A Finsler approach to the angular metrics

Jorge Antezana^{*a c*} Gabriel Larotonda^{*a b*}

Alejandro Varela^{*a b*}

^aInstituto Argentino de Matemática CONICET "Alberto P Calderón"

^bInstituto de Ciencias Universidad Nacional General Sarmiento

^cDepartamento de Matemática Universidad Nacional de La Plata

Workshop on Matrix Geometries and Applications **ICTP** Trieste 2013

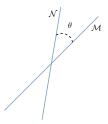
2 From angular metrics to short paths in $\mathcal{U}(n)$

How can we define distances between subspaces?

Let
$$x, y \in \mathbb{C}^n$$
, $\mathcal{M} = \operatorname{span}\{x\}$ and $\mathcal{N} = \operatorname{span}\{y\}$. Then
 $\cos \theta = \frac{|\langle x, y \rangle|}{||x|| ||y||} = ||P_{\mathcal{M}}P_{\mathcal{N}}|| = s_1(P_{\mathcal{M}}P_{\mathcal{N}}).$

 $\left(\theta \in \left[0, \frac{\pi}{2} \right] \right)$. A natural distance between \mathcal{M} and \mathcal{N} is

$$\rho(\mathcal{M},\mathcal{N})=\theta.$$



Let
$$x, y \in \mathbb{C}^n$$
, $\mathcal{M} = \operatorname{span}\{x\}$ and $\mathcal{N} = \operatorname{span}\{y\}$. Then
 $\cos \theta = \frac{|\langle x, y \rangle|}{\|x\| \|y\|} = \|P_{\mathcal{M}}P_{\mathcal{N}}\| = s_1(P_{\mathcal{M}}P_{\mathcal{N}}).$

 $\left(\theta\in\left[0,\frac{\pi}{2}
ight]
ight)$. A natural distance between \mathcal{M} and \mathcal{N} is $ho(\mathcal{M},\mathcal{N})=\theta.$

Remark: We can also define:

$$d_{gap}(\mathcal{M},\mathcal{N}) = \|P_{\mathcal{M}} - P_{\mathcal{N}}\|_{sp} = \sin \theta.$$

However, this metric is not *intrinsic* in the following sense: let (X, d) be a metric space. Given a continuous curve $\alpha : [a, b] \to X$, we can define

$$L_d(\alpha) = \sup_{a=t_0 < t_1 < \ldots < t_n = b} \sum_{k=1}^n d(\alpha(t_k), \alpha(t_{k-1})), \text{ and } \widehat{d}(x, y) = \inf_{\gamma: x \leftrightarrow y} L(\gamma).$$

Then, *d* is called intrinsic if $d = \hat{d}$. (For d_{gap} , it holds that $\hat{d}_{gap} = \rho$).

What happens for subspaces of higher dimensions?

The Grassmannian, \mathcal{G}_n , is the set of all the subspaces of \mathbb{C}^n . Given $\mathcal{M} \in \mathcal{G}_n$

 $\mathcal{M} \iff P_{\mathcal{M}} \iff S_{\mathcal{M}} = 2P_{\mathcal{M}} - I.$

- Using these identifications, we can endow \mathcal{G}_n with a topology such that it becomes a compact space.
- The connected components of \mathcal{G}_n are the subsets $\mathcal{G}_{n,m}$ consisting of those subspaces of dimension *m*.

The Grassmannian, \mathcal{G}_n , is the set of all the subspaces of \mathbb{C}^n . Given $\mathcal{M} \in \mathcal{G}_n$

 $\mathcal{M} \iff P_{\mathcal{M}} \iff S_{\mathcal{M}} = 2P_{\mathcal{M}} - I.$

- Using these identifications, we can endow \mathcal{G}_n with a topology such that it becomes a compact space.
- The connected components of \mathcal{G}_n are the subsets $\mathcal{G}_{n,m}$ consisting of those subspaces of dimension *m*.

Definition (C. Jordan 1875)

Given two *k*-dimensional subspaces \mathcal{M} , $\mathcal{N} \subseteq \mathbb{C}^n$, the principal angles between them are the angles $\theta_i(\mathcal{M}, \mathcal{N})$ belonging to $[0, \pi/2]$, $1 \le i \le k$, whose cosinus are the *k*-biggest singular values of $P_{\mathcal{M}}P_{\mathcal{N}}$. In other words:

 $\cos \theta \left(\mathcal{M}, \mathcal{N} \right) := \left(s_1 \left(P_{\mathcal{M}} P_{\mathcal{N}} \right), \ \cdots, \ s_k \left(P_{\mathcal{M}} P_{\mathcal{N}} \right) \right).$

The Grassmannian, \mathcal{G}_n , is the set of all the subspaces of \mathbb{C}^n . Given $\mathcal{M} \in \mathcal{G}_n$

 $\mathcal{M} \iff P_{\mathcal{M}} \iff S_{\mathcal{M}} = 2P_{\mathcal{M}} - I.$

- Using these identifications, we can endow \mathcal{G}_n with a topology such that it becomes a compact space.
- The connected components of \mathcal{G}_n are the subsets $\mathcal{G}_{n,m}$ consisting of those subspaces of dimension *m*.

Definition (C. Jordan 1875)

Given two *k*-dimensional subspaces \mathcal{M} , $\mathcal{N} \subseteq \mathbb{C}^n$, the principal angles between them are the angles $\theta_i(\mathcal{M}, \mathcal{N})$ belonging to $[0, \pi/2]$, $1 \le i \le k$, whose cosinus are the *k*-biggest singular values of $P_{\mathcal{M}}P_{\mathcal{N}}$. In other words:

$$\cos \theta \left(\mathcal{M}, \mathcal{N} \right) := \left(s_1 \left(P_{\mathcal{M}} P_{\mathcal{N}} \right), \cdots, s_k \left(P_{\mathcal{M}} P_{\mathcal{N}} \right) \right).$$

Now, given a norm $\|\cdot\|$ in \mathbb{R}^k :

Is the function $d(\mathcal{M}, \mathcal{N}) := \|\theta(\mathcal{M}, \mathcal{N})\|$ a metric in each $\mathcal{G}_{n,m}$?

Recall that $\phi : \mathbb{R}^n \to \mathbb{R}$ is a gauge symmetric function if it satisfies:

- ϕ is a norm;
- $\phi(x_1,...,x_n) = \phi(|x_1|,...,|x_n|);$

•
$$\phi(x_1,\ldots,x_n)=\phi(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Recall that $\phi : \mathbb{R}^n \to \mathbb{R}$ is a gauge symmetric function if it satisfies:

• ϕ is a norm;

•
$$\phi(x_1,\ldots,x_n)=\phi(|x_1|,\ldots,|x_n|);$$

•
$$\phi(x_1,\ldots,x_n)=\phi(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Recall also, that a norm $\|\cdot\|$ is called unitarily invariant if for every $A \in \mathcal{M}_n(\mathbb{C})$ and every pair of unitary matrices $U, V \in \mathcal{U}(n)$

 $\|A\| = \|UAV\|.$

Recall that $\phi : \mathbb{R}^n \to \mathbb{R}$ is a gauge symmetric function if it satisfies:

• ϕ is a norm;

•
$$\phi(x_1,\ldots,x_n)=\phi(|x_1|,\ldots,|x_n|);$$

•
$$\phi(x_1,\ldots,x_n)=\phi(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Recall also, that a norm $\|\cdot\|$ is called <u>unitarily invariant</u> if for every $A \in \mathcal{M}_n(\mathbb{C})$ and every pair of unitary matrices $U, V \in \mathcal{U}(n)$

$$\|A\| = \|UAV\|.$$

Proposition

Given an unitarily invariant norm, there exists a gauge symmetric function ϕ such that:

$$\|A\| = \phi(s(A)).$$

Conversely, every gauge symmetric function defines a unitarily invariant norm, that we will called $\|\cdot\|_{\phi}$, in this way.

Theorem (Li-Qiu-Zhang '05)

Let $\phi : \mathbb{R}^m \to \mathbb{R}$ be a gauge symmetric function and $\rho_\phi : \mathcal{G}_{n,m} \times \mathcal{G}_{n,m} \to \mathbb{R}$ the function definided by

$$\rho_{\phi}(\mathcal{M},\mathcal{N}) = \phi\left(\theta\left(\mathcal{M},\mathcal{N}\right)\right).$$

Then, ρ_{ϕ} is an unitarily invariant metric.

Unitary group

Proposition

The group $\mathcal{U}(n)$ is a submanifold of $\mathcal{M}_n(\mathbb{C})$, and for each point $U \in \mathcal{U}(n)$

 $T_{U}\mathcal{U}(n)\simeq i\mathcal{H}(n).$

Let $\|\cdot\|$ be a *unitarily invariant* norm in $\mathcal{M}_n(\mathbb{C})$. Given a smooth curve $\alpha : [a,b] \to \mathcal{U}(n)$ Length $_{\|\cdot\|}(\alpha) := \int_a^b \|\dot{\alpha}\| dt$,

which let us define the distance between two points of $\mathcal{U}(n)$ by:

$$dist_{\|\cdot\|}(U,V) := \inf \{ Length(\gamma) : \gamma \text{ joins } U \text{ and } V \}.$$

With respect to the connection $\nabla_X Y = \frac{1}{2}[X, Y]$, the geodesics are

$$\gamma(t) = Ue^{itX}$$
 $(X \in \mathcal{H}(n))$

Remark: If the unitarily invariant norm is $\|\cdot\|_F$, then $\mathcal{U}(n)$ with the corresponding metric structure is a Riemannian structure.

Proposition

The Grassmann space \mathcal{G}_n is a submanifold of $\mathcal{U}(n)$.

It can be proved that the tangent space at $S = 2P - I \in \mathcal{G}_n$ is:

$$T_s \mathcal{G}_n = \left\{ X = \begin{bmatrix} 0 & -\hat{X} \\ \hat{X}^* & 0 \end{bmatrix} \begin{array}{c} R(P) \\ R(I-P) \end{array} : \hat{X} \in \mathcal{M}_{k,n-k}(\mathbb{C})
ight\}.$$

Remarks:

• Given $S \in \mathcal{G}_n$ and $X \in T_s \mathcal{G}_n$, then by the structure of X

$$\gamma_{s,x}(t) = S e^{-tX} = e^{tX/2} S e^{-tX/2}.$$

In particular, the geodesic moves inside G_n all the time.

The map S → -S, corresponding to the map M → M[⊥], is an isometric diffeomorphism between G_{n,m} and G_{n,n-m}. So, from now on we will assume that m ≤ n/2.

Direct rotations

Theorem (Davis-Kahan '70)

Let \mathcal{M} and \mathcal{N} two subspaces of $\mathcal{G}_{n,m}$. There exists $X \in T_{S_{\mathcal{M}}}\mathcal{G}_{n,m}$ such that

$$S_{\mathcal{M}}e^X = e^{-X/2}S_{\mathcal{M}}e^{X/2} = S_{\mathcal{N}}$$
 and $\lambda(X) = \{\pm i\,\theta(\mathcal{M},\mathcal{N}),0,\ldots,0\}.$

Direct rotations

Theorem (Davis-Kahan '70)

Let \mathcal{M} and \mathcal{N} two subspaces of $\mathcal{G}_{n,m}$. There exists $X \in T_{S_{\mathcal{M}}}\mathcal{G}_{n,m}$ such that

$$S_{\mathcal{M}}e^X = e^{-X/2}S_{\mathcal{M}}e^{X/2} = S_{\mathcal{N}}$$
 and $\lambda(X) = \{\pm i\,\theta(\mathcal{M},\mathcal{N}),0,\ldots,0\}$.

Let $\gamma(t) = S_{\mathcal{M}} e^{tX}$ for $t \in [0, 1]$. For any unitarily invariant norm $\|\cdot\|$

Length_{||.||}(
$$\gamma$$
) = $\int_0^1 ||\dot{\gamma}|| dt = \int_0^1 ||S_{\mathcal{M}}X e^{tX}|| dt = ||X||$

Direct rotations

Theorem (Davis-Kahan '70)

Let \mathcal{M} and \mathcal{N} two subspaces of $\mathcal{G}_{n,m}$. There exists $X \in T_{S_{\mathcal{M}}}\mathcal{G}_{n,m}$ such that

$$S_{\mathcal{M}}e^X = e^{-X/2}S_{\mathcal{M}}e^{X/2} = S_{\mathcal{N}}$$
 and $\lambda(X) = \{\pm i\,\theta(\mathcal{M},\mathcal{N}),0,\ldots,0\}$.

Let $\gamma(t) = S_{\mathcal{M}} e^{tX}$ for $t \in [0, 1]$. For any unitarily invariant norm $\|\cdot\|$

Length_{||·||}(
$$\gamma$$
) = $\int_0^1 ||\dot{\gamma}|| dt = \int_0^1 ||S_{\mathcal{M}} X e^{tX}|| dt = ||X||$.

If $\|\cdot\|$ is any Schatten norm $\|\cdot\|_p$ then

$$\operatorname{Length}_{\|\cdot\|}(\gamma) = 2\rho_{\|\cdot\|_p}\left(\mathcal{M}, \mathcal{N}\right).$$

Direct rotations

Theorem (Davis-Kahan '70)

Let \mathcal{M} and \mathcal{N} two subspaces of $\mathcal{G}_{n,m}$. There exists $X \in T_{S_{\mathcal{M}}}\mathcal{G}_{n,m}$ such that

$$S_{\mathcal{M}}e^X = e^{-X/2}S_{\mathcal{M}}e^{X/2} = S_{\mathcal{N}}$$
 and $\lambda(X) = \{\pm i\,\theta(\mathcal{M},\mathcal{N}),0,\ldots,0\}$.

Let $\gamma(t) = S_{\mathcal{M}} e^{tX}$ for $t \in [0, 1]$. For any unitarily invariant norm $\|\cdot\|$

Length_{||·||}(
$$\gamma$$
) = $\int_0^1 ||\dot{\gamma}|| dt = \int_0^1 ||S_{\mathcal{M}} X e^{tX}|| dt = ||X||$.

If $\|\cdot\|$ is any Schatten norm $\|\cdot\|_p$ then

$$\mathrm{Length}_{\|\cdot\|}(\gamma) = 2\rho_{\|\cdot\|_p}\left(\mathcal{M},\mathcal{N}\right).$$

More generally, given a g.s.f. ϕ in \mathbb{R}^m , if we consider the norm:

$$||A||_{\phi} = \frac{1}{2}\phi(s_1(A) + s_2(A), \dots, s_{2m-1}(A) + s_{2m}(A)),$$

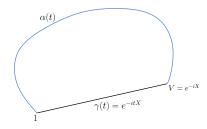
then $\operatorname{Length}_{\|\cdot\|_{\phi}}(\gamma) = \rho_{\phi}(\mathcal{M}, \mathcal{N}).$

Theorem (A., Larotonda, Varela (maybe '13))

The paths $\gamma(t) = Ue^{itX}$ with $X \in \mathcal{H}(n)$ are short provided $||X||_{sp} \leq \pi$.

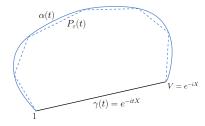
Theorem (A., Larotonda, Varela (maybe '13))

The paths $\gamma(t) = Ue^{itX}$ with $X \in \mathcal{H}(n)$ are short provided $||X||_{sp} \leq \pi$.



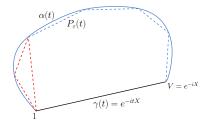
Theorem (A., Larotonda, Varela (maybe '13))

The paths $\gamma(t) = Ue^{itX}$ with $X \in \mathcal{H}(n)$ are short provided $||X||_{sp} \leq \pi$.



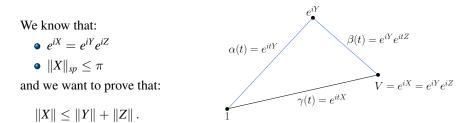
Theorem (A., Larotonda, Varela (maybe '13))

The paths $\gamma(t) = Ue^{itX}$ with $X \in \mathcal{H}(n)$ are short provided $||X||_{sp} \leq \pi$.



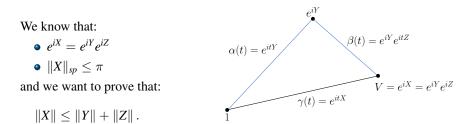
Theorem (A., Larotonda, Varela (maybe '13))

The paths $\gamma(t) = Ue^{itX}$ with $X \in \mathcal{H}(n)$ are short provided $||X||_{sp} \leq \pi$.



Theorem (A., Larotonda, Varela (maybe '13))

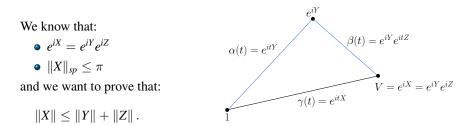
The paths $\gamma(t) = Ue^{itX}$ with $X \in \mathcal{H}(n)$ are short provided $||X||_{sp} \leq \pi$.



- Suppose for a moment that $e^{iX} = e^{i(Y+Z)}$;
- As $||X||_{sp} \le \pi$, it holds that $||X|| \le ||Y + Z||$.

Theorem (A., Larotonda, Varela (maybe '13))

The paths $\gamma(t) = Ue^{itX}$ with $X \in \mathcal{H}(n)$ are short provided $||X||_{sp} \leq \pi$.



- Suppose for a moment that $e^{iX} = e^{i(UYU^* + VZV^*)}$;
- As $||X||_{sp} \le \pi$, it holds that $||X|| \le ||UYU^* + VZV^*||$.

Theorem (R. Thompson '86)

Given $A, B \in \mathcal{H}(n)$ *, there exist unitary matrices* U *and* V *such that:*

$$e^{iA}e^{iB} = e^{i(UAU^* + VBV^*)} . (1)$$

History:

$$a = \lambda(A)$$
 $b = \lambda(B)$ and $c = \lambda(A + B)$.

- 1980: Thompson conjectured (1).
- 1982: Lidskii Jr. announced a proof of Horn conjecture.
- 1986: Thompson, using the result of Lidskii, proved the above theorem.
- 1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.

Theorem (R. Thompson '86)

Given $A, B \in \mathcal{H}(n)$ *, there exist unitary matrices* U *and* V *such that:*

$$e^{iA}e^{iB} = e^{i(UAU^* + VBV^*)}.$$
(1)

History:

$$a = \lambda(A)$$
 $b = \lambda(B)$ and $c = \lambda(A + B)$.

- 1980: Thompson conjectured (1).
- 1982: Lidskii Jr. announced a proof of Horn conjecture.
- 1986: Thompson, using the result of Lidskii, proved the above theorem.
- 1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.

Theorem (R. Thompson '86)

Given $A, B \in \mathcal{H}(n)$ *, there exist unitary matrices* U *and* V *such that:*

$$e^{iA}e^{iB} = e^{i(UAU^* + VBV^*)}.$$
(1)

History:

1962: Given A, B ∈ H(n), Horn found a concrete list of inequalities that the eigenvalues of A, B and A + B have to satisfy.
He conjectured: if a, b, c ∈ ℝⁿ satisfy these inequalities, then there exist A, B ∈ H(n) such that

$$a = \lambda(A)$$
 $b = \lambda(B)$ and $c = \lambda(A + B)$.

• 1980: Thompson conjectured (1).

- 1982: Lidskii Jr. announced a proof of Horn conjecture.
- 1986: Thompson, using the result of Lidskii, proved the above theorem.
- 1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.

Theorem (R. Thompson '86)

Given $A, B \in \mathcal{H}(n)$ *, there exist unitary matrices* U *and* V *such that:*

$$e^{iA}e^{iB} = e^{i(UAU^* + VBV^*)}.$$
(1)

History:

$$a = \lambda(A)$$
 $b = \lambda(B)$ and $c = \lambda(A + B)$.

- 1980: Thompson conjectured (1).
- 1982: Lidskii Jr. announced a proof of Horn conjecture.
- 1986: Thompson, using the result of Lidskii, proved the above theorem.
- 1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.

Theorem (R. Thompson '86)

Given $A, B \in \mathcal{H}(n)$ *, there exist unitary matrices* U *and* V *such that:*

$$e^{iA}e^{iB} = e^{i(UAU^* + VBV^*)}.$$
(1)

History:

$$a = \lambda(A)$$
 $b = \lambda(B)$ and $c = \lambda(A + B)$.

- 1980: Thompson conjectured (1).
- 1982: Lidskii Jr. announced a proof of Horn conjecture.
- 1986: Thompson, using the result of Lidskii, proved the above theorem.
- 1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.

Theorem (R. Thompson '86)

Given $A, B \in \mathcal{H}(n)$ *, there exist unitary matrices* U *and* V *such that:*

$$e^{iA}e^{iB} = e^{i(UAU^* + VBV^*)}.$$
(1)

History:

$$a = \lambda(A)$$
 $b = \lambda(B)$ and $c = \lambda(A + B)$.

- 1980: Thompson conjectured (1).
- 1982: Lidskii Jr. announced a proof of Horn conjecture.
- 1986: Thompson, using the result of Lidskii, proved the above theorem.
- 1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.

A norm $\|\cdot\|$ definided in \mathbb{R}^n is called strictly convex if for every $x, y \in \mathbb{R}^n$

$$||x+y|| = ||x|| + ||y|| \quad \Longleftrightarrow \quad x = \lambda y.$$

A norm $\|\cdot\|$ definided in \mathbb{R}^n is called strictly convex if for every $x, y \in \mathbb{R}^n$

$$||x+y|| = ||x|| + ||y|| \quad \Longleftrightarrow \quad x = \lambda y.$$

Theorem (A., Larotonda, Varela)

Assume ϕ is strictly convex, and let $U, V, W \in \mathcal{U}(n)$ be such that

$$d_{\phi}(U,V) = d_{\phi}(U,W) + d_{\phi}(W,V), \text{ and } d_{\infty}(U,V) < \pi.$$

Then U, V, W are aligned in $\mathcal{U}(n)$, that is, there exists $t_0 \in [0, 1]$ and $Z \in \mathcal{H}(n)$ with $||Z||_{sp} < \pi$ such that

$$V = Ue^{iZ}$$
, while $W = Ue^{it_0Z}$.

A norm $\|\cdot\|$ definided in \mathbb{R}^n is called strictly convex if for every $x, y \in \mathbb{R}^n$

$$||x+y|| = ||x|| + ||y|| \quad \Longleftrightarrow \quad x = \lambda y.$$

Theorem (A., Larotonda, Varela)

Assume ϕ is strictly convex, and let $U, V, W \in \mathcal{U}(n)$ be such that

$$d_{\phi}(U,V) = d_{\phi}(U,W) + d_{\phi}(W,V), \text{ and } d_{\infty}(U,V) < \pi.$$

Then U, V, W are aligned in $\mathcal{U}(n)$, that is, there exists $t_0 \in [0, 1]$ and $Z \in \mathcal{H}(n)$ with $||Z||_{sp} < \pi$ such that

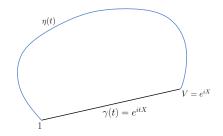
$$V = Ue^{iZ}$$
, while $W = Ue^{it_0Z}$.

Remark: In the case of \mathcal{G}_n , this result was also proved by Li-Qiu-Zhang.

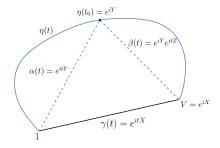
Let X be a Hermitian element such that $||X||_{sp} < \pi$. Then, $\gamma(t) = Ue^{itX}$ is the unique piecewise C^1 path in U(n) joining U with $V = Ue^{iX}$.

Let X be a Hermitian element such that $||X||_{sp} < \pi$. Then, $\gamma(t) = Ue^{itX}$ is the unique piecewise C^1 path in U(n) joining U with $V = Ue^{iX}$.

Let X be a Hermitian element such that $||X||_{sp} < \pi$. Then, $\gamma(t) = Ue^{itX}$ is the unique piecewise C^1 path in U(n) joining U with $V = Ue^{iX}$.



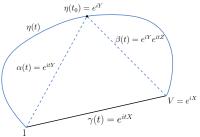
Let X be a Hermitian element such that $||X||_{sp} < \pi$. Then, $\gamma(t) = Ue^{itX}$ is the unique piecewise C^1 path in U(n) joining U with $V = Ue^{iX}$.



Let X be a Hermitian element such that $||X||_{sp} < \pi$. Then, $\gamma(t) = Ue^{itX}$ is the unique piecewise C^1 path in U(n) joining U with $V = Ue^{iX}$.

$$\begin{split} \|X\| &\leq \|Y\| + \|Z\| \\ &\leq \int_0^{t_0} \|\dot{\eta}\|_\phi \, dt + \int_{t_0}^1 \|\dot{\eta}\|_\phi \, dt \\ &= Length(\eta) = \|X\| \\ &\stackrel{\longrightarrow}{\underset{\text{Previous Thm}}{\longrightarrow}} \end{split}$$

$$\eta(t_0) \in \gamma(t)$$



Unitarily invariant actions

Let S be the action defined on piecewise C^1 curves $\alpha : [a, b] \to \mathcal{U}(n)$ by

$$S(\alpha) = \int_{a}^{b} \mathcal{L}(\dot{\alpha}(t)) \, dt, \tag{2}$$

where $\mathcal{L}: \mathcal{H}(n) \to [0, +\infty)$ is a convex function that satisfies

 $\mathcal{L}(U\!AV) = \mathcal{L}(A),$

for every $A \in \mathcal{H}(n)$, and every unitary matrices U and V.

Unitarily invariant actions

Let S be the action defined on piecewise C^1 curves $\alpha : [a, b] \to \mathcal{U}(n)$ by

$$S(\alpha) = \int_{a}^{b} \mathcal{L}(\dot{\alpha}(t)) \, dt, \tag{2}$$

where $\mathcal{L}: \mathcal{H}(n) \to [0, +\infty)$ is a convex function that satisfies

$$\mathcal{L}(U\!AV) = \mathcal{L}(A),$$

for every $A \in \mathcal{H}(n)$, and every unitary matrices U and V. Examples:

- Any unitarily invariant norm $\|\cdot\|_{\phi}$;
- The kinetic energy $E(A) = ||A||_F^2$.

Unitarily invariant actions

Let S be the action defined on piecewise C^1 curves $\alpha : [a, b] \to \mathcal{U}(n)$ by

$$S(\alpha) = \int_{a}^{b} \mathcal{L}(\dot{\alpha}(t)) \, dt, \tag{2}$$

where $\mathcal{L}: \mathcal{H}(n) \to [0, +\infty)$ is a convex function that satisfies

$$\mathcal{L}(U\!AV) = \mathcal{L}(A),$$

for every $A \in \mathcal{H}(n)$, and every unitary matrices U and V. Examples:

- Any unitarily invariant norm $\|\cdot\|_{\phi}$;
- The kinetic energy $E(A) = ||A||_F^2$.

Problem

Given $U, V \in \mathcal{U}(n)$, and a fixed interval [a, b], find the piecewise C^1 curves $\gamma : [a, b] \to \mathcal{U}(n)$ such that $\gamma(a) = U$, $\gamma(b) = V$ and γ minimize the action given by (2).

Unitarily invariant actions Results

Let $U \in \mathcal{U}(n)$, $V = Ue^{iZ}$, $Z \in \mathcal{H}(n)$, and γ the path defined on [a, b] by:

$$\gamma(t) = U e^{i\frac{(t-a)}{b-a}Z}.$$

Unitarily invariant actions Results

Let $U \in \mathcal{U}(n)$, $V = Ue^{iZ}$, $Z \in \mathcal{H}(n)$, and γ the path defined on [a, b] by:

$$\gamma(t) = U e^{i\frac{(t-a)}{b-a}Z}$$

Theorem (A., Larotonda, Varela)

If $||Z||_{sp} \leq \pi$, then $\gamma(t)$ minimizes S among piecewise smooth curves $\alpha : [a,b] \rightarrow \mathcal{U}(n)$ joining U to V. In particular

$$\inf_{\alpha} \mathcal{S}(\alpha) = (b-a)\mathcal{L}\left(\frac{Z}{b-a}\right).$$

Unitarily invariant actions Results

Let $U \in \mathcal{U}(n)$, $V = Ue^{iZ}$, $Z \in \mathcal{H}(n)$, and γ the path defined on [a, b] by:

$$\gamma(t) = U e^{i \frac{(t-a)}{b-a}Z}$$

Theorem (A., Larotonda, Varela)

If $||Z||_{sp} \leq \pi$, then $\gamma(t)$ minimizes S among piecewise smooth curves $\alpha : [a,b] \rightarrow \mathcal{U}(n)$ joining U to V. In particular

$$\inf_{\alpha} \mathcal{S}(\alpha) = (b-a)\mathcal{L}\left(\frac{Z}{b-a}\right).$$

Theorem (A., Larotonda, Varela)

If \mathcal{L} is strictly convex and $||Z||_{sp} < \pi$, then $\gamma(t)$ is the unique minimizer.

Let *A* and *B* be two compact operators acting on a Hilbert space \mathcal{H} .

Proposition (A., Larotonda, Varela '12)

There exist unitary operators U_k and V_k , such that

$$e^{iA}e^{iB} = \lim_{k\to\infty} e^{iU_kAU_k^* + iV_kBV_k^*}.$$

Remark: A similar result also holds for embeddable II₁ factors.

Let A and B be two compact operators acting on a Hilbert space \mathcal{H} .

Proposition (A., Larotonda, Varela '12)

There exist unitary operators U_k and V_k , such that

$$e^{iA}e^{iB} = \lim_{k\to\infty} e^{iU_kAU_k^* + iV_kBV_k^*}.$$

Remark: A similar result also holds for embeddable II₁ factors.

To avoid the limit, we need to embed the operators in a larger Hilbert space:

Theorem (A., Larotonda, Varela '12)

There is an isometry W, and unitary operators U and V such that

 $e^{i WAW^*} e^{i WBW^*} = e^{i U(WAW^*)U^* + i V(WBW^*)V^*}$

The end

