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Motivation: solitons and collapses

In this talk we discuss a possibility of light pulse
compression in fiber optics using the mechanism of wave
collapse.

It is well known that wave collapse in optics provides the
giant pulse shortening in two- and three-dimensional
geometry due to the Kerr nonlinearity.

However, in the one-dimensional case, for instance, in
fibers the cubic Kerr nonlinearity is compensated by wave
dispersion responsible for the optical pulse broadening
that results in stable optical envelope solitons. By this
reason, the wave collapse in such a case is impossible.
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Motivation: solitons and collapses

We consider two mechanisms how it is possible to
diminish the Kerr constant in order to provide wave
collapse appearance due to higher nonlinearities.

The first mechanism weaken the Kerr constant is
connected with the interaction of light and acoustic waves
(or Mandelshtam-Brillouin scattering) (Kuznetsov [1999]).

Another idea was suggested by Gabitov & Lushnikov
[2002] to use a nonlinear phase-shift interferometric
converter (the analog of the Mach-Zehnder
interferometer) which provides a way to control the sign of
the nonlinear phase shift.
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Motivation: solitons and collapses

In the case of a small Kerr constant it is necessary to take
into account the higher nonlinearities: nonlinear
correction to the group velocity, responsible for pulse
steepening, Raman scattering and six-wave interaction
as well. In this situation depending on the sign of the
renormalized Kerr constant χ there exist two soliton
families (Agafontsev, Dias & Kuznetsov [2008]).

How to use wave collapse to get short pulses in fibers – p. 5



Motivation: solitons and collapses

For the first family with positive χ for very small
amplitudes these solitons are nothing more than the NLS
solitons of the sech form. For larger amplitudes these
solitons transform into pulses with a chirp and an almost
constant pulse energy. This soliton family is shown to be
stable in the Lyapunov sense.

The second soliton family with χ < 0 has the same
behavior at small pulse durations but occurs to be
unstable. The nonlinear development of this instability
results in the collapse of solitons. Near the collapse time,
the pulse amplitude and its width exhibit a self-similar
behavior with a small asymmetry in the pulse tails due to
self-steepening.
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Motivation: solitons and collapses

The problem discussed here has a similarity with the
description of behavior of solitons near bifurcations, both
supercritical and subcritical. First time this staff was
investigated by Longuet-Higgins [1989] for water waves
and later in many details by Akylas [1993],
Longuet-Higgins [1993] and many others. The bifurcation
parameter is the soliton velocity V . When V approaches
the critical velocity Vcr which coincides with minimal (or
maximal) phase velocity of linear waves soliton
undergoes a bifurcation. What kind of bifurcations
depends on the nonlinear media characteristics.
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Motivation: solitons and collapses

For nonlinear optics the question about supercritical
bifurcations for optical solitons was considered in
Zakharov & Kuznetsov [1998] from the Hamiltonian point
of view and later for subcritical bifurcations (Kuznetsov
[1999]).

More reach situation takes place for bifurcations in the
system of interactive basic and second harmonics in
nonlinear optical media (Grimshaw, Kuznetsov, Shapiro
[2001]).
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Why collapse is absent in the 1D NLS

Consider the 1D NLS for dimensionalless envelope ψ of the
electric field

iψz + ψtt + χ|ψ|2)ψ = 0.

Here χ(= ±2) is the normalized Kerr constant.
In this equation the second term is responsible for dispersion
broadening of the pulse that can be stopped by the nonlinear
attraction between particles when χ is positive (focusing
nonlinearity). In this case we can expect existence of the
localized structures , i.e. solitons. (Evidently that solitons are
absent for χ < 0, i.e. for defocussing nonlinearity).
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Why collapse is absent in the 1D NLS

The simplest soliton solution ψ = ψs(t)e
iλ2z is defined from the

"stationary" NLS equation,

−λ2ψs + ∂2
t ψs + 2|ψs|2ψs = 0,

where −λ2 has the meaning of the "energy" of the bound
state (i.e. soliton), and

ψs = λ sech (λt).

It is easy to check that ψs(t) represents a stationary point of
the Hamiltonian

H =
∫
|∂tψ|2dt−

∫
|ψ|4dt ≡ I1 − I2

for fixed number of "particles" N =
∫
|ψ|2dt:

δ(H + λ2N) = 0.
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Why collapse is absent in the 1D NLS

Hence we can conclude that such soliton solution will be
stable if it realizes the minimum of H. This is the stability
criterion in the Lyapunov sense.
To verify that NLS soliton is stable it is enough to consider the
simplest scaling transformation remaining N :

ψs(t) → a−1/2ψs(t/a).

Under these transforms H becomes function of the scaling
parameter a:

H(a) =
I1
a2

− I2
a
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Why collapse is absent in the 1D NLS
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Why collapse is absent in the 1D NLS

Hence we can see that the NLS soliton realizes the minimum
of H under scaling transformations. It is possible to prove that
in the general case (under any transform with fixed N ) the
Hamiltonian is unbounded from below ant it’s minimum
corresponds to the soliton solution. The proof is based on the
integral inequalities following from the so-called Sobolev
imbedding theorem (for detail see, e.g., V.E. Zakharov and
E.A. Kuznetsov, Solitons and collapses - two scenarios of the evolution

of nonlinear wave systems , Physics Uspekhi 55, 535 - 556 (2012)).
Stability of solitons based on the Lyapunov theorem can be
considered as the energetical principle for the NLS equation.
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Main model

If the Hamiltonian is bounded from below then we can expect
formation of solitons but never can get collapse, i.e. formation
of singularity in a finite time. To obtain collapse, thus, we
should have the unbounded Hamiltonians. Collapse in such a
case can be considered as a process of falling down of a
particle in a self-consistent unbounded potential.
Thus, for fibers (1D system) collapse is possible if by some
reason the Kerr constant occurs small enough constant. In
this case one needs to keep next order terms beyond the Kerr
nonlinearity.
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Main model

The NLS equation in such case has the form

iψz + ψtt + f(|ψ|2)ψ + 4iβ|ψ|2ψt + iγ(|ψ|2)tψ = 0.

Here f(|ψ|2) = χ|ψ|2 +C|ψ|4 + ..., the term ∼ β is responsible
for the nonlinear correction to the group velocity (NLG),
another term of the same order ∼ γ is for the Raman
scattering.
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Main model

The Raman term can be excluded by means of the
transformation

ψ = ψ̃ exp

(
−iγ

2

∫ t

−∞

|ψ̃|2dt′
)

under which the NLS takes the form (tilde is omitted)

iψz + ψtt + f(|ψ|2)ψ + i4β|ψ|2ψt + α|ψ|4ψ = 0

where

α = −γ (γ − 8β)

8
.

For β = 0 α < 0, i.e. the Raman scattering provides
defocussing.
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Hamiltonian formulation

The extended NLS belongs to the Hamiltonian equations,

iψz =
δH

δψ∗
, H =

∫ [
|ψt|2 −

χ

2
|ψ|4 + iβ(ψ∗

tψ − ψtψ
∗)|ψ|2 − C|ψ|6

]
dt

where we assume the constant χ being small and C > 0.
The β- term appears as the result of expansion of 4-wave
matrix element near ω = ω0:

Tωω1ω2ω3
= Tω0ω0ω0ω0

+
∂T

∂ω

∣∣∣∣
ωi(Ω+Ω1+Ω2+Ω3)

where Ω = ω − ω0,

Tω0ω0ω0ω0
= − χ

2π
,
∂T

∂ω

∣∣∣∣
ωi=ω0

= − β

2π
.
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Solitons

Soliton solutions of the extended NLS can be found from the
variational problem

δ(H + λ2N) = 0

(
N =

∫
|ψ|2dt

)
.

The corresponding soliton solutions can be found explicitly in
terms of amplitude r and phase φ (ψ = reiφ):

r2 =
4λ2

√
16λ2C1 + χ2 cosh(2λt) − χ

,

φ = − β2

√
C1

tan−1

[√
16λ2C1 + χ2 e2λt − χ

4λ
√
C1

]
(chirp)

where C is renormalized as C1 = C + β2.
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Solitons

Important: This soliton-type solution exists only if C1 > 0.
As the result depending on the sign of χ we have two solution
families. For the first family (χ > 0) these solitons degenerate
to usual NLS solitons of the sech type as λ→ 0, respectively,
the pulse power (∼ N ) vanishes proportionally to λ. At large λ
N saturates approaching from below its maximal value
Ncr = π/(2

√
C1). For this family the derivative

∂N

∂λ2
> 0.
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Solitons

Dependences of N on λ for two soliton families. Dashed line
corresponds to the the critical value Ncr = π/(2

√
C1).
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Solitons

The upper soliton family (χ < 0, defocussing nonlinearity)
demonstrates familiar behavior at large λ with exponential
vanishing at the infinity and very different at small λ. For
λ = 0 the soliton decays in a power-law fashion:

r2
lim =

2|χ|
χ2t2 + 4C1

with its maximum value in amplitude A =
√
|χ|/(2C1).

Respectively, N gets its maximal value at λ = 0 equal to 2Ncr

and approaches from above to Ncr at large λ; derivative

∂N

∂λ2
< 0(!)
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Stability criterion

The dependence N(λ) gives possibility to make some
predictions about soliton stability based on the
Vakhitov-Kolokolov criterion.

If the derivative ∂Ns/∂λ
2 on the soliton family is negative

then solitons are unstable and they are stable in opposite
situation.

For the lower soliton branch this criterion gives stability
and instability for solitons with χ < 0.

However, the Vakhitov-Kolokolov criterion, derived for the
classical NLSE, can not be applied to our system strictly
speaking.
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Lyapunov stability for the lower family

Using the scaling transformations r → a−1/2r(t/a)

remaining N it is possible to see that soliton realizes
minimum of H(a) χ > 0. For χ < 0 (defocussing) solitons
have maxima.

By means of exact integral inequalities it is possible to get
the following estimation

H ≥ −χ
2N3

8
√

3

[
1 −

(
N

Ncr

)2
]

whence one can see the boundedness of H if N ≤ Ncr.

This proves stability of the soliton family with χ > 0. This
is stability in the Lyapunov sense, i.e. stability not only
with respect to small perturbations but also against finite
ones. How to use wave collapse to get short pulses in fibers – p. 23



Collapse of solitons

At χ = 0 in this case this model can be considered as the
critical NLS (critical in the same sense as 2D cubic NLS).

Another reason for collapse existence in the GNLS is
connected with unboundedness of the Hamiltonian from
below (only for defocussing cubic nonlinearity!).

H (a) =

(
1

a
− 1

2a2

)
χ

2

∫
|ψs|4 dt

where a is the scaling parameter.

For β = 0 the virial theorem is valid:

Rzz = 8

(
H − χ

4

∫
|ψ|4dt

)
, R =

∫
t2|ψ|2dt,

At χ < 0 collapse takes place for H ≤ Hs.
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Collapse of solitons

Numerics at χ < 0 show self-similar behavior for
collapsing soliton. Near the collapse point the term ∼ χ

can be neglected. In this case GNLS admits self-similar
solutions,

r(z, t) = (z0 − z)−1/4f

(
t

(z0 − z)1/2

)
.

To verify the asymptotic behavior, we normalized ψ by
max |ψ| ≡M :

ψ(x, t) = Mψ(ξ, τ), ξ = M2(x− xmax), τ = logM.

New more convenient variables do not require the
determination of the collapsing time t0.
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Collapse of solitons: numerical results

Initial (solid line) and final (dashed line) at t = 2.7192

dependences |ψ| on ξ.
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Collapse of solitons: numerical results

Dependence of 1/max |ψ|4 on time.
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Conclusions

We analyzed the stability of solitons. In particular, we
have found a region of wave intensity, N ≤ Ncr, where
solitons stable in accordance with the Lyapunov
theorem. Their stability is based on the boundedness of
H from below.

For solitons with χ < 0 (defocusing Kerr nonlinearity) we
get instability.

Nonlinear stage of this instability leads to wave
collapse. The form of the central part of the collapsing
pulse in self-similar variables approaches the soliton
shape. Asymptotically collapse tends to the critical one
for NLS systems.
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