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Introduction

Positive definite matrices have become fundamental
computational objects in a diverse variety of applied areas.
They appear as covariance matrices in statistics, elements
of the search space in convex and semidefinite
programming, kernels in machine learning, density matrices
in quantum information, and diffusion tensors in medical
imaging, to cite a few.
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Introduction

Positive definite matrices have become fundamental
computational objects in a diverse variety of applied areas.
They appear as covariance matrices in statistics, elements
of the search space in convex and semidefinite
programming, kernels in machine learning, density matrices
in quantum information, and diffusion tensors in medical
imaging, to cite a few.

A variety of metric-based computational algorithms for
positive definite matrices have arisen for approximations,
interpolation, filtering, estimation, and averaging, the last
being the concern of this talk.
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The Trace Metric

In recent years, it has been increasingly recognized that the
Euclidean distance is often not the most suitable for the
space P of positive definite matrices and that working with
the appropriate geometry does matter in computational
problems. It is thus not surprising that there has been
increasing interest in the trace metric δ, the distance metric
arising from the natural Riemannian structure on P making
it a Riemannian manifold, indeed a symmetric space, of
negative curvature:

δ(A,B) = (

k
∑

i=1

log2 λi(A
−1B))

1

2 ,

where λi(X) denotes the ith eigenvalue of X in
non-decreasing order.
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Basic Geometric Properties

We list some basic properties of P endowed with the trace
metric.

(1) The matrix geometric mean
A#B = A1/2(A−1/2BA−1/2)1/2A1/2 is the unique metric
midpoint between A and B.

(2) There is a unique metric geodesic line through any two
distinct points A,B ∈ P given by the weighted means
γ(t) = A#tB = A1/2(A−1/2BA−1/2)tA1/2.

(3) (Congruence Invariance) Congruence transformations
A 7→ CAC∗ for C invertible are isometries.

(4) Inversion A 7→ A−1 is an isometry.

(5) (Monotonicity) A ≤ B, C ≤ D ⇒ A#tB ≤ C#tD.
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Extending the Geometric Mean

Once one realizes that the matrix geometric mean

G2(A,B) = A#B := A1/2(A−1/2BA−1/2)1/2A1/2

is the metric midpoint of A and B for the trace metric δ, it is
natural to use an averaging technique over this metric to
extend this mean to n-variables. First M. Moakher (2005)
and then Bhatia and Holbrook (2006) suggested the least
squares mean, taking the mean to be the unique minimizer
of the sum of the squares of the distances:

Gn(A1, . . . , An) = arg min
X∈P

n
∑

i=1

δ2(X,Ai).
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Some Background

This idea had been anticipated by Élie Cartan, who showed
among other things such a unique minimizer exists if the
points all lie in a convex ball in a Riemannian manifold,
which is enough to deduce the existence of the least
squares mean globally for P.
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Some Background

This idea had been anticipated by Élie Cartan, who showed
among other things such a unique minimizer exists if the
points all lie in a convex ball in a Riemannian manifold,
which is enough to deduce the existence of the least
squares mean globally for P.

The mean is frequently called the Karcher mean in light of
its appearance in his work on Riemannian manifolds
(1977). Indeed, he considered general probabilistic means
that included weighted least squares mean:

Gn(w1, . . . , wn;A1, . . . , An) = arg min
X∈P

n
∑

i=1

wiδ
2(X,Ai),

where the non-negative wi satisfy
∑n

i=1 wi = 1.
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A Natural Question

In a 2004 LAA article called “Geometric Means" T. Ando,
C.K. Li and R. Mathias gave a construction (frequently
called “symmetrization") that extended the two-variable
matrix geometric mean to n-variables for each n ≥ 3 and
identified a list of ten properties that this extended mean
satisfied. Both contributions–the construction and the
axiomatic properties–were important and have been
influential in subsequent developments.
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A Natural Question

In a 2004 LAA article called “Geometric Means" T. Ando,
C.K. Li and R. Mathias gave a construction (frequently
called “symmetrization") that extended the two-variable
matrix geometric mean to n-variables for each n ≥ 3 and
identified a list of ten properties that this extended mean
satisfied. Both contributions–the construction and the
axiomatic properties–were important and have been
influential in subsequent developments.

Question: Do the Ando-Li-Mathias properties extend to the
least squares mean? In particular, Bhatia and Holbrook
(2006) asked whether the least squares mean was
monotonic in each of its arguments. Computer calculations
indicated “Yes."
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NPC Spaces

The answer is indeed “yes," but showing it required new
tools: the theory of nonpositively curved metric spaces,
techniques from probability and random variable theory,
and the fairly recent combination of the two, particularly by
K.-T. Sturm (2003).
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NPC Spaces

The answer is indeed “yes," but showing it required new
tools: the theory of nonpositively curved metric spaces,
techniques from probability and random variable theory,
and the fairly recent combination of the two, particularly by
K.-T. Sturm (2003).

The setting appropriate for our considerations is that of
globally nonpositively curved metric spaces, or NPC spaces
for short: These are complete metric spaces M satisfying
for each x, y ∈ M , there exists m ∈ M such that for all z ∈ M

d2(m, z) ≤
1

2
d2(x, z) +

1

2
d2(y, z) −

1

4
d2(x, y). (NPC)

Such spaces are also called (global) CAT(0)-spaces or
Hadamard spaces.
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Geodesics and Weighted Means

The theory of such NPC spaces is quite extensive. In
particular the m appearing in

d2(m, z) ≤
1

2
d2(x, z) +

1

2
d2(y, z) −

1

4
d2(x, y) (NPC)

is the unique metric midpoint between x and y. By
inductively choosing midpoints for dyadic rationals and
extending by continuity, one obtains for each x 6= y a unique
metric minimal geodesic γ : [0, 1] → M satisfying
d(γ(t), γ(s)) = |t − s|d(x, y), γ(0) = x, γ(1) = y.
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Geodesics and Weighted Means

The theory of such NPC spaces is quite extensive. In
particular the m appearing in

d2(m, z) ≤
1

2
d2(x, z) +

1

2
d2(y, z) −

1

4
d2(x, y) (NPC)

is the unique metric midpoint between x and y. By
inductively choosing midpoints for dyadic rationals and
extending by continuity, one obtains for each x 6= y a unique
metric minimal geodesic γ : [0, 1] → M satisfying
d(γ(t), γ(s)) = |t − s|d(x, y), γ(0) = x, γ(1) = y.

We denote γ(t) by x#ty and call it the t-weighted mean of
x and y. The midpoint x#1/2y we denote simply as x#y. We
remark that by uniqueness x#ty = y#1−tx; in particular,
x#y = y#x.
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The Semiparallelogram Law

Weakening the parallelogram law in Hilbert space to an
inequality yields (NPC) or the semiparallelogram law:

sum of 2 diagonals squared ≤ sum of 4 sides squared

d2(x1, x2) + 4d2(x,m)(= (2d(x,m))2) ≤ 2d2(x, x1) + 2d2(x, x2)
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Metrics and Curvature

Equation (NPC), the semiparallelogram law, holds in both
euclidean and hyperbolic geometry. More generally, it is
satisfied by the length metric in any simply connected
nonpositively curved Riemannian manifold. Hence the
metric definition represents a metric generalization of
nonpositive curvature.
Fact: The trace metric on the nonpositively curved
Riemannian symmetric space of positive definite matrices P

is a particular and important example of an NPC space.
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Metrics and Curvature

Equation (NPC), the semiparallelogram law, holds in both
euclidean and hyperbolic geometry. More generally, it is
satisfied by the length metric in any simply connected
nonpositively curved Riemannian manifold. Hence the
metric definition represents a metric generalization of
nonpositive curvature.
Fact: The trace metric on the nonpositively curved
Riemannian symmetric space of positive definite matrices P

is a particular and important example of an NPC space.

Equation (NPC) admits a more general formulation in
terms of the weighted mean. For all 0 ≤ t ≤ 1 we have

d2(x#ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y).
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Metric Least Squares Means

The weighted least squares mean G(·; ·) can be easily
formulated in any metric space (M,d). Given
(a1, . . . , an) ∈ Mn, and positive real numbers w1, . . . , wn

summing to 1, we define

Gn(w1, . . . , wn; a1, . . . , an) := arg min
z∈M

n
∑

i=1

wid
2(z, ai), (1)

provided the minimizer exists and is unique. In general the
minimizer may fail to exist or fail to be unique, but existence
and uniqueness always holds for NPC spaces as can be
readily deduced from the uniform convexity of the metric.
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Pythagorean Inequality

Given a closed geodesically convex set C and a point a /∈ C
in an NPC-space, there exists a unique point b ∈ C closest
to a, called the projection of a on C. Taking any point c ∈ C,
c 6= b, it is the case that d2(a, b) + d2(b, c) ≤ d2(a, c). Since
intuitively ∠abc ≥ 90◦, it makes sense to call this inequality
the Pythagorean inequality.'
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c d2(a, b) + d2(b, c) ≤ d2(a, c)
Pythagorean Inequality

C
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A Basic Theorem

Theorem. The weighted geometric mean
Gn(w1, . . . , wn; a1, . . . , an) belongs to the convex hull of
{a1, . . . , an}.

Proof. If a = Gn(w1, . . . , wn; a1, . . . , an) lies outside the
convex hull C of {a1, . . . , an}, then by the Pythagorean
Inequality for the projection b of a onto C,
d2(b, ai) ≤ d2(a, ai) − d2(a, b) < d2(a, ai) for each i, which
contradicts the fact that a is the least squares mean.
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The Inductive Mean

One other mean will play an important role in what follows,
one that we shall call the inductive mean, following the
terminology of K.-T. Sturm (2003). It appeared elsewhere in
the work of M. Sagae and K. Tanabe (1994) and Ahn, Kim,
and Lim (2007). It is defined inductively for NPC spaces (or
more generally for metric spaces with weighted binary
means x#ty) for each k ≥ 2 by S2(x, y) = x#y and for k ≥ 3,
Sk(x1, . . . , xk) = Sk−1(x1, . . . , xk−1)# 1

k

xk. In euclidean space

it collapses to Sn(x1, . . . , xn) = (1/n)
∑n

i=1 xi.
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The Inductive Mean

One other mean will play an important role in what follows,
one that we shall call the inductive mean, following the
terminology of K.-T. Sturm (2003). It appeared elsewhere in
the work of M. Sagae and K. Tanabe (1994) and Ahn, Kim,
and Lim (2007). It is defined inductively for NPC spaces (or
more generally for metric spaces with weighted binary
means x#ty) for each k ≥ 2 by S2(x, y) = x#y and for k ≥ 3,
Sk(x1, . . . , xk) = Sk−1(x1, . . . , xk−1)# 1

k

xk. In euclidean space

it collapses to Sn(x1, . . . , xn) = (1/n)
∑n

i=1 xi.

Note that this mean at each stage is defined from the
previous stage by taking the appropriate two-variable
weighted mean, which is monotone in each variable for P.
Thus the inductive mean is monotone.
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Random Walks and Sturm’s Theorem

Let (X, d) be an NPC metric space, {x1, . . . , xm} ⊆ X. Set
Nm = {1, 2, . . . ,m} and assign to k ∈ Nm the probability wk,
where 0 ≤ wk ≤ 1 and

∑m
k=1 wi = 1. For each ω ∈

∏∞

n=1 Nm,
define inductively a sequence σ = σω in X by σ(1) = xω(1),
σ(k) = Sk(xω(1), . . . , xω(k)), where Sk is the inductive mean.
(The sequence σω may be viewed as a “walk" starting at
σ(1) = xω(1) and obtaining σ(k) by moving from σ(k − 1)

toward xω(k) a distance of (1/k)d(σ(k − 1), xω(k)).)
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Random Walks and Sturm’s Theorem

Let (X, d) be an NPC metric space, {x1, . . . , xm} ⊆ X. Set
Nm = {1, 2, . . . ,m} and assign to k ∈ Nm the probability wk,
where 0 ≤ wk ≤ 1 and

∑m
k=1 wi = 1. For each ω ∈

∏∞

n=1 Nm,
define inductively a sequence σ = σω in X by σ(1) = xω(1),
σ(k) = Sk(xω(1), . . . , xω(k)), where Sk is the inductive mean.
(The sequence σω may be viewed as a “walk" starting at
σ(1) = xω(1) and obtaining σ(k) by moving from σ(k − 1)

toward xω(k) a distance of (1/k)d(σ(k − 1), xω(k)).)

Sturm’s Theorem. Giving
∏∞

n=1 Nm the product probability,
the set {ω ∈

∏∞

n=1 Nm : limn σω(n) = G(w;x1, . . . , xm)} has
measure 1, i.e., σω(n) → G(w;x1, . . . , xm) for almost all ω.
More generally, Sturm establishes a version of the Strong
Law of Large Numbers for random variables into an NPC
metric space, with limit the least squares mean.
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The Matrix Geometric Mean

Using Sturm’s Theorem, Lawson and Lim (2011) were able
to show:

(1) The least squares mean G on P, the limit a.e. of the
inductive mean, is monotone: Ai ≤ Bi for 1 ≤ i ≤ n
implies G(A1, . . . , An) ≤ G(B1, . . . Bn).

(2) All ten of the Ando-Li-Mathias (ALM) axioms hold for G.

(3) In a natural way G can be extended to a weighted
mean, and appropriate weighted versions of the ten
properties hold.
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The Matrix Geometric Mean

Using Sturm’s Theorem, Lawson and Lim (2011) were able
to show:

(1) The least squares mean G on P, the limit a.e. of the
inductive mean, is monotone: Ai ≤ Bi for 1 ≤ i ≤ n
implies G(A1, . . . , An) ≤ G(B1, . . . Bn).

(2) All ten of the Ando-Li-Mathias (ALM) axioms hold for G.

(3) In a natural way G can be extended to a weighted
mean, and appropriate weighted versions of the ten
properties hold.

Note: The ALM mean is typically distinct from the least
squares mean for n ≥ 3. Thus the ALM axioms do not
characterize a mean. The latter fact had already been noted
by Bini, Meini and Poloni (2010), who introduced a much
more computationally efficient variant of the ALM mean.
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Follow-ups

Bhatia (2012) was able to give a simplified self-contained
probabilistic proof of a weaker law of large numbers for the
case P of the positive matrices that sufficed to derive
monotonicity and other properties of the multivariable
geometric mean. Holbrook (2012) gave a non-probabilistic
(“no dice") proof of a direct convergence scheme of the
inductive mean to G.

In some remarkable very recent work M. Bačák has given a
nonprobabilistic version of the Proximal Point Algorithm for
general NPC-spaces that gives a general convergence
scheme for computing the least squares mean.
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The Proximal Point Algorithm

Let (X, d) be an NPC-space, a = (a1, . . . , am) ∈ Xn,
w = (w1, . . . , wm) a weight. Let {λk > 0}k≥0 be a sequence
satisfying

∑

k λk = ∞,
∑

k λ2
k < ∞.

Given x0 ∈ X, inductively for k ≥ 0 set

xkm+1 = xkm#ta1 for t =
λkw1

1 + λkw1

xkm+2 = xkm+1#ta2 for t =
λkw2

1 + λkw2
.... = ................................

xkm+m(= xk(m+1)) = xkm+m−1#tan for t =
λkwn

1 + λkwn

Then xj → Gm(w;a), the least squares mean.
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The Karcher Equation

The uniform convexity of the trace metric d on P yields that
the least squares mean is the unique critical point for the
function X 7→

∑n
k=1 d2(X,Ak). The least squares mean is

thus characterized by the vanishing of the gradient, which is
equivalent to its being a solution of the following Karcher
equation:

n
∑

i=1

wi log(X−1/2AiX
−1/2) = 0.
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The Karcher Equation

The uniform convexity of the trace metric d on P yields that
the least squares mean is the unique critical point for the
function X 7→

∑n
k=1 d2(X,Ak). The least squares mean is

thus characterized by the vanishing of the gradient, which is
equivalent to its being a solution of the following Karcher
equation:

n
∑

i=1

wi log(X−1/2AiX
−1/2) = 0.

This latter equivalence provides a method for defining a
mean on bounded positive definite operators on an
infinite-dimensional Hilbert space (where the trace metric is
no longer available) as the solution to the Karcher equation.
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Power(ful) Means

Power means for positive definite matrices have recently
been introduced by Lim and Palfia (2012).
Theorem. Let A1, . . . , An ∈ Ω and let w = (w1, . . . , wn) be a
weight. Then for each t ∈ (0, 1], the following equation has a
unique positive definite solution X = Pt(w;A1, . . . , An):

X =
n

∑

i=1

wi(X#tAi).

Trieste, 2013 – p. 21/26



Power(ful) Means

Power means for positive definite matrices have recently
been introduced by Lim and Palfia (2012).
Theorem. Let A1, . . . , An ∈ Ω and let w = (w1, . . . , wn) be a
weight. Then for each t ∈ (0, 1], the following equation has a
unique positive definite solution X = Pt(w;A1, . . . , An):

X =
n

∑

i=1

wi(X#tAi).

No closed formula is known, but when restricted to the
positive reals (or commuting matrices), the power mean
reduces to the usual power mean

Pt(w; a1, . . . , an) =
(

w1a
t
1 + · · · + wnat

n

)

1

t .
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Power Means II

Power means are invariant under permutations, monotonic,
and invariant under congruence transformations. Their
geometry appears to be more suited to the Thompson
metric than the trace metric. In particular, they are
non-expansive with respect to the Thompson metric and the
right hand side of the defining equation is a strict
contraction (properties 3 and 4, next slide).
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Power Means II

Power means are invariant under permutations, monotonic,
and invariant under congruence transformations. Their
geometry appears to be more suited to the Thompson
metric than the trace metric. In particular, they are
non-expansive with respect to the Thompson metric and the
right hand side of the defining equation is a strict
contraction (properties 3 and 4, next slide).

The power means are decreasing, s < t implies
Ps(· ; ·) ≤ Pt(· ; ·), and most importantly

lim
t→0+

Pt(· ; ·) = G(· ; ·).

Thus by passing to limits the power means provide an
alternative (probability free) route to the monotonicity of the
least squares mean G.
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The Thompson Metric

The Thompson metric on P is defined by

d(A,B) = log{M(A/B),M(B/A)}, M(A/B) = inf{t : A ≤ tB}.

For P finite or infinite dimensional, the following hold.
1. d is a complete metric on P, and its topology agrees with
the relative operator topology.
2. The mappings γ(t) = A#tB form a family of distinguished
metric geodesics, but are no longer unique.
3. The Thompson metric satisfies a weaker nonpositive
curvature condition than NPC-metrics, namely Busemann
nonpositive curvature: d(A#B,A#C) ≤ 1

2d(A,B). (This
works out to be a geometric version of the Loewner-Heinz
inequality: A ≤ B ⇒ A1/2 ≤ B1/2.)
4. d(

∑n
i=1 Ai,

∑n
i=1 Bi) ≤ max1≤i≤n{d(Ai, Bi)}.
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The Infinite Dimensional Case

For P the positive operators on an infinite-dimensional
Hilbert space, properties of the Thompson metric yield the
existence and basic properties of the power means Pt. The
strong limit of the decreasing family {Pt : t > 0} gives a
solution to the Karcher equation, which retains most of the
ALM properties, as shown by Lawson and Lim. The
Thompson metric is a key tool in establishing its
uniqueness.
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The Extended Hilbert-Schmidt Algebra

In recent work G. Larotonda has extended the Riemannian
manifold structure of finite-dimensional P to the setting of
the positive Hilbert-Schmidt positive operators augmented
with all positive scalar multiplies of the identity, all operating
on an infinite-dimensional Hilbert space. This manifold Pω

has an analog of the trace metric making Pω into an
NPC-space. The least squares mean is again the unique
solution of the Karcher equation. The Karcher mean of the
manifold P of all positive operators is then the continuous
extension via directed strong limits of the least squares
mean on the Riemannian manifold Pω of extended
Hilbert-Schmidt positive operators.
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