometry framework for Symmetric Positive Definite 
Matrices. Let the inner product   )(,,, RSymyxxyTryx n ,   be the set of sym-

metric positive definite matrices is an open convex cone and is self-dual * .  
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   Let be the regular convex cone consisting of all positive definite symmetric matrices 
of degree n. Then )detlog,( xDdD is a Hessian structure on  , and each level surface 

of xdet  is a minimal surface of the Riemannian manifold )detlog,( xDdg  . 

J.L. Koszul has introduced a more general 1-form definition given by  : 

 Xd
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We can illustrate it for Poincaré’s Upper Half Plane  0 /  yiyxzV . Let vector 
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The Koszul 1-form and then the Koszul/Poincaré metric is given by: 
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This could be also applied for Siegel’s Upper Half Plane  0 /  YiYXZV  
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For covariance Hermitian Positive Definite (HPD) matrix, if we take 

)0(with   XiRZ , the metric   212 dRRTrds   is equivalent to Information metric 

for multivariate Gaussian law of covariance matrix R and zero mean.  

2.3 Characteristic Function and Laplace Principle of Large Deviations 

Let  be a positive Borel Measure on euclidean space V. Assume that the following 
integral is finite for all x in an open set V :   )()( , xdey xy

x                       (15)                   

For x , consider the probability measure :   )(
)(

1
, , xde

y
dxyp xy

x




             (16)     

then mean is given by : )(log),()( ydxyxpym x                                           (17) 

and covariance )(log),(),(),(,)( yDDdxypvymxuymxvuyV xvu        (18) 

In his book “Calcul des probabilités”, Poincaré introduced first the term “fonction 
caractéristique” because of Massieu work developed in his “thermodynamique” book.  
     
Large deviation principle [5]: Let  n  be a sequence of random variables indexed 

by the positive integer n, and let      dPdP nn  ,  denote the probabil-

ity measure associated with these random variables. We say that 
n or  dP n   

satisfy a large deviation principle if the limit the rate function  

    dP
n

LimI n
n




log
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n
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n ep .  

If we write the Legendre transform of a function )(xh  defined by 

 )(.)( xhxkSupkg
x

 , we can express the following principle and Laplace’s method: 

Laplace Principle[5]: Let   NnPF nnn  ,,, be a sequence of probability spaces,   

a complete separable metric space,  NnYn ,  a sequence of random variables such 

that 
nY  maps 

n  into  , and I  a rate function on  . Then,  
nY  satisfies the Laplace 

principle on   with rate function I  if for all bounded, continuous functions f map-

ping  into R:     )()(log
1 . xIxfSupeE
n
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If 
nY  satisfies the large deviation principle on   with rate function I , then 
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The asymptotic behavior of the last integral is determined by the largest value of the 

integrand  [5]:        )()(log
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The generating function of 
n is defined as        dpex n

nx
n

. The function 

 x defined by the limit:   )(log
1

x
n

Limx n
n




  is called the (scaled cumulant) gen-

erating function of 
n . It is also called the log-generating function or free energy 

function of 
n . In the following in thermodynamic, it will be called Massieu Poten-

tial. The existence of this limit is equivalent to writing   )(. xn
n ex   . 

Gärtner/Varadhan Theorems:  )(.)( xxSupI
x

    and   )(.)( 


IxSupx   

2.4 Contact Geometry in Mechanics, Cartan invariant & Legendre Mapping 

  As described by Vladimir Arnold [6], in the general case, we can define the Hamil-
tonian H as the fiberwise Legendre transformation of the Lagrangian L: 

 ),,(.),,( tqqLqpSuptqpH
q




 . Due to strict convexity, ),,(.),,( tqqLqptqpH    

supremum is reached in a unique point q  such that ),,( tqqLp q  , and we have also 

),,( tqpHq p . If we consider total differential of Hamiltonian: 






















HL

Hq

HdtHdqHdp

LdtLdqdpqLdtqLdLdqqpddpqdH

qq

p

tqp

tqtqq    

Euler-Lagrange equation 0 LL qqt 
 with Lp q  and HL qq  provides 

the 2nd Hamilton equation Hp q  with Hq p  in Darboux coordinates.    

Considering Pfaffian form dtHdqp ..   related to Poincaré-Cartan integral invari-

ant [11], based on    LdtLdtLqLdqL qqq    ....  with dtqdq . , P. 

Dedecker [7] has observed, that the property that among all forms  mod.dtL  the 
form dtHdqp ..   is the only one satisfying  mod0d , is a particular case of 

more general T. Lepage congruence [8] related to transversality condition. 
Legendre transform and contact geometry where used in Mechanic [6] and in Ther-
modynamic [9,10]. Integral submanifolds of dimension n in 2n+1 dimensional contact 
manifold are called Legendre submanifolds. A smooth fibration of a contact manifold, 
all of whose are Legendre, is called a Legendre Fibration. In the neighbourhood of 
each point of the total space of a Legendre Fibration there exist contact Darboux co-
ordinates (z, q, p) in which the fibration is given by the projection (z, q, p) =>(z, q). 



Indeed, the fibres (z, q) = cst are Legendre subspaces of the standard contact space. A 
Legendre mapping is a diagram consisting of an embedding of a smooth manifold as a 
Legendre submanifold in the total space of a Legendre fibration, and the projection of 
the total space of the Legendre fibration onto the base. Let us consider the two Le-
gendre fibrations of the standard contact space 12 nR  of 1 -jets of functions on nR : 

),(),,( quqpu    and  ),.(),,( puqpqpu  , the projection of the l-graph of a func-

tion )(qSu  onto the base of the second fibration gives a Legendre mapping 
















q

S
qS

q

S
qq ),( . If S is convex, the front of this mapping is the graph of a 

convex function, the Legendre transform of the function S:  ppS ),(*                    (21) 

2.5 Massieu Characteristic Function & Duhem potentials in Thermodynamic 

  In 1869, François MASSIEU, French Engineer from Corps des Mines, has presented 
two papers to French Science Academy on « Characteristic function » in Thermody-
namic. Massieu has demonstrated that some mechanical and thermal properties of 
physical and chemical systems could be derived from two potentials called “charac-
teristic functions”.  The infinitesimal amount of heat dQ  received by a body produces 

external work of dilatation, internal work, and an increase of body sensible heat. The 
last two effects could not be identified separately and are noted dE  (function E  ac-
counted for the sum of mechanical and thermal effects by equivalence between heat 
and work). The external work dVP.  is thermally equivalent to dVPA ..  (with A  the 
conversion factor between mechanical and thermal measures). The first principle 
provides dVPAdEdQ .. . For a closed reversible cycle (Joule/Carnot princi-

ples) 0 T

dQ  that is the complete differential dS  of a function S  of 
T

dQ
dS  . 

If we select volume V and temperature T as independent variables: 
  dVPAdTSdETSddVPAdEdSTdQdST .......                            (22)     

If we set ETSH  , then we have  dV
V

H
dT

T

H
dVPAdTSdH .....








       (23)     

Massieu has called H  the “characteristic function” because all body characteristics 

could be deduced of this function: 
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If we select pression P and temperature T as independent variables: 
Massieu characteristic function is then given by VAPHH .'                               (24)     

We have dP
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And we can deduce: 
T

H
S





'   and   

P

H

A
V





'1                                                     (26)     

And inner energy:  
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.'            (27)     

   The most important result consists in deriving all body properties dealing with 
thermodynamics from Massieu characteristic function and its derivatives :« je montre, 



dans ce mémoire, que toutes les propriétés d’un corps peuvent se déduire d’une 
fonction unique, que j’appelle la fonction caractéristique de ce corps» [3]. 
   In thermodynamics, the Massieu potential (previously called generating function) is 
the Legendre transform of the Entropy (previously called rate function), and depends 
on the inverse temperature kT/1 :  

TESFk /.)(     where  F  is the Free Energy  TSEF                        (28)     
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With E  the inner energy. The Legendre transform of the Massieu potential provides 

the Entropy S :       SEFkFkEk
k

kL 



 

 .).()(

)(
.            (31)    

On these bases, Duhem [4] has founded Mechanics on the principles of Thermody-
namics. Duhem has defined [4] a more general potential function  WTSEG  )(  

with G  mechanic equivalent of heat. In case of constant volume, 0W , the potential 
  becomes Helmoltz Free Energy and in the case of constant pressure, VPW . , the 
potential   becomes Gibbs-Duhem Free Enthalpy. Duhem has written: “Nous avons 
fait de la Dynamique un cas particulier de la Thermodynamique, une Science qui 
embrasse dans des principes communs tous les changements d’état des corps, aussi 
bien les changements de lieu que les changements de qualités physiques “ [4]. 
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Abstract: In the framework of Optimal Transport Theory, Fréchet-Wasserstein distance 
could be used to define distance between multivariate Gaussian laws with positive 
curvature geometry. We compare this approach with Information geometry for 
Covariance Radar Matrices Processing, where Fisher metric and Siegel-Rao distance 
provides geometry of negative curvature. 

1. Optimal Transport Theory and Fréchet-Wasserstein distance 
For a long time, one important problem in statistics is to define metrics in the space of 
probability measures or metrics between random variables. Recent progresses on this critical 
subject have been achieved in the framework of Optimal Transport Theory by use of 
Wasserstein metrics for probability distribution and especially for multivariate Gaussian laws. 
First work on probability metric was originally done by G. Monge in 1781 [1], considering 
the following metric in the distribution function space :    YXEInfQPd

YX


,
,                   (1)                        

This was generalized by Appel for :     YXfEInfQPd
YX


,

,                                             (2)                         

where the infinum is taken over all joint distributions of pairs (X,Y) with fixed marginal 
distribution functions P and Q. Global survey of Optimal Transport theory is given in 2010 
Field Medal Cédric Villani Book [6]. 
Then during 20th century, Maurice Fréchet [2] has proposed a metric on the space of 

probability distributions given by :    2

,

2 , YXEInfQPd
YX

                                                 (3)  

where the minimization is taken over all random variables X and Y having distribution P and 
Q respectively. Fréchet distance can be computed for n-dimensional distributions family that 
are closed with respect to linear transformations of the ramdom vector, and especially for 
Multivariate Gaussian laws.   Others distance were studied by Paul Levy [3] & R. Fortét [4]. 
Fréchet distance could be considered as Wasserstein distance  ,nW  of order 2 (n=2), 

when Wasserstein distance of order n is defined by [6] : 
Let  d,  be a polish metric space, and let   ,1n . For any two probability measure ,  
on , the Wasserstein distance of order n between   and   is defined by the formula : 
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Probability measure ),( YX  is called a coupling of   and   with its projections 
coincides with   and  . We call   an optimal coupling if it attains the infinum of previous 

wasserstain distance. The metric space  nW,  is called Ln-Wasserstein space. 

Monge distance  could be considered as Wasserstein distance of order n=1,  ,1W , also 
called Kantorovich-Rubinstein distance. If X, Y are square integrable random variables with X 
has distribution P and Y has distribution Q, then : 

             YXYX RTrRTrRTrYEXEYXYXTrEYXE ,

22
2)()(             (4)    



with  XCovRX  ,  YCovRY   and  YXCovR YX ,,  . Then the problem is equivalent to 

[7] : If    
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 , then KQPCov ),( , solution is given by 

    ),/ QPCovTrSup    where   ),(,~,~/),( YXCovQYPXQPCov kxk    

For Multivariate Gaussian measures P and Q on Rk, with means Xm  and Ym  and non-singular 

covariance matrices XR  and YR , The Fréchet-Wasserstein distance is given by : 

           2/12/12/122 .2,,, XYXYXYXYYXX RRRTrRTrRTrmmRmNRmNd                 (5) 

The proof could be given by considering the random vector 
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matrix of W : 
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. If we consider the case of zero mean : 

We have directly that :             TrRTrRTrRRTrYXE YXYX

2
 

Solution is given by extreme value of  Tr  subject to the constraint that WR  is a 

covariance matrix. Considering the Hermitian form : 
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Problem is then reduce to : 
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This problem is solved by introducing Lagrange Multipliers M and N : 
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Optimization provides :
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From which we deduce :   2/12/122/12/12/12/12/12/1 .......... XYXXXXYXXXX RRRRMRRRRRMRMR   

And then finally     2/12/12/12/12/12/12/12/12/12/1 ......  XXYXXXYXXX RRRRRMRRRRMR  

But as   MRsMsts X
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  , we conclude that : 

  2/12/12/12/12/1 ...  XXYXXX RRRRRMR  with properties of trace, 

    2/12/12/1 ...2 XYX RRRTrTr   , we can also prove that 

  XRRRRRY XXYXX ... 2/12/12/12/12/1 
                                                                                             (6)   

McCann [8] has defined the optimal transport plans between Gaussian measures on Rk and has 
proved that the displacement interpolation between any two Gaussian measures is also a 



Gaussian measure. For two Gaussian measures  YY RmN ,  and  XX RmN , , we can define a 

positive definite Hermitian matrix :   12/12/12/12/12/1
,


 YXXXYXXYX RRRRRRRD                   (7)                         

The geodesic between    XX RmN ,  and   YY RmN ,   is then given by  )()( , tt RmN  with [9] : 
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It could be proved that :          )1()1()0()0(2)()()()(2 ,,,).(,,, RmRmWstRmRmW ttss   

with     YY RmRm ,, )0()0(   and    XX RmRm ,, )1()1(   

If we define the following function :        
XYYXY mmvDmvv ,2

1
)(                  (9)                         

We could observe that if   XYYX mmyDyx  ,)(  

             YYYXXXXXXx myRmymxRmxRmxRmx   12/12/11  

Proof is given by :  
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Using previous result and that   2/1
, det/detdet YXYX RRD  , then    YYk RmNI ,, #   is 

the optimal transport between  YY RmN ,  and  XX RmN , . In the case of Gaussian measures 

with zero mean, , the Wasserstein metric is given by [9] :  YRXTrYXg YRN Y
..),(),0(       (10)                          

if we identify the tangent space at  YRN ,0  via the exponential map :  

   )(,,0 ,0).(exp tRRN YY
RNXt    with     XtItRXtItR kYktRY

.)1(.)1()(,                    (11) 

We could observe that this space forms a Riemannian length space metrized by the 
Wasserstein distance, geodesically convex and simply connected (uniqueness of geodesic). 
This Riemannian manifold is of nonnegative curvature and is flat [6,9]. This space is also an 
Alexandrov space because of the following property of Wasserstein distance : 
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Wasserstein barycenter [11] is given by 
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2. Comparison of Fréchet-Wasserstein Distance with Siegel/Rao Distance 
from Information Geometry 
In Information Geometry, we equip  YY RmN ,  with the Fisher information metric which is 

different from the Wasserstein metric 2W . Fisher metric provides a negative constant sectional 
curvature while Wasserstein metric is flat [6,9]. Foundation of Information geometry is based 
on Kullback-Leibler Divergence. Kullback Divergence can be naturally introduced by 
combinatorial elements and stirling formula. Let  multinomial Law of N elements spread on M 
levels  in  : 
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n . We could then observe that it converges to discret version of Kullback-Leibler : 
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Donsker and Varadhan have proposed a variational definition of Kullback divergence : 
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This proves that the supremum over all   is no smaller than the divergence. 
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using the divergence inequality. Link with « Large Deviation Theory » & Fenchel-Legendre 
transform which gives that logarithm of generating function are dual to Kullback Divergence is 
given by : 
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   Chentsov was the first to introduce the Fisher information matrix as a Riemannian metric on 
the parameter space, considered as a differentiable manifold. Chentsov was led by decision 
theory when he considered a category whose objects are probability spaces and whose 
morphisms are Markov Kernels. Chentsov’s great achievement was that up to a constant factor 
the Fisher information yields the only monotone family of Riemannian metrics on the class of 
finite probability simplexes. In parallel, Burbea and Rao have introduced a family of distance 
measures, based on the so-called -order entropy metric, generalizing the Fisher Information 
metric that corresponds to the Shannon entropy. Such a choice of the matrix for the quadratic 
differential metric was shown to have attractive properties through the concepts of 
discrimination and divergence measures between probability distribution. As is well known 
from differential geometry, the Fisher information matrix is a covariant symmetric tensor of 
the second order, and hence, the associate metric is invariant under the admissible 
transformations of the parameters. The information geometry considers probability 
distributions as differentiable manifolds, while the random variables and their expectation 
appear as vectors and inner products in tangent spaces to these manifolds. 



   Chentsov has introduced a distance between parametric families of probability distributions 
   :)/(.pG  with   the space of parameters, by considering, to the first order, the 

difference between the log-density functions.  Its variance defines a positive definite quadratic 
differential form based on the elements of the Fisher matrix and a Taylor expansion to the 2nd 
order of the Kullback divergence gives a Riemannian metric: 
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   Previous theory of information geometry can be developed for multivariate Gaussian laws. In 
this section, we will illustrate information geometry on complex circular multivariate Gaussian 
distribution of zero mean that classically models Radar data and given by : 
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1.ˆ1  (14)                 

Fisher matrix elements are provided by derivatives of first moments: 
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If we assume zero-mean process 0 nm , we deduce from nnnnnnn RRRRIRR ... 11                           

that :    11 ...)(  njnninij RRRRTrg  . Then, we obtain an extended expression of the 

metric:
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inin dRRdRRTrds  .....)( 112  that can be simplified by using 

that     
i

inin dRdR  11 .We conclude that Information metric can be written: 

        2211212 ln nnnnn RdTrdRRTrdRRTrds                                 (16) 

We write this metric synthetically by mean of Frobenius Norm : 

 T
nnn ABTrBAAAARdRRds   ,  and  ,  with   

222/12/12                                    (17) 

This metric is invariant under the action of the Linear matrix group  ),.(CGLn : 

)(  W,  .. n CGLWRWR nnnnn   . We can observe that this metric is also invariant by 

inversion :   As 22111
1 

RR dsdsdRRRdRIRR  

  We have considered the case of zero mean 0m , but for general case, we have : 

  2112 dRRTrdmRdmds     associated with the following isometries : 
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For the time being, there is no explicit expression of Information Geometry distance, when 
means are not equal to zero 0m  [10]. This problem is open in Information Geometry !  
By integration, the distance between 2 Radar covariance matrices, XR and YR , is deduced from 

their extended eigen-values  n

kk 1  : 
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We can also defined the unique geodesic joining 2 matrices , XR and YR . If )(tt  is the 

geodesic between , XR and YR , where ]1,0[t  is such that ),(.))(,( YXX RRdttRd  , then 

the mean of XR and YR  is the matrix )2/1(YX RR  . The geodesic parameterized by the 
length as previously is given by : 
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   This space is a Bruhat-Tits space. A Bruhat-Tits space is a space with complete metric that 
satisfies the semi-parallelogram law: 

Xx)d(x,x)d(x,xd(x,z)),xd(xXzxx    224 such that      X, 2
2

2
1

22
2121           (20)       

   This space is also a symmetric space as defined by Elie Cartan, such that for every pair 
(A,B) of points of M there exists a bijective isometry ),( BAG  from M to itself with following 

properties :     and   ),(),( ABGBAG BABA                                                                            (21) 

),( BAG  has a unique fixed point BA   and    BAXdXXGd BA ,2,),(                              (22) 

   For space of symmetric definite positive matrices, bijective isometry is given by : 

    2/12/12/12/12/11-
),(    with   )(X ABAAABABABAXG BA

                                    (23) 

Barycenter R of N multivariate Gaussian laws   N

kkRN 1,0   verify:   0log
1
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Barycenter is given by iterative process : 
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