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Overview

@ Introduction to angular metrics
© From angular metrics to short paths in /()

@ Further related results



Angular metrics

How can we define distances between subspaces?



Angular metrics



Angular metrics

Letx,y € C", M = span{x} and N/ = span{y}. Then

X,
cosd = LEI yp oo ey
[ 1yl

(0 € [O, %] ) A natural distance between M and N is

p(M,N) = 0.



Angular metrics

Letx,y € C", M = span{x} and N/ = span{y}. Then

| () |
[l Iyl

(6 € [0, 5] ). A natural distance between M and A is

cosf =

= [PsPull = s1(PuPy) -

p(M,N) = 0.
Remark: We can also define:

dyy(M,N) = ||Ppy — Pyl|sp = sinb.
However, this metric is not intrinsic in the following sense: let (X, d) be a

metric space. Given a continuous curve « : [a, b] — X, we can define

Li(a) = sup Zd a(f—1)), and d(x,y) = inf L(y).

a=tp<t <...<t,=b f—1 Yixesy

Then, d is called intrinsic if d = d. (For d,,,, it holds that d,, = p).

gap



Angular metrics

What happens for subspaces of higher dimensions?



Angular metrics

The Grassmannian, G,, is the set of all the subspaces of C". Given M € G,

M < P, <= S,=2P, 1
o Using these identifications, we can endow G, with a topology such that
it becomes a compact space.

@ The connected components of G, are the subsets G, ,, consisting of
those subspaces of dimension m.
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The Grassmannian, G,, is the set of all the subspaces of C". Given M € G,
M = P, <+ S,=2P, 1.
@ Using these identifications, we can endow G, with a topology such that

it becomes a compact space.

@ The connected components of G, are the subsets G, ,, consisting of
those subspaces of dimension m.

Definition (C. Jordan 1875)

Given two k-dimensional subspaces M, N C C”, the
principal angles between them are the angles 6;(M, N)
belonging to [0, /2], 1 < i < k, whose cosinus are the
k-biggest singular values of PP r. In other words:

cos 0 (M, N) := (s1 (PMPN) s -+ Sk (PrmPN)) -




Angular metrics

The Grassmannian, G,, is the set of all the subspaces of C". Given M € G,

M < P, <+ S,=2P, -1
@ Using these identifications, we can endow G, with a topology such that
it becomes a compact space.

o The connected components of G, are the subsets G, ,, consisting of
those subspaces of dimension m.

Definition (C. Jordan 1875)

Given two k-dimensional subspaces M, A/ C C", the
principal angles between them are the angles 6;(M, N)
belonging to [0,7/2], 1 < i < k, whose cosinus are the
k-biggest singular values of P(Ps. In other words:

cos 0 (M, N) := (s1 (PMPN), -, Sk (PrmPN)).-

Now, given a norm || - || in R¥:

Is the function d(M, N') := ||0 (M, N) || a metric in each G, ,,?



Angular metrics

Recall that ¢ : R" — R is a gauge symmetric function if it satisfies:
@ ¢ is anorm;
o Pp(x1, ..., xn) = d(Jxt], - |xal);
© D1, Xn) = O(Xo(1)s -+ s Xo(n))-



Angular metrics

Recall that ¢ : R" — R is a gauge symmetric function if it satisfies:
@ ¢ is anorm;
o Pp(x1, ..., xn) = d(Jxt], - |xal);
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Recall also, that a norm || - || is called unitarily invariant if for every

A € M,,(C) and every pair of unitary matrices U,V € U(n)

IA[] = [[UAV]].



Angular metrics

Recall that ¢ : R" — R is a gauge symmetric function if it satisfies:
@ ¢ is anorm;
o Pp(x1, ..., xn) = d(Jxt], - |xal);
© D1, Xn) = O(Xo(1)s -+ s Xo(n))-

Recall also, that a norm || - || is called unitarily invariant if for every
A € M,,(C) and every pair of unitary matrices U,V € U(n)

IA[] = [[UAV]].

Given an unitarily invariant norm, there exists a gauge symmetric function ¢
such that:

1A]l = b (s(A)).

Conversely, every gauge symmetric function defines a unitarily invariant
norm, that we will called || - || 4, in this way.



Angular metrics

Let ¢ : R™ — R be a gauge symmetric function and pg : Gpm X G — R
the funtion definided by

Po (MvN) = ¢(0(M7N))

Then, pg is an unitarily invariant metric.



Geometric preliminaries

Unitary group

The group U(n) is a submanifold of M, (C), and for each point U € U (n)
T,U(n) = iH(n).

Let || - || be a unitarily invariant norm in M,,(C). Given a smooth curve
a: a,b] — U(n)

Length, , ( / ||| dt

which let us define the distance between two points of U (n) by:

dist, . (U,V) := inf {Length(v) : ~ joins U and V}.

With respect to the connection VY = %[X , Y], the geodesics are
V() =Ue™ (X € H(n))

Remark: If the unitarily invariant norm is || - ||, then I/ (n) with the
corresponding metric structure is a Riemannian structure.



Geometric preliminaries

Grassmann manifold

The Grassmann space G, is a submanifold of U (n).

It can be proved that the tangent space at S = 2P — [ € G, is:

1,6, — {x= { 0 _ﬂ 283)_ n XeMk,n_k((C)}.

Remarks:
@ Given S € G, and X € T;G,, then by the structure of X

"Ys,x(t) —Se X = o X/29,—X/2,

In particular, the geodesic moves inside G, all the time.

@ The map S — —S, corresponding to the map M — M=, is an
isometric diffeomorphism between G, ,, and G,, ,—,. So, from
now on we will assume that m < 7.



Geometric preliminaries

Direct rotations

Let M and N two subspaces of G, . There exists X € Ts,, Gy m such that

Sy =eX25,,e5? =5, and A(X) = {xi0(M,N),0,...,0}.



Geometric preliminaries

Direct rotations

Let M and N two subspaces of G, . There exists X € Ts,, Gy m such that
Sy =eX25,,e5? =5, and A(X) = {xi0(M,N),0,...,0}.

Let v(f) = Spe™ fort € [0, 1]. For any unitarily invariant norm || - ||

1 1
Length, | (1) = /0 4lde = /0 18, ™ ldr = |x]].



Geometric preliminaries

Direct rotations

Let M and N two subspaces of G, . There exists X € Ts,, Gy m such that
Sy =eX25,,e5? =5, and A(X) = {xi0(M,N),0,...,0}.
Let v(f) = Spe™ fort € [0, 1]. For any unitarily invariant norm || - ||
1 1
Lengthy (1) = [ 51t = [ 8. ear = .

If || - || is any Schatten norm || - ||, then

Lengthy | (v) = 2py.y,, (M, N).



Geometric preliminaries

Direct rotations

Let M and N two subspaces of G, . There exists X € Ts,, Gy m such that
Sy =eX25,,e5? =5, and A(X) = {xi0(M,N),0,...,0}.

Let v(f) = Spe™ fort € [0, 1]. For any unitarily invariant norm || - ||

Length (v) = /01 [¥lldt = /01 [[S X e™||dr = |1X]| .
If || - || is any Schatten norm || - ||, then
Lengthy.(7) = 2y, (M, N).
More generally, given a g.s.f. ¢ in R™, if we consider the norm:
1Al = %qﬁ( $1(A) +52(A), - s2m-1(A) + 520(A) )

then Lengthy | (7) = pg (M, N).



Short paths in U(n)

The paths ~y(t) = Ue"™ with X € H(n) are short provided || X||s, < .
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Idea of the proof: Without loss of generality, we can assume that U = 1.
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Idea of the proof: Without loss of generality, we can assume that U = 1.
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0 X — i¥piZ
o X[y <m

and we want to prove that:

IX[F< 1Y+ f12]f -



Short paths in U(n)

The paths ~y(t) = Ue"™ with X € H(n) are short provided || X||s, < .

Idea of the proof: Without loss of generality, we can assume that U = 1.

‘We know that:
0 X — i¥piZ
o X[y <m

and we want to prove that:

IX[F< 1Y+ f12]f -

@ Suppose for a moment that ¢ = ¢/(Y+2);
@ As ||X||; <, itholds that || X| < [|Y + Z]|.



Short paths in U(n)

The paths ~y(t) = Ue"™ with X € H(n) are short provided || X||s, < .

Idea of the proof: Without loss of generality, we can assume that U = 1.

‘We know that:
0 X — i¥piZ
o X[y <m

and we want to prove that:

IX[F< 1Y+ f12]f -

o/ (UYU™+VZV*)

@ Suppose for a moment that ¢X = ;
o As||X]l,y < . it holds that |X]| < |UYU* + vZV*|.
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Given A, B € H(n), there exist unitary matrices U and V such that:

oApiB — Hi(UAU™+VBV™) (1)

History:



Thompson’s formula

Given A, B € H(n), there exist unitary matrices U and V such that:

oApiB — Hi(UAU™+VBV™) (1)
History:
@ 1962: Given A, B € H(n), Horn found a concrete list of inequalities
that the eigenvalues of A, B and A + B have to satisfy.
He conjectured: if a, b, c € R" satisfy these inequalities, then there
exist A, B € H(n) such that

a=XA) b=AB) and c=A\A+B).
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Thompson’s formula

Given A, B € H(n), there exist unitary matrices U and V such that:

oApiB — Hi(UAU™+VBV™) (1)

History:
@ 1962: Given A, B € H(n), Horn found a concrete list of inequalities
that the eigenvalues of A, B and A + B have to satisfy.

He conjectured: if a, b, c € R" satisfy these inequalities, then there
exist A, B € H(n) such that

a=XA) b=AB) and c=A\A+B).

1980: Thompson conjectured (1).

1982: Lidskii Jr. announced a proof of Horn conjecture.

1986: Thompson, using the result of Lidskii, proved the above theorem.
1995-2000: Klyachko, Knutson and Tao finally proved Horn conjecture.
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Uniqueness of the short paths

A norm || - || definided in R” is called strictly convex if for every x,y € R”

x+yl =+l = x=X.

Assume ¢ is strictly convex, and let U, V, W € U(n) be such that
dy(U,V) =dyg(U,W)+dy(W,V), and ds(U,V) < .

Then U,V,W are aligned in U(n), that is, there exists ty € [0, 1] and
Z € H(n) with || Z||s, < 7 such that

V = Ué?, while W = Ue™?.



Uniqueness of the short paths

A norm || - || definided in R" is called strictly convex if for every x,y € R"
lx+yl =lxl + Iyl = x=X.
Assume ¢ is strictly convex, and let U, V, W € U(n) be such that
dy(U,V) =dyg(U,W)+dy(W,V), and ds(U,V) < .

Then U,V,W are aligned in U(n), that is, there exists ty € [0, 1] and
Z € H(n) with || Z||s, < 7 such that

V = Ue?, while W = Ue™?.

Remark: In the case of G, this result was also proved by Li-Qiu-Zhang.



Uniqueness of short paths

Continuacion

Let X be a Hermitian element such that | X||s, < 7. Then, ~(t) = Ue"™ is the
unique piecewise C' path in U(n) joining U with V = Ue'X.
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Uniqueness of short paths

Continuacion

Let X be a Hermitian element such that | X||s, < 7. Then, ~(t) = Ue"™ is the
unique piecewise C' path in U(n) joining U with V = Ue'X.

Idea of the proof:

i(to) = e

X1 < Y1l + 11z

to 1
< [ lillodr+ [ Willar
0 to

= Length(n) = [|X]|

EES
Previous Thm

n(to) € ¥(t)




Unitarily invariant actions

Let S be the action defined on piecewise C! curves « : [a, b] — U(n) by

b
Sta) = [ L), @
where £ : H(n) — [0, 400) is a convex function that satisfies
L(UAV) = L(A),

for every A € H(n), and every unitary matrices U and V.
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Unitarily invariant actions

Let S be the action defined on piecewise C! curves « : [a, b] — U(n) by

b
Sta) = [ L), @
where £ : H(n) — [0, 400) is a convex function that satisfies
L(UAV) = L(A),

for every A € H(n), and every unitary matrices U and V.
Examples:

@ Any unitarily invariant norm || - || ;
@ The kinetic energy E(A) = ||A||% .

Problem

Given U,V € U(n), and a fixed interval [a, b], find the piecewise C' curves
~ : [a,b] — U(n) such that y(a) = U, v(b) = V and y minimize the action
given by (2).



Unitarily invariant actions

Results

Let U € U(n), V = Ue?, Z € H(n), and ~ the path defined on [a, b] by:

() = Ue=i2.
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() = Ue=i2.

If || Z||sp < m, then ~(t) minimizes S among piecewise smooth curves
a : [a,b] — U(n) joining U to V. In particular

inf S(a) = (b a)C (b z a) .



Unitarily invariant actions

Results

Let U € U(n), V = Ue?, Z € H(n), and ~ the path defined on [a, b] by:

() = Ue=i2.

If || Z||sp < m, then ~(t) minimizes S among piecewise smooth curves
a : [a,b] — U(n) joining U to V. In particular

inf S(a) = (b a)C (b z a) .

If L is strictly convex and ||Z||s, < m, then ~(t) is the unique minimizer.



Thompson’s formula

Some infinite dimensional versions

Let A and B be two compact operators acting on a Hilbert space H.

There exist unitary operators Uy and Vy, such that

i UAU; +i ViBV}

Remark: A similar result also holds for embeddable II; factors.



Thompson’s formula

Some infinite dimensional versions

Let A and B be two compact operators acting on a Hilbert space .

There exist unitary operators Uy and Vy, such that

é4ef = lim e

k—o00

i UAU; +i ViBV}

Remark: A similar result also holds for embeddable II; factors.

To avoid the limit, we need to embed the operators in a larger Hilbert space:

There is an isometry W, and unitary operators U and V such that

ol WAW® JiWBW™ _ i U(WAW*)U* +i V(WBW*)V*
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