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Let x, y ∈ Cn, M = span{x} and N = span{y}. Then

cos θ =
| �x, y� |

�x� �y�
= �PMPN� = s1(PMPN ) .

�
θ ∈

�
0, π

2

� �
. A natural distance between M and N is

ρ(M,N ) = θ.

θ M

N
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� �
. A natural distance between M and N is

ρ(M,N ) = θ.

θ M

N

Remark: We can also define:

dgap(M,N ) = �PM − PN�sp = sin θ.

However, this metric is not intrinsic in the following sense: let (X, d) be a
metric space. Given a continuous curve α : [a, b] → X, we can define

Ld(α) = sup
a=t0<t1<...<tn=b

n�

k=1

d
�
α(tk), α(tk−1)

�
, and �d(x, y) = inf

γ: x↔y

L(γ).

Then, d is called intrinsic if d = �d. (For dgap, it holds that �dgap = ρ).
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What happens for subspaces of higher dimensions?
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The Grassmannian, Gn, is the set of all the subspaces of Cn. Given M ∈ Gn

M ⇐⇒ PM ⇐⇒ SM = 2PM − I.

Using these identifications, we can endow Gn with a topology such that
it becomes a compact space.
The connected components of Gn are the subsets Gn,m consisting of
those subspaces of dimension m.
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Definition (C. Jordan 1875)
Given two k-dimensional subspaces M, N ⊆ Cn, the
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k-biggest singular values of PMPN . In other words:
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M ⇐⇒ PM ⇐⇒ SM = 2PM − I.

Using these identifications, we can endow Gn with a topology such that
it becomes a compact space.
The connected components of Gn are the subsets Gn,m consisting of
those subspaces of dimension m.

Definition (C. Jordan 1875)
Given two k-dimensional subspaces M, N ⊆ Cn, the
principal angles between them are the angles θi(M,N )
belonging to [0, π/2], 1 ≤ i ≤ k, whose cosinus are the
k-biggest singular values of PMPN . In other words:

cos θ (M,N ) := (s1 (PMPN ) , · · · , sk (PMPN )) .

Now, given a norm � · � in Rk:

Is the function d(M,N ) := �θ (M,N ) � a metric in each Gn,m?
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Recall that φ : Rn → R is a gauge symmetric function if it satisfies:
φ is a norm;
φ(x1, . . . , xn) = φ(|x1|, . . . , |xn|);
φ(x1, . . . , xn) = φ(xσ(1), . . . , xσ(n)).
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Recall that φ : Rn → R is a gauge symmetric function if it satisfies:
φ is a norm;
φ(x1, . . . , xn) = φ(|x1|, . . . , |xn|);
φ(x1, . . . , xn) = φ(xσ(1), . . . , xσ(n)).

Recall also, that a norm � · � is called unitarily invariant if for every
A ∈Mn(C) and every pair of unitary matrices U, V ∈ U(n)

�A� = �UAV�.

Proposition
Given an unitarily invariant norm, there exists a gauge symmetric function φ
such that:

�A� = φ(s(A)).

Conversely, every gauge symmetric function defines a unitarily invariant

norm, that we will called � · �φ, in this way.
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Theorem (Li-Qiu-Zhang ’05)
Let φ : Rm → R be a gauge symmetric function and ρφ : Gn,m × Gn,m → R
the funtion definided by

ρφ (M,N ) = φ (θ (M,N )) .

Then, ρφ is an unitarily invariant metric.
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Unitary group

Proposition
The group U(n) is a submanifold of Mn(C), and for each point U ∈ U(n)

TU U(n) � iH(n).

Let � · � be a unitarily invariant norm in Mn(C). Given a smooth curve
α : [a, b] → U(n)

Length� · � (α) :=
�

b

a

�α̇� dt ,

which let us define the distance between two points of U(n) by:

dist� · � (U, V) := inf
�

Length(γ) : γ joins U and V}.

With respect to the connection∇XY = 1
2 [X, Y], the geodesics are

γ(t) = Ue
itX (X ∈ H(n))

Remark: If the unitarily invariant norm is � · �F, then U(n) with the
corresponding metric structure is a Riemannian structure.
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Grassmann manifold

Proposition
The Grassmann space Gn is a submanifold of U(n).

It can be proved that the tangent space at S = 2P− I ∈ Gn is:

TS Gn =
�

X =
�

0 −X̂

X̂
∗ 0

�
R(P)
R(I − P) : X̂ ∈Mk,n−k(C)

�
.

Remarks:
Given S ∈ Gn and X ∈ TS Gn, then by the structure of X

γS, X(t) = S e
−tX = e

tX/2
S e
−tX/2.

In particular, the geodesic moves inside Gn all the time.
The map S �→ −S, corresponding to the map M �→M⊥, is an
isometric diffeomorphism between Gn,m and Gn,n−m. So, from
now on we will assume that m ≤

n

2 .
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Direct rotations

Theorem (Davis-Kahan ’70)
Let M and N two subspaces of Gn,m. There exists X ∈ TSMGn,m such that

SMe
X = e

−X/2
SMe

X/2 = SN and λ(X) = {±i θ(M,N ), 0, . . . , 0} .
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Direct rotations

Theorem (Davis-Kahan ’70)
Let M and N two subspaces of Gn,m. There exists X ∈ TSMGn,m such that

SMe
X = e

−X/2
SMe

X/2 = SN and λ(X) = {±i θ(M,N ), 0, . . . , 0} .

Let γ(t) = SMe
tX for t ∈ [0, 1]. For any unitarily invariant norm � · �

Length�·�(γ) =
� 1

0
�γ̇�dt =

� 1

0
�SMX e

tX
�dt = �X� .

If � · � is any Schatten norm � · �p then

Length�·�(γ) = 2ρ�·�p
(M,N ) .

More generally, given a g.s.f. φ in Rm, if we consider the norm:

�A�φ =
1
2
φ ( s1(A) + s2(A), . . . , s2m−1(A) + s2m(A) ) ,

then Length�·�φ
(γ) = ρφ (M,N ).
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Theorem (A., Larotonda, Varela (maybe ’13))
The paths γ(t) = Ue

itX
with X ∈ H(n) are short provided �X�sp ≤ π.
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γ(t) = e−itX
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Theorem (A., Larotonda, Varela (maybe ’13))
The paths γ(t) = Ue

itX
with X ∈ H(n) are short provided �X�sp ≤ π.

Idea of the proof: Without loss of generality, we can assume that U = 1.

We know that:
e

iX = e
iY

e
iZ

�X�sp ≤ π

and we want to prove that:

�X� ≤ �Y�+ �Z� . 1

eiY

V = eiX = eiY eiZ

α(t) = eitY
β(t) = eiY eitZ

γ(t) = eitX
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Theorem (A., Larotonda, Varela (maybe ’13))
The paths γ(t) = Ue

itX
with X ∈ H(n) are short provided �X�sp ≤ π.

Idea of the proof: Without loss of generality, we can assume that U = 1.

We know that:
e

iX = e
iY

e
iZ

�X�sp ≤ π

and we want to prove that:

�X� ≤ �Y�+ �Z� . 1

eiY

V = eiX = eiY eiZ

α(t) = eitY
β(t) = eiY eitZ

γ(t) = eitX

Suppose for a moment that e
iX = e

i(Y+Z);
As �X�sp ≤ π, it holds that �X� ≤ �Y + Z�.
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Theorem (A., Larotonda, Varela (maybe ’13))
The paths γ(t) = Ue

itX
with X ∈ H(n) are short provided �X�sp ≤ π.

Idea of the proof: Without loss of generality, we can assume that U = 1.

We know that:
e

iX = e
iY

e
iZ

�X�sp ≤ π

and we want to prove that:

�X� ≤ �Y�+ �Z� . 1

eiY

V = eiX = eiY eiZ

α(t) = eitY
β(t) = eiY eitZ

γ(t) = eitX

Suppose for a moment that e
iX = e

i(UYU
∗+VZV

∗);
As �X�sp ≤ π, it holds that �X� ≤ �UYU

∗ + VZV
∗�.
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Theorem (R. Thompson ’86)
Given A, B ∈ H(n), there exist unitary matrices U and V such that:

e
iA

e
iB = e

i(UAU
∗+VBV

∗) . (1)

History:
1962: Given A, B ∈ H(n), Horn found a concrete list of inequalities
that the eigenvalues of A, B and A + B have to satisfy.
He conjectured: if a, b, c ∈ Rn satisfy these inequalities, then there
exist A, B ∈ H(n) such that

a = λ(A) b = λ(B) and c = λ(A + B).

1980: Thompson conjectured (1).
1982: Lidskii Jr. announced a proof of Horn conjecture.
1986: Thompson, using the result of Lidskii, proved the above theorem.
1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.
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A norm � · � definided in Rn is called strictly convex if for every x, y ∈ Rn

�x + y� = �x�+ �y� ⇐⇒ x = λy .

Theorem (A., Larotonda, Varela)
Assume φ is strictly convex, and let U, V, W ∈ U(n) be such that

dφ(U, V) = dφ(U, W) + dφ(W, V), and d∞(U, V) < π.

Then U, V, W are aligned in U(n), that is, there exists t0 ∈ [0, 1] and

Z ∈ H(n) with �Z�sp < π such that

V = Ue
iZ , while W = Ue

it0Z .
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A norm � · � definided in Rn is called strictly convex if for every x, y ∈ Rn

�x + y� = �x�+ �y� ⇐⇒ x = λy .

Theorem (A., Larotonda, Varela)
Assume φ is strictly convex, and let U, V, W ∈ U(n) be such that

dφ(U, V) = dφ(U, W) + dφ(W, V), and d∞(U, V) < π.

Then U, V, W are aligned in U(n), that is, there exists t0 ∈ [0, 1] and

Z ∈ H(n) with �Z�sp < π such that

V = Ue
iZ , while W = Ue

it0Z .

Remark: In the case of Gn, this result was also proved by Li-Qiu-Zhang.
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Continuación

Corollary (A., Larotonda, Varela)
Let X be a Hermitian element such that �X�sp < π. Then, γ(t) = Ue

itX
is the

unique piecewise C
1

path in U(n) joining U with V = Ue
iX

.
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Corollary (A., Larotonda, Varela)
Let X be a Hermitian element such that �X�sp < π. Then, γ(t) = Ue

itX
is the

unique piecewise C
1

path in U(n) joining U with V = Ue
iX

.

Idea of the proof:

�X� ≤ �Y�+ �Z�

≤

�
t0

0
�η̇�φ dt +

� 1

t0

�η̇�φ dt

= Length(η) = �X�

=⇒
Previous Thm

η(t0) ∈ γ(t)
1

V = eiX

γ(t) = eitX

α(t) = eitY

β(t) = eiY eitZ

η(t)

η(t0) = eiY
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Let S be the action defined on piecewise C
1 curves α : [a, b] → U(n) by

S(α) =
�

b

a

L(α̇(t)) dt, (2)

where L : H(n) → [0,+∞) is a convex function that satisfies

L(UAV) = L(A),

for every A ∈ H(n), and every unitary matrices U and V .
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Let S be the action defined on piecewise C
1 curves α : [a, b] → U(n) by

S(α) =
�

b

a

L(α̇(t)) dt, (2)

where L : H(n) → [0,+∞) is a convex function that satisfies

L(UAV) = L(A),

for every A ∈ H(n), and every unitary matrices U and V .

Examples:
Any unitarily invariant norm � · �φ ;
The kinetic energy E(A) = �A�2

F
.

Problem
Given U, V ∈ U(n), and a fixed interval [a, b], find the piecewise C

1 curves
γ : [a, b] → U(n) such that γ(a) = U, γ(b) = V and γ minimize the action
given by (2).
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Results

Let U ∈ U(n), V = Ue
iZ , Z ∈ H(n), and γ the path defined on [a, b] by:

γ(t) = Ue
i
(t−a)
b−a

Z .
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Let U ∈ U(n), V = Ue
iZ , Z ∈ H(n), and γ the path defined on [a, b] by:

γ(t) = Ue
i
(t−a)
b−a

Z .

Theorem (A., Larotonda, Varela)
If �Z�sp ≤ π, then γ(t) minimizes S among piecewise smooth curves

α : [a, b] → U(n) joining U to V. In particular

inf
α
S(α) = (b− a)L

�
Z

b− a

�
.
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Results

Let U ∈ U(n), V = Ue
iZ , Z ∈ H(n), and γ the path defined on [a, b] by:

γ(t) = Ue
i
(t−a)
b−a

Z .

Theorem (A., Larotonda, Varela)
If �Z�sp ≤ π, then γ(t) minimizes S among piecewise smooth curves

α : [a, b] → U(n) joining U to V. In particular

inf
α
S(α) = (b− a)L

�
Z

b− a

�
.

Theorem (A., Larotonda, Varela)

If L is strictly convex and �Z�sp < π, then γ(t) is the unique minimizer.
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Some infinite dimensional versions

Let A and B be two compact operators acting on a Hilbert space H.

Proposition (A., Larotonda, Varela ’12)

There exist unitary operators Uk and Vk, such that

e
i A

e
i B = lim

k→∞
e

i UkAU
∗
k
+i VkBV

∗
k .

Remark: A similar result also holds for embeddable II1 factors.
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Let A and B be two compact operators acting on a Hilbert space H.

Proposition (A., Larotonda, Varela ’12)

There exist unitary operators Uk and Vk, such that

e
i A

e
i B = lim

k→∞
e

i UkAU
∗
k
+i VkBV

∗
k .

Remark: A similar result also holds for embeddable II1 factors.

To avoid the limit, we need to embed the operators in a larger Hilbert space:

Theorem (A., Larotonda, Varela ’12)

There is an isometry W, and unitary operators U and V such that

e
i WAW

∗
e

i WBW
∗

= e
i U(WAW

∗)U
∗+i V(WBW

∗)V
∗
.
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