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Motivations
Positive definite matrices appear in many contexts:

• statistics and information geometry: covariance matrices;
• optimization: unknowns in convex and semidefinite

programming;
• system theory: unknowns in Lyapunov equations and

LMIs;
• machine learning: kernels for distance learning and

classification;
• biomedical imaging: tensors in diffusion MRI;
• radar signal processing, . . .

BUT
Low-rank approximations are necessary to handle large-scale
problems (complexity and storage):

O(n3) → O(np2)



A basic and common issue

Define:
P+(n) = {X ∈ Rn×n | X = X

T � 0}

and, for any 1 ≤ p < n the sets,

S
+(p, n) = {X ∈ Rn×n | X = X

T � 0, rankX = p}

Take two points in those sets: distance? connecting
geodesic (shortest path)? Geometric mean? i.e: what is
the right Riemannian geometry?

Essential to optimization, filtering, interpolation, fusion,
completion, learning, ...



Illustrative example 1

Vector-valued image and tensor computing
Results of several filtering methods on a 3D DTI of the brain1:

Figure: Original image “Vectorial" filtering “Riemannian" filtering

• Does geometry matter??
1Courtesy of Xavier Pennec (INRIA Sophia Antipolis)



Illustrative example 2
Vector-valued image and Doppler radar

Results of filtering methods for detection of small targets in sea
clutter with HF coastal Doppler radar to detect a small target2:

Figure: Doppler Radar Fourier filtering “Riemannian" filtering

2Courtesy of Frederic Barbaresco (Thales Air Systems, Strategy
Technology & Innovation Department)



Illustrative example 3

Computing with kernels

• Data fusion and kernel combination:
a kernel is constructed for each data source i. Problem:
infer an average kernel for classification purposes.

• Kernel completion: construct a kernel from incomplete
data.3

• Kernel online learning: integrate new data in an existing
kernel4.

3Bach, Lankriet, Jordan (ICML, 2004) De Bie, Tranchevent, Van Oeffelen,
Moreau (Bioinformatics, 2007)

4Tsuda, Ratsch, Warmut (JMLR 2005) Kulis, Sustik, Dhillon (ICML 2006)
Meyer, Bonnabel, Sepulchre (JMLR 2011)
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A basic and common issue in the cone
Define:

P+(n) = {X ∈ Rn×n | X = X
T � 0}

Take two points in those sets: distance? connecting
geodesic (shortest path)? Geometric mean? i.e: what is
the right Riemannian geometry?

Essential to optimization, filtering, interpolation, fusion,
completion, learning, ...



A much studied issue in the cone5

Let X1 = X T
1 � 0 and X2 = X T

2 � 0 in P+(n)

The natural geometry of the cone leads to the following
distance
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The mean point is called “geometric" mean and is obtained for
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5Ando, Li and Mathias, Moakher, Petz and Temesi, Barbaresco, Bhatia,
Lim, Holbrook, Bini, Palfia, Lawson.. . .



Properties of the natural metric

• Invariance to invertible transformations and inversion. For
any P ∈ GL(n):

• d(X1,X2) =
��

k
(logλk )2� 1

2 = d(PX1PT ,PX2PT )
• d(X1,X2) = d(X−1

1 ,X−1
2 )

Indeed det(X1 − λk X2) = 0 ⇔ det(P(X1 − λk X2)PT ) = 0.

• Geodesically complete: P+(n) is NOT a vector space :
• X1 + t(X2 − X1) does not remain in P+(n).
• X

1/2
1 exp(t log(X−1/2

1 X2X
−1/2
1 ))X 1/2

1 does for all t > 0

Natural geometry of the cone.

Does it generalize to the facets?



Natural metric on P+(n): advantages
• Links with information geometry (natural for covariance

matrices)
• Invariance to geometric transformation (units etc.)
• Invariance to matrix inversion
• Induced geometric mean : robustness to outliers
• Interior points methods and geodesic completeness

The invariance properties have many interests :
• Change of coordinates
• In sample covariance matrix estimation, the intrinsic

Cramer-Rao bound does not depend on the underlying
covariance matrix (Smith 056 - homogeneous space):

EΣ[d
2(Σ̂,Σ)] = EΣ[d

2(Σ−1/2Σ̂Σ−1/2, I)] ≥ n(n + 1)
k

6S. T. Smith, Covariance, Subspace, and Intrinsic Cramer Rao Bounds,
IEEE Transaction on Signal Processing, 2005
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How to define a mean in S+(1, 2)7

1 Density argument: for � > 0, Xi + �I � 0 ⇒ use the mean in
P+(2) and take the limit as � → 0.
Such means are NOT rank-preserving.

2 Use of cartesian coordinates: z ∈ R2

Xi = ziz
T
i

. Define X1 ◦ X2 = zzT with z = (z1 + z2)/2.
3 Use of polar coordinates: z = ru

Xi = ui r
2
i

uT
i

with

ui = (cos θi , sin θi) and ri =� zi �

Define X1 ◦ X2 = ur2uT with

θ = θ1 + 0.5(θ2 − θ1) and r
2 = r1r2

midpoint for the metric ds2 = dθ2 + (dr/r)2

7Recall S+(p, n) = {X ∈ Rn×n | X = X
T � 0, rank X = p}
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Extending the concept to S+(p, n)

Generalize the previous idea using the matrix factorization:



Extending the concept to S+(p, n)

Generalize the previous idea using the matrix factorization:

But if O ∈ O(p), Z and ZO represent the same matrix.

Two quotient geometries for S+(p, n):



Extending the concept to S+(p, n)

Let us focus on the polar decomposition

X = UR
2
U

T

where U is n × p with orthonormal columns and R2 ∈ P+(p).

1 UUT is a projector onto a subspace of dimension p

2 R2 is a (small) positive definite matrix

Grassman distance→ natural distance between subspaces
(principal angles)

Natural metric of P+(p)→ natural distance between positive
definite matrices



Extending the concept to S+(p, n)

Let us focus on the polar decomposition

X = UR
2
U

T

A sensible metric: for close enough X1 = U1R2
1U1 and

X2 = U2R2
2U2 we propose the infinitesimal distance:

δ(X1,X2)
2 = δ(U1R

2
1U1,U2R

2
2U2)

2

� d
2
Grassman

(U1U
T
1 ,U2U

T
2 )

2 + d
2
P+(p)(R

2
1 ,R

2
2)



Wait ! S+(p, n) is a quotient manifold. The metric not
well-defined on the quotient. Indeed:

X1 = U1R
2
1U

T
1 = U1O(OT

R
2
1O)(U1O)T for O ∈ O(p)

U1U
T
1 unchanged BUT dP+(p)(R1,R2) �= dP+(p)(O

T
R

2
1O,R2

2)



Extending the concept to S+(p, n)

Let us focus on the polar decomposition

X = UR
2
U

T

Proposed metric: for close enough X1 = U1R2
1U1 and

X2 = U2R2
2U2 we propose the infinitesimal distance:

δ(X1,X2)
2 = δ(U1R

2
1U1,U2R

2
2U2)

2

� d
2
Grassman

(U1U
T
1 ,U2U

T
2 ) + d

2
P+(p)(R

2
1 ,R

2
2)

with well-chosen representatives (U1,R
2
1) and (U2,R

2
2) !

Proper Riemannian metric formulation with well-chosen

tangent vectors at U and R2



Extending the concept to S+(p, n)

Theorem 1 The space S+(p, n) ∼= (St(p, n)× P+(p))/O(p)
endowed with the proposed metric is a well-defined (quotient)
Riemannian manifold. Moreover it is geodesically complete.

Theorem 2 Furthermore, the metric is invariant with respect to
orthogonal transformations, scalings, and pseudo-inversion.

Conclusion: the metric retains some desirable invariance
properties of the natural metric of P+(n).8

8S. Bonnabel and R. Sepulchre. Riemannian metric and geometric mean
for positive semidefinite matrices of fixed rank. SIAM J. Matrix Anal. Appl.
2009.
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According to the fundamental and axiomatic approach of Ando, a
geometric mean enjoys the following properties

(P1) Consistency with scalars: if X1,X2 commute
M(X1,X2) = (X1X2)1/2.

(P2) Joint homogeneity

M(αX1, βX2) = (αβ)1/2
M(X1,X2).

(P3) Permutation invariance M(X1,X2) = M(X2,X1).

(P4) Monotonicity. If X1 ≤ X �
1 (i.e. (X �

1 − X1) is a positive matrix) and
X2 ≤ X �

2, the means are comparable and verify
M(X1,X2) ≤ M(X �

1,X
�
2).

(P5) Continuity from above. If {X1(k)} and {X2(k)} are monotonic
decreasing sequence (in the Lowner matrix ordering) converging
to X1, X2 then lim M(X1(k),X2(k)) = M(X1,X2).

(P6) Congruence invariance. For any G ∈ Gl(n) we have
M(GX1GT ,GX2GT ) = GM(X1,X2)GT .

(P7) Self-duality M(X1,X2)−1 = M(X−1
1 ,X−1

2 ).



Is there a rank preserving mean
satisfying all the properties ?

We try to find a mean on S+(p, n), the set of positive
semidefinite matrices of rank p which verifies properties P1-P7.

A few remarks:
• (P4) Monotonicity. If X1,X2 ∈ S+(p, n), X1 and X2 are

comparable only if they have the same range.
• (P7) Self-duality. Matrices of S+(p, n) are not invertible.

Inversion must be replaced by pseudo-inversion.
• (P6) We are going to prove one can not find a mean

M : S
+(p, n)× S

+(p, n) → S
+(p, n)

which verifies P6 if the rank p is small.



A preliminary result: P6 must be
relaxed !

Result: Congruence invariance (transformer equation) implies
the geometric mean of two matrices of S+(p, n) is "almost
surely" null if p < n/2.

Proof.
• If Q is any matrix, continuity and monotonicity of the mean

imply
M(QX1Q

T ,QX2Q
T ) ≥ QM(X1,X2)Q

T

If Q is the orthoprojector on Ker(X1) we have
M(QX1QT ,QX2QT ) = 0.

• as soon as p is small enough, the intersection of the
subspaces supporting X1 and X2 is almost surely null



A preliminary result: relax P6

Does it matter ??

Proposition: Let R� be a rotation arbitrarily close to identity.
When the rank is low it is always possible to choose it s.t.

M(X ,R�XR
T
� ) = 0 (far from X !)

Filtering: averaging is usually a simple way to filter out noise,
because of noise cancellations in the sum.

The noise can not be filtered out by averaging without
destroying all the relevant information in the signal !

Conclusion: the extension by continuity is moot for applications
involving low rank.



A preliminary result: conclusion

Congruence invariance (P6) must be relaxed. However,
invariance properties make sense in applications. We propose
to replace (P6)-(P7) with

(P6)’ Invariance to scalings and rotations9 . For
(µ,P) ∈ R∗

+ × O(n) we have
(µPT X1µP) ◦ (µPT X2µP) = µPT (X1 ◦ X2)µP.

(P7)’ Self-duality M(X1,X2)
† = M(X †

1 ,X
†
2), where † is the

pseudo-inversion.

9Remark : invariance to scalings is mandatory for a geometric mean (P2).
Invariance to rotations is physically meaningful, e.g. north vs west.



Construction of the mean

In the polar geometry, a matrix X of S+(p, n) writes

X = UR
2
U

T

where the columns of U ∈ Rn×p form a p dimensional
orthonormal basis of the span of X , and R2 ∈ P+(p).

The intuition lies in the fact that matrices of S+(p, n) can be
viewed as flat ellipsoids where

• U defines the space supporting the ellipsoid lives
• R2 defines the form of the ellipsoid (contains the

information on the eigenvalues, i.e. the principal axes of
the ellipsoid).



Construction of the mean

Consider N matrices X1 = U1R2
1UT

1 , · · ·XN = UNR2
N

UT
N

of
S+(p, n).

Proposition10: if U1UT
1 , · · · ,UNUT

N
belong to a geodesic ball of

radius π/4 in the Grassman manifold, their Karcher mean exists
and is unique. Let Umean be a basis of the mean subspace.

Definition 1: if X1 = U1UT
1 , X2 = U2UT

2 ... that is,

R1 = R2 = · · · = RN = Ip

we propose as a rank preserving geometric mean

Xmean = UmeanU
T
mean

10Applying a result of Afsari.



Geometric intuition for the mean

Simple case: R1 = R2 = Ip

the mean ellipsoid spans the mean
subspace and has p-isotropic form

General case: R1,R2 ∈ P+(p)
both ellipsoids are rotated into the
mean subspace via a minimal rotation
and then averaged using a full rank
geometric mean on P+(p)



Intuitive definition of the mean

Consider N matrices

X1 = U1R
2
1U

T
1 , · · · ,XN = UNR

2
NU

T
N ∈ S

+(p, n)

Proposition: Let Umean be a basis of the mean subspace. The
compact SVD of UT

i
Umean yields two bases Vi and Yi such that

YiV
T
i XiViY

T
i

is the ellipsoid Xi rotated into the subspace spanned by Umean

by the rotation being the closest to identity In.

Definition [rank preserving geometric mean]: Rotate all
ellipsoids to span(Umean) with minimal rotations. Apply any
p-full rank matrix geometric mean (Ando, Riemannian (ls) etc.)
having properties (P1)− (P7).



Results

Main result11: The proposed mean is

• rank preserving on S+(p, n)

• satisfies properties (P1)− (P5) and (P6)� − (P7)� and thus
deserves to be called "geometric"

Remark: Unfortunately not the Karcher (ls) mean in the sense
of the proposed Riemannian metric.

11S. Bonnabel, A. Collard and R. Sepulchre. Rank preserving geometric
means of positive semidefinite matrices. Linear Algebra and its Appl. 2013.
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Data mining and classification
Mahalanobis distance: parameterized by a positive
semidefinite matrix W

d
2
W (xi , xj) = (xi − xj)

T
W (xi − xj)

Machine learning: Let W = GGT . Then d2
W

simple Euclidian
squared distance for transformed data x̃i = Gxi .



Mahalanobis distance learning

Goal: integrate new constraints to an existing W

• equality constraints: dW (xi , xj) = y

• similarity constraints: dW (xi , xj) ≤ y

• dissimilarity constraints: dW (xi , xj) ≥ y

Computational cost significantly reduced when W is low rank !



Low rank Mahalanobis distance

One could have projected everything on a horizontal axis ! For
large datasets low rank allows to derive algorithm with linear
complexity in the data space dimension d .



Method

Semi-definite positive matrices of fixed rank

S
+(p, n) = {W ∈ Rn×n,W = W

T ,W � 0, rank W = p}

Mathematical formulation: yt = d(xi , xj), error: (ŷ − y)2

where ŷ is the predicted distance with current W .

Simple scalable method: perform gradient descent on the
prediction error (ŷ − y)2

Problem: W − γt∇W ((ŷ − y)2) has NOT same rank as W .

Remedy: do Riemannian gradient descent on the manifold !
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Oceanography problem: satellites measure height differences
in the ocean → estimate currents (e.g. Gulf Stream) ?

Kalman filter: in the presence of measurement uncertainty
compute the most probable state (currents) along with
covariance matrix P ∈ P+(n) of the error through Riccati eq.

Numerical complexity: updating P requires O(n2) operations
with n up to 10 millions (model based on PDE’s) → work with
low rank approximations leading to O(pn) complexity.

Riccati equation is a contraction for the natural metric of the
cone12 leading to desirable stability properties of the filter →
some contraction properties are inherited by the low-rank
Riccati equation in the sense of the polar metric proposed
above.13

12P. Bougerol. Kalman filtering with random coefficients and contractions.
SIAM J. Contr. Opt. 1993.

13S. Bonnabel and R. Sepulchre. The geometry of Low rank Kalman filters.
Matrix Information Geometry. Springer. 2012.



Conclusion

In this talk: we have introduced a Riemannian structure on
S+(p, n) and a rank preserving geometric mean.

Some open questions remain: e.g. closed form for
geodesics, discrepancy between proposed geometric mean
and Karcher (ls) mean in the sense of the proposed metric
→ both challenges could be tackled theoretically or numerically.

Interpolation the mean allows for interpolation/fusion between
low-rank covariance matrices → there definitely should be
some more applications to tackle.

Optimization: a convergence result for (stochastic)
Riemannian gradient descent on S+(p, n) for Mahalanobis
distance learning was recently obtained14.

14S. Bonnabel. Stochastic gradient descent on Riemannian manifolds.
IEEE Tran. on Autom. Contr. In press. 2013.


