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Abstract: There has been longstanding interest in the problem of
characterizing normal compressions of normal matrices. Indeed,
the Hermitian case is completely solved by the Cauchy interlacing
theorem, and its converse (due to Fan and Pall). More recently, the
theory of higher–rank numerical ranges has included the solution to
the case of scalar compressions. Here we take some steps towards
a similar treatment of the general case. We develop some natural
necessary conditions on the eigenvalues as well as some convenient
sufficient conditions, showing by a study of the 2x2 compressions
of 4x4 normals that the necessary conditions are not sufficient. We
also give a new proof of the Choi–Kribs–Zyczkowski conjecture for
2x2 compressions by means of a powerful extension of that result.
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The CKZ conjecture (theorem) for 2x2 compressions says that
diag(a,a) is a compression of normal N if a lies in the intersection
L of the Ck, where Ck denotes the convex hull of the eigenvalues
of N with the kth eigenvalue omitted. We show that in fact
diag(a,b) is a compression whenever a,b both lie in L. This talk is
based on joint work with Nishan Mudalige and Rajesh Pereira.
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Given a linear operator T on a complex Hilbert space H, and any
orthogonal projection P , we say that PT |PH is a compression of
T . If H = C

N and T is represented by a matrix M ∈ MN (the
N × N complex matrices), a second matrix C represents a
compression of T (or a compression of M) iff there is a unitary
matrix U such that C is a NW corner of UMU

∗. If C is k × k we
say it is a rank–k compression of M. There is a rich history of
results that allow us to identify compressions by means of intrinsic
criteria.
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A classic example is the Cauchy interlacing theorem [Cau], along
with its converse [FP], which may be expressed as follows.

Theorem 1: If M ∈ MN is Hermitian, with eigenvalues

a1 ≤ a2 ≤ · · · ≤ aN ,

then C is a rank–k compression of M iff C is Hermitian with
eigenvalues bj satisfying

a1 ≤ b1 ≤ aN−k+1, a2 ≤ b2 ≤ aN−k+2, . . . , ak ≤ bk ≤ aN .

In particular, C is a rank N − 1 compression iff

a1 ≤ b1 ≤ a2 ≤ b2 ≤ a3 ≤ ... ≤ aN−1 ≤ bN−1 ≤ aN ,

the classic “interlacing” of eigenvalues.
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A much more recent example is provided by the theory of
higher–rank numerical ranges. The striking development of this
theory was motivated originally by problems in quantum
information theory. Since the introduction of this concept by Choi,
Kribs, and Życzkowski [CKŻ1,CKŻ2] only a few years ago, it has
indeed been effectively applied in the area of quantum information
(see [CPMSŻ,KPLRdS,LP,LPS1,MMŻ], for example). It has also
inspired a remarkable development of its purely mathematical
aspects (see, for example, [CHKŻ,CGHK,Wo,LS,LPS2,DGHPŻ]).
From this point of view the theory of the higher–rank numerical
ranges may be described as a highly successful analysis of scalar
compressions of arbitrary matrices M ∈ MN .
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This suggests a more general program: characterize the normal
(diagonal) compressions of M. Here we present some recent results
that may be viewed as a useful beginning for this program.

The rank–k numerical range of M, usually denoted in the literature
by Λk(M), was defined by Choi, Kribs, and Życzkowski as the set
of those complex λ such that for some rank–k orthogonal
projection P we have

PMP = λP .

In terms of compressions, we see that λ ∈ Λk(M) iff λIk is a
(matrix) compression of M. Thus the following fundamental result
of Li and Sze [LS] may be placed in the same family as the Cauchy
interlacing theorem (and, in fact, the interlacing theorem plays a
role in the argument of Li and Sze).
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Theorem 2: Given M ∈ MN , let λj(θ) be an enumeration of the
eigenvalues of the (Hermitian)

Re(e iθM) = (e iθM + e
−iθ

M
∗)/2

such that
λ1(θ) ≤ λ2(θ) ≤ · · · ≤ λN(θ).

For each real θ, let the half–plane H(M, θ) be defined by

H(M, θ) = e
iθ{z : Re(z) ≤ λN−k+1(−θ)}.

Then
Λk(M) =

�
{H(M, θ) : θ ∈ [0, 2π]}. (1)
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Note that the Li-Sze theorem identifies ΛN(M) for an arbitrary
matrix M. If we specialize to the case of normal M we can
describe ΛN(M) nicely in terms of the eigenvalues of M. The
result is the following corollary, which first established the CKŻ
conjecture/theorem.

Corollary 3: Let z1, . . . , zN be the eigenvalues of normal
M ∈ MN(C).Then

Λk(M) = Ωk(M), (2)

where
Ωk(M) =

�

#(J)=N−k+1

conv{zj : j ∈ J}. (3)
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Note that for k = 2 equation (3) becomes

Ω2(M) =
N�

j=1

conv{zi : i �= j}.

Whereas Corollary 3 says that when a ∈ Ω2(M) we have diag(a, a)
as a compression of M, it is actually the case that for any pair
a, b ∈ Ω2(M) the normal diag(a, b) is a compression of M. The
following proposition is stated for unitary M, but these can stand
in for more general normal M.

Proposition 4: Let M be normal in MN and such that the
eigenvalues z1, . . . , zN are distinct and each is an extreme point of

W (M) (eg M unitary). Then a, b ∈ Ω2(M) implies that

�
a 0
0 b

�
is

a compression of M.
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It turns out that N = 5 is the difficult case for this proposition,
and the following figure shows what happens in this case. We see a
red point a in the inner pentacle Ω2(M) and a green cloud of
points mapping out a “starfish” B(a) which covers the inner
pentacle, and more. In general, for any a in the numerical range
W (M) = conv{z1, . . . , zN}, we use the notation

B(a) = {b ∈ C : diag(a, b) is a compression of M}.

in what follows we give a brief account of the reasons behind this
stronger form of the CKŻ conjecture/theorem.
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We have the following simple necessary condition for
compressions.

Proposition 5: For every M ∈ MN , if k ≤ N, C is a rank-k
compression of M, and Q is a compression of rank N − k + 1, then

W (C ) ∩W (Q) �= ∅.

In particular, if M ∈ MN is normal with eigenvalues z1, . . . , zN , and
the rank–k compression C is normal with eigenvalues c1, . . . , ck ,
then for every index set J having #(J) = N − k + 1

conv{c1, . . . , ck} ∩ conv{zj : j ∈ J} �= ∅.

Specializing further, if diag(a, b) is a compression, then the line
segment [a, b] must meet conv{zj : j ∈ J} whenever #(J) = N − 1.
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Proof: Let S and T be the subspaces corresponding to
compressions C and Q. Since the dimensions add to more than N,
S and T must intersect non–trivially; let u be a unit vector in
S ∩ T . Then

(Mu, u) = (Mu,PSu) = (PSMu, u) = (Cu, u) ∈ W (C ),

and similarly (Mu, u) ∈ W (Q). QED

There is a also a simple sufficient condition for normal
compressions.

Proposition 6: If M ∈ MN is normal with eigenvalues z1, . . . , zN
then c1, . . . , ck ∈ C are eigenvalues of a normal compression C of
M provided that there exists a partition J1, . . . , Jk of
{1, 2, . . . ,N} such that for each i = 1, . . . , k

ci ∈ conv{zj : j ∈ Ji}.
Proof: This is by means of a direct construction of an appropriate
orthonormal basis.
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Note that if b ∈ B(a) we have orthonormal u,w such that

(Mu, u) = a, (Mw ,w) = b, and (Mu,w) = (Mw , u) = 0.

Thus a =
�

N

1 |uj |2zj , a convex combination. Let ∆N denote the
N–dimensional simplex, ie conv{e1, . . . , eN}; then |u|2 (where the
operations are performed componentwise) belongs to

C (a) = {t ∈ ∆N : a =
N�

1

tjzj}.

By exchanging complex arguments between the components of u
and w we may assume that u ≥ 0; then the possible u lie in
{
√
t : t ∈ C (a)}. The conditions on w ∈ C

N are then given by

�w� = 1,w ⊥ u,w ⊥ z ◦ u, and w ⊥ z ◦ u,

where ◦ indicates Schur (componentwise) multiplication, so that

z ◦ u = (z1u1, . . . , zNuN)
�,

with � indicating transpose.
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We may thus describe B(a) as follows.
Proposition 7: Given a ∈ W (M)(= conv{z1, . . . , zN}),

B(a) =
�

t∈C(a)

B(a, t),

where

B(a, t) = {
N�

1

|wj |2zj : �w� = 1,w ⊥
√
t, z ◦

√
t, z ◦

√
t}.

The structure of the convex set C (a) is determined by its extreme
points.

Lemma 8: The extreme points of C (a) are those t ∈ C (a) such
that at most three tk > 0.
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The complexity of B(a, t) increases with the number of nonzero tk .
For example, if only one tk > 0, then tk = 1 and a = zk . Here the
simple sufficient condition of Proposition 6 is also necessary:

B(a, t) = conv{zj : j �= k}.

We see this as follows. Evidently, with u =
√
t = ek , u,w are

orthonormal exactly when w =
�

j �=k
αjej with

�
j �=k

|αj |2 = 1;
then

b = (Nw ,w) =
�

j �=k

|αj |2zj ∈ conv{zj : j �= k},

and any b ∈ conv{zj : j �= k} can be obtained in this way.
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The same sort of simplification occurs if only two or three tk > 0.
Proposition 9: (a) If t ∈ C (a) has exactly two positive
components, say t1, t2 > 0, then

B(a, t) = conv{zj : j > 2}.

(b) If t ∈ C (a) has exactly three positive components, say
t1, t2, t3 > 0, then

B(a, t) = conv{zj : j > 3}.

When N ≥ 4 we may deal with a such that some t ∈ C (a) has four
positive components. We then obtain the first examples where the
necessary conditions are not sufficient.
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Proposition 10: Let N = 4 and suppose that z1, z2, z3, z4 are all
extreme in W (M) and are numbered in counterclockwise order.
The diagonals [z1, z3] and [z2, z4] meet at q and divide W (M) into
four quadrants. Consider a ∈ W (M); the possibilities for B(a) are
as follows.
(a) See figure 2: a lies in the interior of one of the quadrants. For
convenience, assume that a ∈ conv{z1, z2, q}; let x = t(1, 2, 3),
y = t(1, 2, 4). Then B(a) is the curve traced out by the function
b(r) defined for 0 < r < 1 by

b(r) =
4�

k=1

(xk − yk)2

(1− r)xk + ryk
zk

� 4�

k=1

(xk − yk)2

(1− r)xk + ryk
.

Note that x4 = 0 and y3 = 0 so that

lim
r→0

b(r) = z4, lim
r→1

b(r) = z3,

and we obtain a continuous curve parametrized on [0, 1] when we
interpret b(0) as z4 and b(1) as z3. Except for these endpoints, the
curve lies in the interior of the opposite quadrant conv{z3, z4, q}.
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(b) If a lies in the interior of one of the sides of W (M) then B(a)
is the opposite side (eg if a is inside [z1, z2] then B(a) = [z3, z4]).
If a = zk then B(a) is the opposite triangle conv{zj : j �= k}.
(c) See Figure 3: a lies interior to the diagonals but is not q; say a

is interior to [z1, q]. Then B(a) is the T–shaped object
[z2, z4] ∪ [q, z3].
(d) If a = q then B(a) is the union of the two diagonals.
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We now have the tools to continue the theme of Proposition 9,
treating the case when exactly four of the components of t ∈ C (a)
are positive.
Proposition 11: Suppose that N > 4 and that t ∈ C (a) has
exactly four positive components; for convenience, assume that
t1, t2, t3, t4 > 0 and that a lies in the upper quadrant relative to
Q = conv{z1, z2, z3, z4}, ie a is interior to conv{z1, z2, q} (see
Figure 2, with the understanding that it is now intended to show
only the relation of a to z1, z2, z3, z4, and Proposition 10). Let β
be the curve traced out by b(·) of Proposition 10(a) (and shown in
Figure 2). Then

B(a, t) = conv{β, z5, z6, . . . , zN}.
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Proposition 11 allows us to understand, in large part, the
phenomenon illustrated in Figure 1. Let N = 5 and suppose that
each eigenvalue zk is an extreme point of
W (M) = conv{z1, . . . , z5} (eg whenever M is unitary). For
convenience, label the zk in counterclockwise order. Suppose that
a lies strictly inside the central pentagon, ie Ω2(M) as defined in
(3). For each k let βk denote the curve obtained as in Proposition
11 by regarding a as an element of the quadrilateral
Qk = conv{zj : j �= k}. Note that βk connects zk+2 and zk+3

(numbering modulo 5) and lies in the quadrant of Qk opposite to
the one containing a. We claim that (as illustrated in Figure 1)
B(a) includes the whole “starfish” region bounded by
β1,β2, . . . ,β5.

To see this note that the starfish is the union of the wedges
Wk = conv{βk , zk}, so it suffices to show that each Wk ⊆ B(a).
Since a ∈ Qk there is t ∈ C (a) such that tk = 0. Then Proposition
11 tells us that B(a, c) = Wk .
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Figure 1 was obtained by first computing C (a) via Lemma 8 as

conv{t(k , k + 2, k + 3) : k = 1, 2, . . . , 5}

(note that for a in the inner pentagon, the only eigenvalue
triangles containing a correspond to the triples zk , zk+2, zk+3). To
generate each of the thousands of b’s in B(a), plotted as green
points in Figure 1, our MATLAB program first chose a “random”
point t ∈ C (a) (ie a random convex combination of the five
c(k , k + 2, k + 3)), put u =

√
t, then computed b = (Nw ,w)

where w was chosen “randomly” in

C
5 � span{u, u ◦ Re(z), u ◦ Im(z)}

(and normalized so that �w� = 1). The curves βk were added
using the formula of Proposition 10(a). Such simulations strongly
suggest the following “starfish conjecture”, since no green dots fall
outside the starfish: in such a situation (and in particular when
N = 5 and M is unitary), B(a) not only contains the starfish but is
equal to it.
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Continuity of B(·)

A natural assertion of “continuity” for B(·) might be that
dH(B(a�),B(a)) → 0 as a� → a, where dH(X ,Y ) is the Hausdorff
distance between compact nonempty sets X ,Y ⊂ C. Recall that

dH(X ,Y ) = max{d̂H(X ,Y ), d̂H(Y ,X )},

where
d̂H(X ,Y ) = max

x∈X
(min
y∈Y

|x − y |).

However, we have seen simple examples where this fails: consider
again Figure 2 and 3.
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In spite of such “failures” we’ll show that B(·) is continuous with
respect to Hausdorff distance at most points of W (M) and enjoys
a “one–sided” Hausdorff continuity in general.

Proposition 12: If N ≥ 4, B(a) is a compact nonempty set for
any a ∈ W (M).
The proof is a routine compactness argument and a related
argument shows that, in general, B(·) is continuous in a one–sided
Hausdorff sense.
Proposition 13: If a, an ∈ W (M) and an → a, then

d̂H(B(an),B(a)) →n 0. (4)
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In terms of the obvious extension of Hausdorff distance to compact
nonempty subsets of ∆N , we note that C (·) is continuous and in
fact satisfies a Lipschitz condition for each fixed M.
Proposition 14: There is a constant K < ∞ depending only on
M such that for all a, a� ∈ W (M)

dH(C (a),C (a�)) ≤ K |a− a
�|.

Next we show that B(·) is dH–continuous at any point that is “off
the grid”, and that continuity is uniform if we stay bounded away
from the grid.
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Proposition 15: If a ∈ W (M) but a does not lie on any line
segment [zi , zj ], then a

� → a implies that

dH(B(a
�),B(a)) → 0.

In fact, on any subset S(d) ⊂ W (M) that is a positive distance d

from the grid

G =
�

{[zi , zj ] : i , j = 1, . . . ,N},

so that
S(d) = {a ∈ W (M) : min

g∈G
|a− g | ≥ d},

the map a �→ B(a) is uniformly continuous.
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Questions:

Many questions are suggested by this work. Here are a few natural
examples.

If a, b, c ∈ Λ3(M) for normal M, does it follow that diag(a, b, c) is
a compression?

More generally, what can we say about normal compressions (ie
diagonal compressions) that are 3× 3 and larger?

Can we prove the “starfish conjecture”?
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[CKŻ1] M.–D. Choi, D. W. Kribs, and K. Życzkowski, Higher–rank
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