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• Order of perturbations
• Light propagation, linear CMB and ISW
• Non-linear effects
• Lensing order of magnitudes
• Lensed power spectrum

• CMB polarization
• Reconstructing the potential
• Cosmological parameters
• Non-Gaussianity
• Cluster lensing

Outline



O(10-5) perturbations
(+galaxy)

Dipole (local motion)

(almost) uniform 2.726K blackbody

Observations:
the microwave 
sky today

0th order (uniform 2.726K) + 1st order perturbations (anisotropies)



CMB temperature

Perturbations: End of inflation Perturbations: Last scattering surface

gravity+
pressure+
diffusion 

Perturbations super-horizon Sub-horizon acoustic oscillations
+ modes that are still super-horizon

0th order uniform temperature + 1st order perturbations:



14 000 Mpc

z~1000

z=0
θθ

0

Horizon size at 
recombination



Effect of large-scale super-horizon perturbations?

Single-field inflation:  only one degree of freedom, e.g. everything 
determined by local temperature (density) on super-horizon scales

Cannot locally observe super-horizon perturbations (to )

Observers in different places on LSS will see statistically exactly the same thing 
(at given fixed temperature/time from hot big bang)
- local physics is identical in Hubble patches that differ only by super-horizon modes

Universe recombines at same temperature everywhere; recombination is a constant temperature surface



BUT: a distant observer will see modulations due to the large modes <~ horizon size today
- can see and compare multiple different Hubble patches at recombination

• Linear modes cause anisotropic redshifting along the line of sight 
- 0th order uniform last scattering surface modulated by 1st order perturbations

generates linear CMB anisotropies on large scales, including ISW

• linear perturbations at last scattering are observed in perturbed universe:
-1st order small-scale perturbations are modulated by the effect 1st order large-scale 
(and smaller-scale) modes

non-linear CMB anisotropies, mainly CMB lensing (2nd order and higher)

For simplicity consider recombination to give sharp visibility –
CMB photons come from spherical shell about us at background time 



Need to use geodesic equation to account for line light propagation:

LSS

Us

Affine parameter 

4-momentum 
(this defines choice of  normalization of 

Use linear perturbation theory with 

- Conformal Newtonian Gauge (CNG) [scalar perturbations]
- Note signature convention different compared to CMB Theory lectures



Zero component of geodesic equation in the Conformal Newtonian Gauge: 

Linear CMB anisotropies

Note: perturbations and are functions of time and position

Last Scattering

Null geodesic:



Integrate between time and today ( ), rearrange

All photons redshift the same way, so 

Recombination fairly sharp at background time : ~ constant temperature surface.
Also add Doppler effect:



Sachs-Wolfe Doppler ISWTemperature 
perturbation at
recombination
(Newtonian Gauge)



Alternative

Gauge-invariant 3-curvature on constant temperature hypersurfaces expansion in flat gauge



Writing Sachs-Wolfe source terms  + ISW is just a convenient choice: 
physics is the gradual anisotropic redshifting of photons along the line of sight

In matter domination : ISW term vanishes – contributions separate in time

Early ISW: changing potentials going from radiation to matter domination

Late ISW:   changing potentials as dark energy starts to be important

How do potentials evolve, In Newtonian limit 

- Universe is expanding, physical size of perturbation , so 
- Density perturbations are growing, in matter domination 



arXiv:1204.5018



Overdensity: positive ISW (net blueshift, deeper potential falling in than climbing out)

Underdensity: negative ISW (net redshift)

Uniform CMB
at last scattering

Late time: dark energy slows growth of structure (expansion faster than growth)
– potentials decay with time

Radiation negligible 

See



Why the interest in ISW? Probes late time evolution: constrain dark energy

Problem: CMB anisotropy is ISW+Sachs-Wolfe+Doppler+…: cannot easily isolate

Partial solution: correlate CMB with another probe of the large-scale structure

Big overdensity 1. Positive ISW signal, 2. Higher density of galaxies 

> 0Positive correlation 



Detected, consistent with cosmological constant. 
But still limited in principle by cosmic variance to 



Spatial components of the geodesic equation?

Where is the spatial photon 
propagation direction
- deflection due to transverse 
potential gradients

A

e

M

Full solution for 0th+1st order photon path

FRW background solution Time delay Lensing



Zeroth-order CMB

• CMB uniform blackbody at ~2.7 K
(+dipole due to local motion)

1st order effects
• Linear perturbations at last scattering, zeroth-order light propagation; 

zeroth-order last scattering, first order redshifting during propagation (ISW)
- usual unlensed CMB anisotropy calculation 

• First order time delay, uniform CMB
- last scattering displaced, but temperature at recombination the same
- no observable effect



1st order effects contd.

• First order CMB lensing: zeroth-order last scattering (uniform CMB ~ 2.7K), 
first order transverse displacement in light propagation

A B

Number of photons before lensing
---------------------------------------------
Number of photons after lensing

=
A2

----
B2

=
Solid angle before lensing
-----------------------------------
Solid angle after lensing

Conservation of surface brightness: number of photons per solid angle unchanged

uniform CMB lenses to uniform CMB – so no observable effect



2nd order effects
• Second order perturbations at last scattering, zeroth order light propagation

-tiny ~(10-5)2 corrections to linear unlensed CMB result

• First order last scattering (~10-5 anisotropies), first order transverse light 
displacement
- this is what we call CMB lensing

• First order last scattering, first order time delay
- delay ~1MPc, small compared to thickness of last scattering
- coherent over large scales: very small observable effect

• First order last scattering, first order anisotropic expansion
~(10-5)2: small but non-zero contribution to large-scale bispectrum
[equivalent to mapping from physical to comoving - the Maldacena consistency relation bispectrum on the CMB]

• First order last scattering, first order anisotropic redshifting
~(10-5)2: gives non-zero but very small contribution to large-scale bispectrum

• Others 
e.g. Rees-Sciama: second (+ higher) order redshifting
SZ: second (+higher) order scattering, etc….

Hu, Cooray: astro-ph/0008001



Last scattering surface

Inhomogeneous universe
- photons deflected

Observer

Weak lensing of the CMB perturbations



14 000 Mpc

Not to scale!
All distances are comoving

~100Mpc

~200/14000 ~ degree

largest overdensity

Neutral gas - transparent

Ionized plasm
a -opaque

Good approximation: CMB is single source plane at ~14 000 Mpc

R
ecom

bination

~200Mpc



Credit: Duncan Hanson



Credit: Duncan Hanson



CMB lensing order of magnitudes

β

Newtonian argument: β = 2 Ψ
General Relativity: β = 4 Ψ

Ψ

Potentials linear and approx Gaussian: Ψ ~ 2 x 10-5

β ~ 10-4

(β << 1)

How big are the lenses/how many of them?



Matter Power Spectrum
(in comoving gauge)

Structure growth in matter domination Growth during radiation domination.

Photon pressure stops growth: due to expansion
no gravitational driving force, no acceleration
dark matter velocities redshift 

Integrate to get density growth

For more details see notes at: http://cosmologist.info/teaching/EU/

Small scales, : 

Large scales, : Use Poisson equation

(+ matter domination)



Turnover in matter power spectrum at 
(set by horizon size at matter-radiation equality)

More lenses more lensing most effect for small lenses for more along line of sight
Smallest lenses where potential has not decayed away 

Linear Matter Power Spectrum



CMB lensing order of magnitudes

β

Newtonian argument: β = 2 Ψ
General Relativity: β = 4 Ψ

Ψ

Potentials linear and approx Gaussian: Ψ ~ 2 x 10-5

β ~ 10-4

Characteristic size from peak of matter power spectrum ~ 300Mpc

Comoving distance to last scattering surface ~ 14000 Mpc

pass through ~50 lumps

assume uncorrelated

total deflection ~ 501/2 x 10-4

~ 2 arcminutes

(neglects angular factors, correlation, etc.)

(β << 1)



Why lensing is important

• 2arcmin deflections:  3000
- On small scales CMB is very smooth so lensing dominates the linear 
signal at high 

• Deflection angles coherent over 300/(14000/2) ~ 2°

- comparable to CMB scales
- expect 2arcmin/60arcmin ~ 3% effect on main CMB acoustic peaks

• Non-linear: observed CMB is non-Gaussian 
- more information
- potential confusion with primordial non-Gaussian signals

• Does not preserve E/B decomposition of polarization: e.g. 
- Confusion for primordial B modes (“r-modes”)
- No primordial B B modes clean probe of lensing

Relatively large not – GR lensing factor, many lenses along line of sight
[NOT because of growth of matter density perturbations, potentials are constant or decaying!]



Deflection angle , shear and convergence 

- Often switch between equivalent alternative descriptions

Small source

Convergence

Shear

Rotation from scalar perturbations in linear perturbation theory
(because deflections from gradient of a potential)



Last scattering

FRW background: comoving angular diameter distance

X

Write X, in two ways

Observed deflection

Calculating the deflection angles

Weyl Potential:

determines scalar 
part of the Weyl tensor
Conformally invariant



Lensed temperature depends on deflection angle

Lensing Potential
Deflection angle on sky given in terms of angular gradient of lensing potential

co-moving distance to last scattering

Newtonian potential

See lensing review for more rigorous spherical derivation



Comparison with galaxy lensing
• Single source plane at known distance

(given cosmological parameters)

• Statistics of sources on source plane well understood
- can calculate power spectrum; Gaussian linear perturbations
- magnification and shear information equally useful - usually discuss in 
terms of deflection angle; 
- magnification analysis of galaxies much more difficult 

• Hot and cold spots are large, smooth on small scales
- ‘strong’ and ‘weak’ lensing can be treated the same way: infinite 
magnification of smooth surface is still a smooth surface

• Source plane very distant, large linear lenses
- lensing by under- and over-densities; 

• Full sky observations
- may need to account for spherical geometry for accurate results



Power spectrum of the lensing potential

Expand Newtonian potential in 3D harmonics

with power spectrum

Angular correlation function of lensing potential:



Use jl are spherical Bessel functions

Orthogonality of spherical harmonics (integral over k) then gives

Then take spherical transform using

Gives final general result



Deflections O(10-3), but coherent on degree scales important!

Deflection angle power spectrum

Can be computed with CLASS http://class-code.net  or CAMB: http://camb.info

Linear

Non-linear

On small scales 
(Limber approx, )

Deflection angle power ~ 
(better: 



Redshift Dependence: broad redshift kernel all way along line of sight
Bulk of the signal 



Lensing potential and deflection angles: simulation

LensPix sky simulation code: http://cosmologist.info/lenspix (several others also available)



• Note: can only observe lensed sky

• Any bulk deflection is unobservable
– degenerate with corresponding change in unlensed CMB:
e.g. 
rotation of full sky
translation in flat sky approximation

• Observations sensitive to differences of deflection angles
- convergence and shear



Overdensity: magnification correlated with positive Integrated Sachs-Wolfe (net blueshift)

Underdensity: demagnification correlated with negative Integrated Sachs-Wolfe (net redshift)

(small-scales: also SZ , Rees-Sciama..)

Correlation with the CMB temperature



Lensing potential correlation with the CMB temperature

very small except on largest scales, mostly 

Also small large-scale lensing–E polarization correlation (from reionization)
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Calculating the lensed CMB power spectrum

• Approximations and assumptions:
- Lensing potential uncorrelated to temperature
- Gaussian lensing potential and temperature
- Statistical isotropy

• Simplifying optional approximations
- flat sky (good approximation)
- series expansion (poor approximation, but still useful to understand) 



• Fourier transforms:

• Statistical isotropy:

Unlensed temperature field in flay sky approximation

So where

Similarly for the lensing potential (also assumed Gaussian and statistically isotropic)



Lensed field: series expansion approximation

(BEWARE: this is not a very good approximation for power spectrum! see later)

Using Fourier transforms in flat sky approximation:

Then lensed harmonics then given by



Lensed field still statistically isotropic: 

with

Alternatively written as

where

(RMS deflection ~ 2.7 arcmin)

Second term is a convolution with the deflection angle power spectrum
- smoothes out acoustic peaks
- transfers power from large scales into the damping tail



Lensing effect on CMB temperature power spectrum



Small scales, large limit:
- unlensed CMB has very little power due to silk damping:

- Proportional to the deflection angle power 
spectrum and the (scale independent) power in 
the gradient of the temperature



Better accurate calculation:
lensed correlation function

• Do not perform series expansion

Assume uncorrelated

Lensed correlation function:

To calculate expectation value use

x

x’
’

Seljak, astro-ph/9505109



where

Have defined:

- variance of the difference of 
deflection angles

small correction from 
transverse differences



So lensed correlation function is

Expand exponential using

Integrate over angles gives final result:

Note exponential: non-perturbative in lensing potential



Power spectrum and correlation function related by

used Bessel functions defined by

Can be generalized to fully spherical calculation: see review, astro-ph/0601594
However flat sky accurate to <~ 1% on the lensed power spectrum



Series expansion in deflection angle?

Series expansion only good on large and very small scales – don’t use for lensed 

Only a good approximation when:
- deflection angle much smaller than wavelength of temperature perturbation
- OR, very small scales where temperature is close to a gradient

CMB lensing is a very specific physical second order effect; not accurately 
contained in 2nd order expansion – differs by significant 3rd and higher order terms

Error using series expansion:

temperature
E-polarization



Consistency check, is amount of smoothing at the expected level:  

- Can we detect preference for in the data?
- Marginalizing over is also a way of “removing” lensing information from 

Credit: Duncan Hanson

defined so that lensing smoothing calculated using rather than physical 



LCDM parameter constraints from Planck alone
(no WMAP polarization)

Lensing in the power spectrum
is detected at high significance:

(2 )

(actually a bit high??)

Marginalizing (~ remove lensing information)
significantly shifts parameters
With lensing – almost a constraint on 

Oddity: power spectrum data seems to like high 

(physical, main result) varying (non-physical)



Summary so far

• Deflection angles of ~ 3 arcminutes, but correlated on 
degree scales

• Lensing convolves TT with deflection angle power 
spectrum
- Acoustic peaks slightly blurred
- Power transferred to small scales

large scales

small scales



Other specific non-linear effects

• Thermal Sunyaev-Zeldovich
Inverse Compton scattering from hot gas: frequency dependent 
signal

• Kinetic Sunyaev-Zeldovich (kSZ)
Doppler from bulk motion of clusters; patchy reionization;
(almost) frequency independent signal

• Ostriker-Vishniac (OV)
same as kSZ but for early linear bulk motion

• Rees-Sciama
Integrated Sachs-Wolfe from evolving non-linear potentials: 
frequency independent



SPT ACT

Lensing important at 
Dominated by SZ, CIB etc. on small scales

+ foregrounds
- actually dominate at 



CMB Polarization
Generated during last scattering (and reionization) by Thomson 
scattering of anisotropic photon distribution

Hu astro-ph/9706147



Observed Stokes’ Parameters

- -

Q U
Q → -Q, U → -U under 90 degree rotation

Q →  U, U → -Q under 45 degree rotation

Measure field perpendicular to observation direction 
Intensity matrix defined as

Linear polarization + Intensity + circular polarization

CMB only linearly polarized. In some fixed basis



Alternative complex representation

Define complex vectors

And complex polarization

e.g.

Under a rotation of the basis vectors

- spin 2 field



E and B polarization

“gradient” modes
E polarization

“curl” modes 
B polarization

e.g.



E and B harmonics
• Expand scalar PE and PB in scalar harmonics
• Expand P in spin-2 harmonics

Harmonics are orthogonal over the full sky:

E/B decomposition is exact and lossless on the full sky

Zaldarriaga, Seljak: astro-ph/9609170
Kamionkowski, Kosowsky, Stebbins: astro-ph/9611125



On the flat sky spin-2 harmonics are

Inverse relations:

Factors of rotate polarization to physical frame defined by wavenumber l



x

y

Polarization 
Qxy=-1, Uxy=0
Pxy = -1

in bases wrt 
(rotated by –φ)
Ql = 0, Ul = 1
Pl = i

Pl = Pxy e-2iφ

-φ



CMB Polarization Signals

Average over possible realizations (statistically isotropic):

• E polarization from scalar, vector and tensor modes

• B polarization only from vector and tensor modes (curl grad = 0)
+ non-linear scalars

Expected signal from scalar modes



Primordial Gravitational Waves
(tensor modes)

• Well motivated by some inflationary models
- Amplitude measures inflaton potential at horizon crossing
- distinguish models of inflation

• Observation would rule out other models

• Weakly constrained from CMB temperature anisotropy

Look at CMB polarization: 
‘B-mode’ smoking gun

- Anisotropic redshifting of 0th order last scattering by
1st order gravitational waves along the line of sight
- cosmic variance limited to 10% 
- degenerate with other parameters (tilt, reionization, etc)



Lensing of polarization

• Polarization not rotated w.r.t. parallel transport (vacuum 
is not birefringent)

• Q and U Stokes parameters simply re-mapped by the 
lensing deflection field

Last scattering Observed

e.g.



Series expansion
Similar to temperature derivation, but now complex spin-2 quantities:

Unlensed B is expected to be very small. Simplify by setting to zero.
Expand in harmonics

First order terms are



Lensed spectrum: lowest order calculation

Need second order expansion for consistency with lensed E 0th x 2nd order + 1st x 1st order :

Calculate power spectrum. Result is



Effect on EE and TE similar to temperature: convolution smoothing + transfer 
of power to small scales



Polarization lensing power spectra

Nearly white spectrum on large scales
(power spectrum independent of )

l4Cl
φ

l4Cl
φ l2Cl

E

Cl
B

Cl
E

On large scales, lensed BB given by

BB generated by lensing even if unlensed B=0

Can also do more accurate calculation
using polarization correlation functions

- unless removed, acts like an effective
white-noise of 



Current 95% indirect limits for LCDM given WMAP+2dF+HST
Polarization power spectra

Note: foregrounds expected to be much smaller than T for small-scale polarization: good!



arXiv: 1307.5830

B is from lensing of E
Can predict lensing potential from large-scale structure probe, e.g. CIB in this case
Measure E, make prediction for B by lensing E using CIB template for deflection prediction
Cross-correlate this prediction with actual B mode measurement

Agrees - detection!



Non-Gaussianity, statistical anisotropy 
and reconstructing the lensing field

2.

Anisotropic Gaussian lensed temperature distribution

1. Marginalize over (unobservable) lensing and unlensed temperature fields:

Non-Gaussian statistically isotropic lensed temperature distribution

In pixels this is a remapping : Linear in ; non-linear in 

is a linear function of for fixed : 

For a given lensing field think about : 

Gaussian; on small scales 



UnlensedMagnified Demagnified

+ shear modulation:

Think about ‘squeezed’ configuration: big nearly constant lenses, much smaller lensed T

Fractional magnification convergence 



Variance in each measurement 

- dominated by smallest scales

measurement of angular scale ( in each box nearly independent
Uncorrelated variance on estimate of magnificantion in each box
Nearly white ‘reconstruction noise’ on , with 

Lensing reconstruction
-concept



Average over unlensed CMB :

For define quadratic estimator by summing up with weights 

Off-diagonal correlation use to measure !

For fixed : Gaussian anisotropic distribution 

Use series expansion: 

(higher order terms are important, but bias can be corrected for later)

Zaldarriaga & Seljak, Hu 2001+



Want the best estimator: find weights g to minimize the variance

Want 



Reconstruction ‘Noise’ – from random fluctuations of the unlensed CMB
Turns out to be the same as the normalization 

On large scales (large lenses), , with no instrumental noise

Convergence Shear

constant

(in limit of no lensing – there are higher order corrections)



Lensing reconstruction information mostly in the smallest scales observed

- Need high resolution and sensitivity
- Almost totally insensitive to large-scale T (so only small-scale foregrounds an issue)

Reconstruction Noise

const Beam, noise, shape of and effects

Planck 2013



Practical fast way to do it, using FFT:

- Looks like convolution: use convolution theorem

- fast and easy to compute in harmonic space

- Can make similar argument on full sky and for polarization

Easy to calculate in real space: multiply maps



Alternative more general derivation (works for cut-sky, anisotropic noise)
For fixed lenses, sky is Gaussian by anisotropic:

Find the maximum-likelihood estimator for the lensing potential/deflection angle

Trick: where has covariance 

= - rewrite trace as “mean field” average

Can show that at leading order maximum likelihood solution is as before, but with 
weights optimally for cuts/noise
and subtracts average signal from 
noise inhomogeneity and cuts

“mean field” calculated from simulationsSets to zero in cut,
downweights high noise
(also need lensed astro-ph/0209489, arXiv:0908.0963

= 0



Final “optimal” quadratic (QML) estimator 

“Mean field” – accounts for other sources of
anisotropy in the data

Filtered maps 
weights for mask and noise anisotropy
(here approx. noise term as diagonal)

Planck 2013



Planck simulation

True lensing potential

= input + ‘reconstruction noise’

S/(S+N) filtered reconstruction



Planck full-sky lensing potential reconstruction

Note – about half signal, half noise,
not all structures are real: map is effectively Wiener filtered



Reconstruction noise budget
Lensing maps are reconstruction noise dominated, but 
maps from different channels are similar because mainly 
the same CMB cosmic variance.



Power spectrum of reconstruction 

[Also need to subtract next order power spectrum biases, 



Planck

(new SPT data also coming “soon”)

Comparison with ACT/SPT



Is it useful for parameter estimation?

Detailed measurement of 6 power spectrum acoustic peaks in TT

Accurate measurement of cosmological parameters?



0.1% accurate measurement of the acoustic scale:

YES: some particular parameters measured very accurately

But need full cosmological model to relate to underlying physical parameters..



e.g. Geometry: curvature

flat closed

θ
θ

We see:



or is it just closer??

flat

We see:

θ

Degeneracies between parameters

flat

θ



Extra lensing information can help break parameter degeneracies

Colour: Planck TT constraint
Crosses: Planck lensing 



Neutrino massLCDM matter density



• Reconstruction with polarization is much better if the noise is low 
enough: no cosmic variance in unlensed B – all small-scale B is lensing

• Polarization reconstruction can in principle be used to de-lens the CMB
- required to probe tensor amplitudes r <~ 10-4

- requires very high sensitivity and high resolution
- in principle can do things almost exactly: a lot of information in lensed 
B at high l

• Maximum likelihood techniques much better than quadratic estimators 
for polarization (astro-ph/0306354)

Polarization lensing reconstruction

Input Quadratic Iterative maximum likelihood



• Lensed CMB power spectra contain essentially two new numbers: 
- one from T and E, depends on lensing potential at l<300
- one from lensed BB, wider range of l

astro-ph/0607315

• More information can be obtained from lensing reconstruction

• Correlation between reconstruction and power spectrum lensing currently 
negligible because of large reconstruction noise; in future may have to 
model more carefully



Non-Gaussianity

- power spectrum encodes all the information

- modes with different wavenumber are independent

If no non-Gaussianity: Gaussian + statistical isotropy: 

Flat sky approximation:  

For more details on the following see arXiv:1101.2234, 1107.5431 and refs therein



Flat sky approximation:

If you know , sign of tells you which sign of is more likely

Bispectrum

Trispectrum

N-spectra…

Non-Gaussianity – general possibilities



+

+

+

Equilateral

=

b>0

b<0



Millennium simulation



Near-equilateral to flattened:

b<0b>0



Squeezed

T(

=+

+

+

b>0

b<0

Squeezed bispectrum is a correlation of small-scale power with large-scale modes



Calculating a squeezed bispectrum 

‘Linear-short leg’ approximation very accurate for large scales where cosmic variance is large

Correlation of the modulation
with the large-scale field

Response of the small-scale power
to changes in the modulation field
(non perturbative)

Example: local primordial non-Gaussianity

modulation super-horizon and constant through last-scattering, 

Primordial curvature perturbation is modulated as 

with any modulation field(s) so that where gaussian

Note: uses only the linear short leg approximation, otherwise non-perturbatively exact

(analytic result for 



Liguori et al 2007

e.g. 

Primordial local non-Gaussianity



Lensing bispectrum calculation
Assume Gaussian fields. Non-perturbative result:

Use 

~ Lensed temperature power spectrum

Measuring bispectrum measuring 



Note lensing bispectrum is anisotropic: 
small scales modulated in a way that depends on alignment with the large-scale modulating lens

Deflection angles

Modulation depends on relative orientation

CMB temperature Lensed CMB

anisotropic bispectrum
ISW- correlation anisotropic lensing TTT bispectrum

Local  modulations (e.g. ) are also squeezed, but they are isotropic: no orientation dependence



Squeezed shapes but different phase, angle and scale dependence

Lensing



Signal to noise

Contributions to Fisher inverse variance for 

Note: expected is non-zero:
cosmic signal variance

Var( ) =

In addition to reconstruction noise
(standard Fisher result)



Planck lensing bispectrum result

Large cosmic variance and reconstruction noise, but 
‘detected’ at 

Lensing signal must be subtracted when looking at 
local 



Lensing Trispectrum: Connected four-point < T T T T>c

Bispectrum: measures 
Trispectrum: measures 

In exactly the same way, for local primordial modulations

Squeezed Bispectrum: measures Only approximate (signal at )
- need to worry about finite last scattering thickness

Rather accurate (signal L<10) 
- Planck analysis exactly analogous to lensing

Squeezed Trispectrum: measures 

Quadratic estimator TT measures 
so TTT measures , TTTT measures 

Both anisotropic and distinct from primordial signals



Hunters’ guide to the non-Gaussianity zoo

Squeezed

Equilateral-flattened

Bispectrum = power modulation correlated to temperature 

Bispectrum

Isotropic ( ) Local modulations ,

Anisotropic CMB lensing
Non-standard anisotropic inflation

CMB lensing magnification

Dynamically generated
e.g. non-linear structure growth
inflation before horizon exit (e.g. )

Trispectrum

Diagonal
squeezed

Trispectrum = power spectrum of power modulation, 

Isotropic Local modulations (any 

Anisotropic CMB lensing
Anisotropic primordial power spectrum
Non-standard anisotropic inflation
Gravitational-wave modulation (small)

CMB lensing magnification

Trispectrum = bispectrum modulation correlated to temperature 
One-leg squeezed (small: either sign, or positive)

…

Bispectrum = concentrated hot spots in areas of milder  cold (or vice versa)





!

CIB-CMB lensing bispectrum detection



Cluster CMB lensing

GALAXY
CLUSTER

Last scattering surface What we see

CMB very smooth on small scales: approximately a gradient

0.1 degrees
Need sensitive ~ arcminute resolution observations



Unlensed Lensed Difference

RMS gradient ~ 13 μK / arcmin
deflection from cluster ~ 1 arcmin Lensing signal ~ 10 μK

BUT: depends on CMB gradient behind a given cluster

can compute likelihood of given lens (e.g. NFW parameters) essentially exactly

Unlensed CMB unknown, but statistics well understood (background CMB Gaussian) :



Unlensed T+Q+U Difference after cluster lensing

Add polarization observations?

Less sample variance – but signal ~10x smaller: need 10x lower noise 

Note: E and B equally useful on these scales; gradient could be either



Complications
• Temperature

- Thermal SZ, dust, etc. (frequency subtractable)
- Kinetic SZ (big problem?)
- Moving lens effect (velocity Rees-Sciama, dipole-like)
- Background Doppler signals 
- Other lenses

• Polarization
- Quadrupole scattering 
(< 0.1μK)
- Re-scattered thermal SZ (freq)
- Kinetic SZ (higher order)
- Other lenses

Generally much cleaner

But usually galaxy lensing does much better, esp. for low redshift clusters


