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Abstract

Weak gravitational lensing has several important effects on the Cosmic Microwave
Background (CMB): it changes the CMB power spectra, induces non-Gaussianities,
and generates a B-mode polarization signal that is an important source of confusion
for the signal from primordial gravitational waves. The lensing signal can also be
used to help constrain cosmological parameters and lensing mass distributions. We
review the origin and calculation of these effects. Topics include: lensing in General
Relativity, the lensing potential, lensed temperature and polarization power spec-
tra, implications for constraining inflation, non-Gaussian structure, reconstruction
of the lensing potential, delensing, sky curvature corrections, simulations, cosmo-
logical parameter estimation, cluster mass reconstruction, and moving lenses/dipole
lensing.
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Abstract The cosmic microwave background (CMB) represents a unique source for
the study of gravitational lensing. It is extended across the entire sky. partially polar-
ized. located at the extreme distance of z = 1100, and is thought to have the simple.
underlying statistics of a Gaussian random field. Here we review the weak lensing
of the CMB. highlighting the aspects which differentiate it from the weak lensing
of other sources. such as galaxies. We discuss the statistics of the lensing deflection
field which remaps the CMB. and the corresponding effect on the power spectra. We
then focus on methods for reconstructing the lensing deflections. describing efficient
quadratic maximum-likelihood estimators and delensing . We end by reviewing recent
detections and observational prospects.
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(almost) uniform 2.726K blackbody

T = 2.728 K

Dipole (local motion)

AT — 3.353 mK O(10°) perturbations
Nezminal mission 14305 (+galaxy)
Observations:
the microwave
sky today

—250

T 500 uKomb

Ot order (uniform 2.726K) + 1st order perturbations (anisotropies)



CMB temperature

Ot order uniform temperature + 15t order perturbations:

Perturbations: End of inflation Perturbations: Last scattering surface

gravity+
~ pressure+t
~ diffusion

[
»

Perturbations super-horizon Sub-horizon acoustic oscillations
+ modes that are still super-horizon



Horizon size at
recombination




Effect of large-scale super-horizon perturbations?

Single-field inflation: only one degree of freedom, e.g. everything
determined by local temperature (density) on super-horizon scales

2
Cannot locally observe super-horizon perturbations (to 0(%))

Observers in different places on LSS will see statistically exactly the same thing
(at given fixed temperature/time from hot big bang)
- local physics is identical in Hubble patches that differ only by super-horizon modes

Universe recombines at same temperature everywhere; recombination is a constant temperature surface



BUT: a distant observer will see modulations due to the large modes <~ horizon size today
- can see and compare multiple different Hubble patches at recombination

» Linear modes cause anisotropic redshifting along the line of sight
- 0" order uniform last scattering surface modulated by 15t order perturbations

generates linear CMB anisotropies on large scales, including ISW

 linear perturbations at last scattering are observed in perturbed universe:

-1st order small-scale perturbations are modulated by the effect 15t order large-scale
(and smaller-scale) modes

non-linear CMB anisotropies, mainly CMB lensing (2"d order and higher)

For simplicity consider recombination to give sharp visibility —
CMB photons come from spherical shell about us at background time n,



Need to use geodesic equation to account for line light propagation:

Us

A

dp*

- + T4 pp” =0

LSS
Affine parameter 1

dxH*
4-momentum p# = —7

(this defines choice of normalization of 1)

Use linear perturbation theory with ~ ds® = a(n)* [(1 4+ 2¥)dn* — (1 — 2&)dx”]

- Conformal Newtonian Gauge (CNG) [scalar perturbations]
- Note signature convention different compared to CMB Theory lectures



Linear CMB anisotropies
Note: perturbations @ and ¥ are functions of time and position

Zero component of geodesic equation in the Conformal Newtonian Gauge:

dp a’ OW a’ o
) 20+ 2% —+ [ —(1 — 20 — 2B) — &' ) 5;:p'p = 0
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dn = —dy X
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Last Scattering



P’=E(1-9%)/a [> d(aE) s <atp N qy) E< dy g CD’)
@zg(l_lp) dT] 6)( dn

dA

Integrate between time n and today (n.). rearranae
Mo
E(m0) = a(n)E(n) [1 £ - B+ [ dn(@ + @’)]
n
All photons redshift the same way, so kT ~ E.

Recombination fairly sharp at background time n,: ~ constant temperature surface.
Also add Doppler effect:

Mo
T(n,n0) = (a.+ da)T, {1 + V() —VYp+n-(v,—Vv)+ / dn(V" + @1’)]

5. - o r f
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Alternative

dX o0X 0X
dn odn dy

aaFa =a(n)E(n) [1 +WU(n)— Wy + fm dnd, (¥ + o)

— a(n)E(n) {1 ~ () + 4+ | " dndx (T + @)

&T 1 & X nA .
> jfbﬁ(ﬁ)::T"f—bern-(v.a.—v)Jrf dpn- V(¥ + 9)
mA
_ Q{-—l—ﬁ‘(VA—V)‘F‘/ dnn- V(U + @)
n

T

Gauge-invariant 3-curvature on constant temperature hypersurfaces = §N expansion in flat gauge



Writing Sachs-Wolfe source terms + ISW is just a convenient choice:
physics is the gradual anisotropic redshifting of photons along the line of sight

How do potentials evolve, ®', ¥'? In Newtonian limit ® =¥ «< GM /r

- Universe is expanding, physical size of perturbation «< a, SO r < a
- Density perturbations are growing, in matter domination M « a38p « 6p/p < a

In matter domination ® = W = const : ISW term vanishes — contributions separate in time

Early ISW: changing potentials going from radiation to matter domination

Late ISW: changing potentials as dark energy starts to be important
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Radiation negligible = ¥ = ®

X«
ATisw(n) = 2] dxW(xn:no — x)
0

Uniform CMB
at last scattering

See

Late time: dark energy slows growth of structure (expansion faster than growth)
— potentials decay with time

Overdensity: positive ISW (net blueshift, deeper potential falling in than climbing out)

Underdensity: negative ISW (net redshift)



Why the interest in ISW? Probes late time evolution: constrain dark energy

Problem: CMB anisotropy is ISW+Sachs-Wolfe+Doppler+...: cannot easily isolate

Partial solution: correlate CMB with another probe of the large-scale structure

Big overdensity = 1. Positive ISW signal, 2. Higher density of galaxies

.,

Positive correlation (7T ng) >0




Planck 2013 results. XIX. The integrated Sachs-Wolfe effect
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Detected, consistent with cosmological constant.

But still limited in principle by cosmic variance to ~ 70

LSS data o C-R NILC SEVEM SMICA
CAPS 086 +0.33 26 091033 28 090033 2.7 091033 27
NVSS CCF 080+033 24 084 +033 25 083033 25 0842033 25
SMHWcov 089+034 26 093+034 2.8 089+034 26 092+034 27
CAPS 098 +£052 19 1.09£052 21 1062052 20 1.09+£052 21
SDSS-CMASS/LOWYE CCF 081052 16 091£052 1.8 089052 1.7 090052 1.7
SMHWcov 080+£053 1.5 089053 1.9 0872053 1o 088x053 17
CAPS 131 £057 23 143+£057 25 135057 24 142+057 25
SDS5-MG CCF 1.00+057 1.8 1,11 £057 2.0 1.10+057 1.9 1.10+057 1.9
SMHWcov 1.03+059 1.8 118 +059 2.0 1.15+059 20 117059 2.0
CAPS 084+£031 27 091£031 29 088031 20 090031 29
all CCF 077031 25 083031 2.7 082031 2.6 0821031 2.7
SMHWcov 086032 27 092032 29 089032 28 0912032 29




Spatial components of the geodesic equation?

dn = -V, (®+ V) Where e is the spatial photon
propagation direction

- deflection due to transverse

potential gradients

ax d E
—=1+4+Y +de L_Z01-
N a ( ) - a(1 w)

| .
Full solution for Ot+1st order photon path

n n
x(n;n) = —ea(na —n) +ea / (@ +W)dn' - ] (m—n")VL(®+ ¥)dy
n

A A
\ ) { J \ J
Y | |

FRW background solution Time delay Lensing



Zeroth-order CMB

CMB uniform blackbody at ~2.7 K
(+dipole due to local motion)

1st order effects

Linear perturbations at last scattering, zeroth-order light propagation;
zeroth-order last scattering, first order redshifting during propagation (ISW)

- usual unlensed CMB anisotropy calculation

First order time delay, uniform CMB
- last scattering displaced, but temperature at recombination the same

- N0 observable effect



1st order effects contd.

» First order CMB lensing: zeroth-order last scattering (uniform CMB ~ 2.7K),
first order transverse displacement in light propagation

Number of photons after lensing B2 Solid angle after lensing

Conservation of surface brightness: number of photons per solid angle unchanged

:> uniform CMB lenses to uniform CMB — so no observable effect



2nd order effects

Second order perturbations at last scattering, zeroth order light propagation
-tiny ~(10-°)? corrections to linear unlensed CMB result

First order last scattering (~10- anisotropies), first order transverse light
displacement _
- this is what we call CMB lensing

First order last scattering, first order time delay _
- delay ~1MPc, small compared to thickness of last scattering
- coherent over large scales: very small observable effect  Hu, cooray: astro-ph/0008001

First order last scattering, first order anisotropic expansion

~(10-°%)% small but non-zero contribution to large-scale bispectrum
[equivalent to mapping from physical to comoving x - the Maldacena consistency relation bispectrum on the CMB]

First order last scattering, first order anisotropic redshifting _
~(10-°)2: gives non-zero but very small contribution to large-scale bispectrum

Others
e.g. Rees-Sciama: second (+ higher) order redshifting
SZ: second (+higher) order scattering, etc....




Weak lensing of the CMB perturbations

Neaniznd missing 143GHz

Last scattering surface

Inhomogeneous universe
- photons deflected

Observer




Not to scale!
All distances are comoving

largest overdensity

~200/14000 ~ degree
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14 000 Mpc ~100Mpc

Good approximation: CMB is single source plane at ~14 000 Mpc
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CMB lensing order of magnitudes

‘\‘
Newtonian argument: 3 =2 ¥
General Relativity: B =4 W (B <<1)

Potentials linear and approx Gaussian: W ~ 2 x 10-°

B ~ 107

How big are the lenses/how many of them?



Matter Power Spectrum

(in comoving gauge)

Q 2
A=8p/p  (AkDAK 1) = Pk )ik +K)

Large scales, k < aH,,: Use Poisson equation A = —(2/3)k2B /H2

4K 4 K
Pal) ~ g3aPe = 55917%
Small scales, k e (2 9 o (B )]
mall scales, k > aHeq. A ™ ﬁ ﬂﬁq + 21in ﬂﬂﬁ R
(+ matter domination) / \
Structure growth in matter domination % =Axa Growth during radiation domination.

Photon pressure stops growth: @ — 0 due to expansion
= no gravitational driving force, no acceleration

= dark matter velocities redshift « 1/a

Integrate v o« 1/a to get density = In(n) growth

For more details see notes at: http://cosmologist.info/teaching/EU/



P(k)

Linear Matter Power Spectrum

x 1/k3 X 1/k*

107

Py (k)

10

=
o

P(k) 7 (h™" Mpc)®

=
o

10°F

10

S 1 9 107 — \_ I_ \_ 1 1 | |
10 10 10 107 107 107 107" 10° 10' 10" 1073 10/? 10! 10°
EMpe/h k! (hMpe™) EMpe/h

Turnover in matter power spectrumat k ~ 0.01 — 0.02
(set by horizon size at matter-radiation equality)

More lenses = more lensing = most effect for small lenses for more along line of sight
Smallest lenses where potential has not decayed away ~ 300Mpc



CMB lensing order of magnitudes

‘\‘
Newtonian argument: 3 =2 ¥
General Relativity: B =4 W (B <<1)

Potentials linear and approx Gaussian: W ~ 2 x 10-°

B ~ 10

Characteristic size from peak of matter power spectrum ~ 300Mpc

Comoving distance to last scattering surface ~ 14000 Mpc

E> pass through ~50 lumps E> total deflection ~ 5012 x 104

assume uncorrelated ~ 2 arcminutes

(neglects angular factors, correlation, etc.)



Why lensing Is important

Relatively large 0(1073) not 0(107°) — GR lensing factor, many lenses along line of sight
[NOT because of growth of matter density perturbations, potentials are constant or decaying!]

2arcmin deflections: [ ~ 3000

- On small scales CMB is very smooth so lensing dominates the linear
signal at high [

Deflection angles coherent over 300/(14000/2) ~ 2°
- comparable to CMB scales
- expect 2arcmin/60arcmin ~ 3% effect on main CMB acoustic peaks

Non-linear: observed CMB is non-Gaussian
- more information
- potential confusion with primordial non-Gaussian signals

Does not preserve E/B decomposition of polarization: e.qg. E —» B
- Confusion for primordial B modes (“r-modes™)
- No primordial B = B modes clean probe of lensing



Deflection angle a, shear y; and convergence «

- Often switch between equivalent alternative descriptions

T(h) = T(i) = T(a+a)
4o—5 0 _flmFkTm —m+tw
A.!:_'J- — Uiy T E&j o —9 — W 1 — i 1 Y1

Rotation w = 0 from scalar perturbations in linear perturbation theory
(because deflections from gradient of a potential)

Small source I(n+d&) - [(n' + AdE)

y\~ Shear



Calculating the deflection angles

de |
— =—-V (®+ )

dn l ,

Weyl Potential:
Yy, = (P +W)/2

determines scalar 53 = —de{VJ_IIJ 0

part of the Weyl tensor
Conformally invariant

FRW background: comoving angular diameter distance
K=12sin(K'/2y) for K > 0, closed,

frk(x) =< x for K = 0. flat,
K|=Y2sinh(|K|'/?y) for K < 0, open.

Write X, intwo ways  fx (x«—x)0/3 - _fK();*)c"IE?

kG —x)08  fr(xe — x)
56, = -

Last scattering

X =

56!

Yoo

Observed deflection



Lensed temperature depends on deflection angle
T(n) =T(R) =TH +a)

Newtonian potential

o =00 =—2 f: dfo;SEX:) )VL‘I’(Xﬁ§ Mo — X)

\

co-moving distance to last scattering

See lensing review for more rigorous spherical derivation

Lensing Potential

Deflection angle on sky given in terms of angular gradient of lensing potential o = V!

ViU =(VaV)/fr(x)

fe(X* —x)
fre(x*) fx (x)

Y x* ~
Y(h) = —2 . dx ¥ (xi; 1m0 — X)

X(n)=Xn') =X( n+Vi(n) )



Comparison with galaxy lensing

Single source plane at known distance
(given cosmological parameters)

Statistics of sources on source plane well understood

- can calculate power spectrum; Gaussian linear perturbations

- magnification and shear information equally useful - usually discuss in
terms of deflection angle;

- magnification analysis of galaxies much more difficult

Hot and cold spots are large, smooth on small scales
- ‘'strong’ and ‘weak’ lensing can be treated the same way: infinite
magnification of smooth surface is still a smooth surface

Source plane very distant, large linear lenses
- lensing by under- and over-densities;

Full sky observations _
- may need to account for spherical geometry for accurate results



Power spectrum of the lensing potential

Expand Newtonian potential in 3D harmonics

, I’k .
11’[15{;'1'}} — f TN II"[ki'i’]r}E“k'x,

with power spectrum 0.2
(U(ksm) (k' n')) = h’,—'gpq:(h: . )0k — k')

Angular correlation function of lensing potential:

! 'Il A 'I-| ! )
\win )y

X Xe P =X = Ak 272 . e
4f 1 f 1 * X X X X f : Po |E.,'; N o dkew | —ikex
o Mo X ( X+ X e X (27)® K3 Wl )ee




Use %= iy, (k) Ye (1) Yim(k) ] are spherical Bessel functions

im

Orthogonality of spherical harmonics (integral over k) then gives

(P()p(n)) = 167 3 f dxf dy’ (ﬁ“_l) (:_f)

Y’
dk
fTJEfLYjJI’{RY JP “* 1,1 1-'}Jf'ﬂ": J},[:m:lr Jai.[f&mmf
Then take spherical transform using
V() =3 i Yim (1), (Yt Uprt) = St Oon CF
im

Gives final general result

dk Yo = XY\ [ — X
¥ = 167 f d f dy' Pa(k:mo = oo — (k) gk J( )( .
) v [ dx o= X )ik ) | =— .




Deflection anale power spectrum

On small scales ¥ m 2 [y Pall/ximo = ) (x* 1)
(Limber approx, ky ~ 1) 0 YeX
(better: Il - 1+ 1/2)
Deflection angle power ~ (1 +1)C}

I”1‘0 | o ”ll1|(|)0 | — I1.0l00
Deflections O(10-3), but coherent on degree scales - important!

Can be computed with CLASS http://class-code.net or CAMB: http://camb.info



Redshift Dependence: broad redshift kernel all way along line of sight
Bulk of the signal 0.5 <z <6




Lensing potential and deflection angles: simulation

LensPix sky simulation code: http://cosmologist.info/lenspix (several others also available)




Note: can only observe lensed sky

Any bulk deflection is unobservable

— degenerate with corresponding change in unlensed CMB:
e.g.

rotation of full sky

translation in flat sky approximation

Observations sensitive to differences of deflection angles
- convergence and shear



Correlation with the CMB temperature

X«
ATisw(n) = 2/ dxW(xn:no — x)
0

Overdensity: magnification correlated with positive Integrated Sachs-Wolfe (net blueshift)
Underdensity: demagnification correlated with negative Integrated Sachs-Wolfe (net redshift)

(small-scales: also SZ , Rees-Sciama..)



Lensing potential correlation with the CMB temperature

1

0.9F

0.8F

0.7}

0.6}

0.5 — 0-ISW{|

0.4

Correlation coefficient r

0.3 Y

0.1} ~—_

0 L 1 1 1 L
10 20 30 40 50 60 70 80 90 100

very small except on largest scales, mostly [ < 100

Also small large-scale lensing—E polarization correlation (from reionization)



Calculating the lensed CMB power spectrum

« Approximations and assumptions:
- Lensing potential uncorrelated to temperature
- Gaussian lensing potential and temperature
- Statistical isotropy

« Simplifying optional approximations
- flat sky (good approximation)
- series expansion (poor approximation, but still useful to understand)



Unlensed temperature field in flay sky approximation

 Fourier transforms:

, 4?1 . \ 42 o
ox) = [ =, @m:f 2 0(x)e

7

- Statistical isotropy:  (O(x)0(x']) = £(|x —x'|).

2 2.1
Bl = f “;1 “;“ X ey X))
dx dr AV —Tix ilrnr -

so (OO =CPs(1-1).  where P = f dfree(r)

Similarly for the lensing potential (also assumed Gaussian and statistically isotropic)



Lensed field: series expansion approximation

Ox)=0(x") = O(x + Vi)
~ O(x) + V% (xX)V,0(x) + 1V (x )V i (x)V, V0 (x) +

(BEWARE: this is not a very good approximation for power spectrum! see later)

Using Fourier transforms in flat sky approximation:

2 0
. d”l L , d”l
Vi(x) =i Q—H_l-a;'.'{l]eﬂx, Vo) =i [ o= 10(1)!
Then lensed harmonics then given by use /d2X€ kel = (o201 - - 1)
A1 ,
&(1) ~0(1) — f U (1=1)e(1=1)O(1)

421, d° x
f 1f 21+ 1y — 11 -LO (0 ) (la)w* (1 + 1y — 1),
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Lensed field still statistically isotropic: &O“J

with

=] =] dglr ’ 112 e e dElI ; oD gl
P~ C +fﬂﬂg (=1, cf -G fmﬂgu-u c

Alternatively written as

o weee [ AT
Cy = (1-UR")C, -I—fmﬂg[ ] ‘fu I~

(P = — [ Ticy, ~3x 1077
(RMS deflection ~ 2.7 arcmin)

Second term is a convolution with the deflection angle power spectrum

- smoothes out acoustic peaks
- transfers power from large scales into the damping tail



Lensing effect on CMB temperature power spectrum

(1 +1)C® /2mpuK?
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Small scales, large [ limit:

- unlensed CMB has very little power due to silk damping: C’f’ o ()

. a2
6 E]
Gy "“’fwﬂg’ - l Cu* 1|C£r

4
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- Proportional to the deflection angle power
spectrum and the (scale independent) power in
the gradient of the temperature
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Better accurate calculation:
lensed correlation function

Do not perform series expansion o
~ X’
B(x) =0(X + af
r
Lensed correlation function: \
. .. a
§(r)=(B(x)e(x)) X
= (B(x +a)0x' +a'))
lgl dglf .l zl (xta) —il"-(x'+a’ly oy STAER
f € la (OO )0 Assume uncorrelated
l ﬂ'z]raz](a a'ly
_f L e for
To calculate expectation value use
- | o0 - 2 10 902 —g?/
JE“&“Q"- _ f 'E]. Ezye—y .-“E':ry — f d o (y—ia :| /2 !-"E:_':ry-'fg
o V2ray J-m ! -'/.Eﬂ-y !
(/2

=€



(e} = exp (‘é (I-(a-a)f) )

where ([l (a - o)2) =1 {(a; - a])(a; - o))

— fg[cglfm — Cgl[ﬂ] + infji‘hzrﬁcglgf”
= 4'.E[r:rE (1) + cos 20 Cya(r)].

Have defined:

Calr) = (a- ) Caa(r) = =21 rj}(n*n’-?)
fdzl 20 _
- 2%_ f dLEBCY Jo(Ir), i / 221 ”“;5 20 i

:2— dLPCY To(Ir).

T

Py UL e

.HZ(,T,) = Cgl (U)_Cgl (I‘) %q(& — )Eh
small correction from

- variance of the difference of :
transverse differences

deflection angles



So lensed correlation function is

i Pl g 1 .
<f(r)=/ (gﬂ]zci et exp (_Ei“[l (o —a)] })

dEl ~8 ilrcosg 1
=f [QW]E("E e exp (_f

Plo*(r) 4 cos26 Cg (T’)])

Expand exponential using

T = Y (DL = Io(r) 423 (<) Lu(r) cos(no)
n=1

N=—00

Integrate over angles gives final result:

[ g

dl PP . ,
(r) =/T QTE E—.[regﬂ[rhﬂ Z I l’-r'gcgl,ﬂ(ﬂfg} Ton(I7)

N=—0700

U 2CP  oa, 1
_ f L [J.]u-r) + 5Ll (lr) + ..

Note exponential: non-perturbative in lensing potential



Power spectrum and correlation function related by

o —f re't ¢ (r ]rdrf e 2e)e () = Qﬂfrdr Jo(lr)é(r)

used Bessel functions defined by
)

TR =y ", (r)e e — —I—EZ?“J cos(no)

N=—00

Can be generalized to fully spherical calculation: see review, astro-ph/0601594
However flat sky accurate to <~ 1% on the lensed power spectrum



Series expansion in deflection angle?
O(x)=0(x') = O(x + V)
~0(x) + V4 (x)V,0(x) + %"’Fﬂ?ﬁ-‘f}{j’?&-ﬁ"fK]TﬂTbE}fJ{] +

Only a good approximation when:

- deflection angle much smaller than wavelength of temperature perturbation
- OR, very small scales where temperature is close to a gradient

CMB lensing is a very specific physical second order effect; not accurately
contained in 2nd order expansion — differs by significant 3rd and higher order terms

0.1 ! oy

g 10 o ] Error using series expansion:

0.05F ' 1

ARIAE n THRL o temperature
_,,.mm nM\' 'n M\” Jrosorae E-polarization

AC/C,
o

I
-0.05F (ILRTEEY ,l H |, [
I

1000 2000 3000 4000 5000 6000 7000
1

Series expansion only good on large and very small scales — don’t use for lensed (C;



Consistency check, is amount of smoothing at the expected level: A; = 1?

A; defined so that lensing smoothing calculated using ALCIW rather than physical CZW’

' Credit: Duncan Hanson
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1000 i

500 1000 1500 2000
4

- Can we detect preference for A; > 0in the data?
- Marginalizing over A; is also a way of “removing” lensing information from C;



LCDM parameter constraints from Planck alone
(no WMAP polarization)

Lensing in the power spectrum
is detected at high significance:

AL = 1.28%535 (20)

(actually a bit high??)
A; = 1 (physical, main result) A; varying (non-physical)

10 | - = o - — -+

0.8 B o ! - -
Q 06 - < - —+
@ 04 - T T - T

4 Y \
02 - 4 K . 4+ ‘\\ - -+
0.0 . / ] 1 ] 1 [ 1 1 ]
00216 00224 00232 0.114 0120 0126 1.040 1.042 0.05 010 015 020 1.00 125 1.50 0845 0960 0.975 0990
Oph? Q. 1006c T A n

| Marginalizing A; (~ remove lensing information)
| significantly shifts parameters
§ With lensing — almost a constraint on 7 > 0

Oddity: power spectrum data seems to like high A4,



Summary so far

Deflection angles of ~ 3 arcminutes, but correlated on
degree scales

Lensing convolves TT with deflection angle power

spectrum
- Acoustic peaks slightly blurred
- Power transferred to small scales

&
1 7

large scales

small scales




Other specific non-linear effects

Thermal Sunyaev-Zeldovich

Inverse Compton scattering from hot gas: frequency dependent
signal

Kinetic Sunyaev-Zeldovich (kSZ)

Doppler from bulk motion of clusters; patchy reionization;
(almost) frequency independent signal

Ostriker-Vishniac (OV)

same as kSZ but for early linear bulk motion

Rees-Sclama

Integrated Sachs-Wolfe from evolving non-linear potentials:
frequency independent



10+ 1)C8 j2m K2

1 1 Y]
10 100 1000 10000
l

+ foregrounds
- actually dominate at [ > 2000

Lensing important at 500 < [ < 3000

Dominated by SZ, CIB etc. on small scales
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CMB Polarization

Generated during last scattering (and reionization) by Thomson
scattering of anisotropic photon distribution

Quadrupole

Anisotropy \
E.l'

4
Thomson

Scatterin g

E.l'

»

p—

Linear
PPolarization

Hu astro-ph/9706147



Observed Stokes’ Parameters

Q U

Q — -Q, U — -U under 90 degree rotation

Q — U, U — -Q under 45 degree rotation
Measure E field perpendicular to observation direction n
Intensity matrix definedas  p . _ ClE.E) = Fan+ %‘Eabf + Vi

Linear polarization + Intensity + circular polarization

CMB only linearly polarized. In some fixed basis 1 (Q [ )
2

Pi=5
U -0



Alternative complex representation

Define complex vectors er = e T i€ eg. €L =e; riey
P=e] e’ Py=0Q+1iU
P*=e"e" Py =0 —il.

And complex polarization

Under a rotation of the basis vectors

er = e, tie,—e, Tie
= (cosye; —sInyey) = i(siny e + cos 7y ey)

=e*(e, Tie,) = ey,

P'=e%'et /Py = e™1P, - spin 2 field



E and B polarization
Pab = V(aViyPe — €4,V V. Pp

/ \

“‘gradient” modes “curl” modes
E polarization B polarization
e.g. I N
N~ Y I
P
2N P



E and B harmonics

Ix

» Expand scalar P and Pg in scalar harmonics Qp=¢
« Expand P in spin-2 harmonics

N
P: =) (Ex+iB)yQx 2k = \/%eieiw?m
k
N
P* =) (Ei — iBy)-2Qk 20k = \%Ea—ﬂﬁ—va?b(ﬁ?k
k

Harmonics are orthogonal over the full sky:

E/B decomposition is exact and lossless on the full sky

Zaldarriaga, Seljak: astro-ph/9609170
Kamionkowski, Kosowsky, Stebbins: astro-ph/9611125



AR
[72 (0, + 0, e

On the flat sky spin-2 harmonics are  ()(l)

—(cos @y + i sin ¢y)2e'l
— _E,Eacmezl x
P=0Q+ill = - [ ) +iB(1) ] gy ilx
¥ 10 ]'21 —2imy ilx
P'=0Q-ill=— [ — [(E(l) - iB(l)]e*"e
2m
Inverse relations: E{l) +iB(l) [E_PE 2igy ,—ilx
E f? Pt Em]E—alxl

+2idy

Factors of € rotate polarization to physical frame defined by wavenumber |



Polarization
Qxy:-l, ny:O
Py =-1

In bases wrt
(rotated by —@)
Q=0,U-=1
P =i

P =Py,



CMB Polarization Signals

* E polarization from scalar, vector and tensor modes

B polarization only from vector and tensor modes (curl grad = 0)
+ non-linear scalars

Average over possible realizations (statistically isotropic):

104 E—IHHH o S E

: (EMES1)) =6(1-1)CF  (B)B*(Y)) =d(1-1)C?
1000 3
100 £

10 L

0.1

(+1)c,/2m] / pk?

= 001 F 1 Expected signal from scalar modes

107 |

10_4:|||||||| Loa |




01+1) ¢/2

107 |-

wef o

Primordial Gravitational Waves
(tensor modes)

Well motivated by some inflationary models

- Amplitude measures inflaton potential at horizon crossing
- distinguish models of inflation

Observation would rule out other models

Weakly constrained from CMB temperature anisotropy

- Anisotropic redshifting of O™ order last scattering by
15t order gravitational waves along the line of sight

- cosmic variance limited to 10%
- degenerate with other parameters (tilt, reionization, etc)

Look at CMB polarization:

T ‘B-mode’ smoking gun



Lensing of polarization

« Polarization not rotated w.r.t. parallel transport (vacuum
IS not birefringent)

 Q and U Stokes parameters simply re-mapped by the
lensing deflection field

N -
N :>\\

Last scattering Observed



Series expansion

Similar to temperature derivation, but now complex spin-2 quantities:

P(x) = P(x + V) ~ P(x) + V*¢VsP(x) + sVUVYV V4P (x)

Unlensed B is expected to be very small. Simplify by setting to zero.
Expand in harmonics
d?I
E(l)+iB(l) =~ E(l) - pm I (1= 1')eX2 e =y (] — 1) E(1)

&’ 212 42
f =]+ b = D LE() G (o) (1 + 1 — 1)

First order terms are

EQ) =

(L =1") cos2[py — gD YU - 1DE")

- d?l'
B = = [ G- U= 1)sinlgy - gDl ~ DEW)



Lensed spectrum: lowest order calculation

Need second order expansion for consistency with lensed E 0t x 2"d order + 15t x 15t order :

a2

o
dgll 212

f AR ALy 4+ 1y — 1y LE(L o ()t (1 4+ 1, — 1)

E(l)+iB(l) =~ B(l) - - (1= 1)e=2 =8y — 1Bl

Calculate power spectrum. Result is

- d*r e |
C'I;Ez [1 - EERF)CEE -I-f [Qﬂ')z [l . (l —1 ]]2 C|T—II|C|E| CDSE Q(rﬁ’p - L‘Jl)
~B dﬂl; ' i ".'E 2 ! [

& —f (or [l ] C - 1r| 1| ‘“111 20v — &)

a1
(2m)?

CF = (1= PROCE + [ 51 (1= 1) €Ly O cos 20 - o).



Effect on EE and TE similar to temperature: convolution smoothing + transfer

of power to small scales

[(1+1)C{ /27 K2
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Polarization lensing power spectra
BB generated by lensing even if unlensed B=0

4C 0 12CE

(1 +11]

O

1
T

. . L il
10 100
l

L
1000

On large scales, ||« |I'| lensed BB given by

a2

cP wf—(ﬂ’"]g Moy OoF sin? 2(dp — o)
L pdlf -
=— [ — "oy 1*cf,
A [ [ I’

Nearly white spectrum on large scales
(power spectrum independent of )

CB ~2x107°uK?

- unless removed, acts like an effective
white-noise of 5 uK arcmin

Can also do more accurate calculation
using polarization correlation functions



Polarization power spectra
Current 95% indirect limits for LCDM given WMAP+2dF+HST

10° ¢ ——— e —

10

lensed E

lensed B

r=1>0.1

tensor B

Note: foregrounds expected to be much smaller than T for small-scale polarization: good!



arXiv: 1307.5830

Detection of B-mode Polarization in the Cosmic Microwave Background
with Data from the South Pole Telescope

D. Hanson,! S. Hoover,2® A. Crites,2? P. A. R. Ade,® K. A. Aird,® J. E. Austermann,” J. A. Beall.®
A. N. Bender,! B. A. Benson,>? L. E. Bleem,%? J. J. Bock,'%-11 J. E. Carlstrom,?* %912 C. L. Chang,?2?
H. C. Chiang,>'? H-M. Cho,*" A. Conley,” T. M. Crawford,>* T. de Haan,! M. A. Dobbs,! W. Everett,’
J. Galliechio,? J. Gao,® E. M. George,'* N. W. Halverson.”1®> N. Harrington,'* J. W. Henning.”
G. C. Hilton,® G. P. Holder,! W. L. Holzapfel,'* J. D. Hrubes,® N. Huang,'* J. Hubmayr,® K. D. Irwin,®
R. Keisler,?:? L. Knox,'® A. T. Lee,!* E. Leitch,®* D. Li,® C. Liang,%* D. Luong-Van,? G. Marsden,!”

J. J. McMahon,'® J. Mehl,%212 S. S. Meyer,2:? %4 L. Mocanu,%* T. E. Montroy,'” T. Natoli,®? J. P. Nibarger,?
V. Novosad,?® S. Padin,'® C. Pryke,?! C. L. Reichardt,'* J. E. Ruhl,’® B. R. Saliwanchik,'® J. T. Sayre,!”
K. K. Schaffer,?:22 B. Schulz,'”:2% G. Smecher,! A. A. Stark,?* K. Story,%:? C. Tucker,® K. Vanderlinde,!: 2526
J. D. Vieira.!¥ M. P. Viero.!? G. Wane.!? V. Yefremenko.'?:2? O. Zahn.?” and M. Zemcov!?: 1!

B is from lensing of E

Can predict lensing potential from large-scale structure probe, e.g. CIB in this case
Measure E, make prediction for B by lensing E using CIB template for deflection prediction
Cross-correlate this prediction with actual B mode measurement

- Agrees - detection!



Non-Gaussianity, statistical anisotropy
and reconstructing the lensing field

T(x) =T(x+Vy) P(T, ) =~ Gaussian; on small scales (Ty) = 0 = P(T,¢) = P(T)P(Y)
In pixels this is a remapping T; = [A(¥)];;T;: Linear in T; non-linear in
P(T) = [ §(T — AT)P(T,¢)dypdT

1. Marginalize over (unobservable) lensing and unlensed temperature fields:

= Non-Gaussian statistically isotropic lensed temperature distribution

P(T) ~ [ P()dy [ 6(T — AT)P(T) dT
\ ;
Y
P(T|y)
= P(T) = [ P(T|p)P(y)dy

For a given lensing field think about T ~ P(T|y):

T = AT is a linear function of T for fixed v:

= Anisotropic Gaussian lensed temperature distribution




Think about ‘squeezed’ configuration: big nearly constant lenses, much smaller lensed T

Magnified Unlensed Demagnified

&

10+1)C,T/2r [uK?2)]
g

g
I(1+1)C,T7/2m [uK?]

E
g

o
o

10 100 500 1000
Multipole moment 1

Fractional magnification ~ convergence k = -V % + shear modulation:



Lensing reconstruction
-concept

N

r -

e

Variance in each ¢; measurement < 1/N odes

Npodes * [42x - dominated by smallest scales

= measurement of angular scale (= k) in each box nearly independent
= Uncorrelated variance on estimate of magnificantion x in each box

= Nearly white ‘reconstruction noise’ Nl(o) on k , with Nl(o) x 1/12 .«



For fixed y: Gaussian anisotropic distribution = (0(D)O1")) = ¢;6(1—1")

Use series expansion:

: N r,
(1) ~6(I) — lef (=1 (1=1)0(1)

27 L

(higher order terms are important, but bias can be corrected for later)

Average over unlensed CMB 0O:

O1)6*(1 - L))o= dL)CF + - [L-1) LCFy +1- L] (L) + 00

T

Off-diagonal correlation o< (L) — use to measure !

For L > 1 define quadratic estimator by summing up with weights g(l, L)

2
B(L) = N(L) [ 616" (1 - Lyg(, L),

Zaldarriaga & Seljak, Hu 2001+



want (#(L))e = ¥(L)

= N@L)'= / % {(L —1) 'LC|(13—L| +1- LCﬂ g(1,L)

Want the best estimator: find weights g to minimize the variance
d’l

(27)2 Ofotcrlﬂtm[Q(L L)+ O(C’f")

(@ L)PIL) =6(L - LRN(L? [ -

Ciot = CP+ Ny

E g(lL):(L—l) LCP  +1-LCY
! ZCt ot C|tlDtL|



Reconstruction ‘Noise’ — from random fluctuations of the unlensed CMB
Turns out to be the same as the normalization N(L)

2
2 [(L—=1)-LCP+1-LCP|

5(0)(|4(L)

2= Ny :/{

(in limit of no lensing — there are higher order corrections)

On large scales (large lenses), L « [, with no instrumental noise

11 dIn 12¢; 1[dInc ]2
= e [ 4[] ot

Convergence Shear

2




10° v Planck 2013
_ Reconstruction Noise
| —
e 10° F— — 1 Nl(O)
o(ClKeém”; - T~
=, - S
[ —— 100GHz ) AN
| == 143GHz N
10 3 AN
| —— 217GHz \
A
—_— MV N
| L L MR | M| N
10! 10f 10°
L
Nl(o) ~ const Beam, noise, shape of C; and [ ~ [,,,, effects

Lensing reconstruction information mostly in the smallest scales observed

- Need high resolution and sensitivity
- Almost totally insensitive to large-scale T (so only small-scale foregrounds an issue)



Practical fast way to do it, using FFT:

, d’1 1CPO(1)O(L —1)
L/ I é};ot ér;LDt_”

- Looks like convolution: use convolution theorem

12
H(L)=—iN(L C 2 xR (x)V R (x)
=—N (L) ? € —il XV [Fl( )VF;(X)]
\ J
Y
Easy to calculate in real space: multiply maps
- SYANeL
Fi(l) = ;:3 B(l) = Bgzj - fast and easy to compute in harmonic space
gl

- Can make similar argument on full sky and for polarization



Alternative more general derivation (works for cut-sky, anisotropic noise)
For fixed lenses, sky is Gaussian by anisotropic:

—Z(O|a)= %QT (C‘éé)_l Q—%hlclet{céé},

Find the maximume-likelihood estimator for the lensing potential/deflection angle

67 1, ~00,-10C%° a6 66,-16C%9 | _
0 04(x) EO (C™%) 60{1(3{)(6 )" e- [(C ) 0 o (x) 0

Trick: Tr(4) =Tr(AC 1(xxT)) where x has covariance C

=(xTAC 1x) - rewrite trace as “mean field” average

Can show that at leading order maximum likelihood solution is as before, but with

1 weights optimally for cuts/noise
A00\-1 — -1 h =D — b and subtracts average signal from
CltOt = (C7F) (f +N) Yop =) noise inhomogeneity and cuts

Sets to z_ero In _CUt’ _ “‘mean field” calculated from simulations
downweights high noise

(also need lensed C; ) astro-ph/0209489, arXiv:0908.0963



Final “optimal” quadratic (QML) estimator y)(K)

Y(L) ~ NL(O) 2k, x, AL, k2, k3) ©(k;)0(k3) — (Monte carlo for zero signal)]

v

Filtered maps ® = (S+ N)~'0
weights for mask and noise anisotropy
(here approx. noise term as diagonal)

“Mean field” — accounts for other sources of
anisotropy in the data

Mask

[L(L+1)) CF° /2

noise RMS

Elliptieity - 100 GHz

1079 8

100 |

10711 1 T .
10° 10t 102
L

10

e

Beam ellipticity

> “Mean-field” corrections are very large at low-L. We fail some detailed
consistency tests at L < 10 (though not very badly!).



Planck simulation

S/(S+N) filtered reconstruction

True lensing potential

= input + ‘reconstruction noise’



Planck full-sky lensing potential reconstruction

NILC, foky = 0.87

Note — about half signal, half noise,
not all structures are real: map is effectively Wiener filtered



Reconstruction noise budget

Lensing maps are reconstruction noise dominated, but
maps from different channels are similar because mainly
the same CMB cosmic variance.

S — .
— 100GHz — Pure CMB
= 143GHz - = Noise
08f — 217GHz Foreground .
'

LA L froviinnnnnneng PRRERER IR R R E L RNt N b nnnnnnt 1
i L L L l L | L

003479 100 500 1000 2000

L

Galactic South - 217 GHz



(L(L+ 1) C; /2r [ x107]

Power spectrum of reconstruction = Cl"b v

Angular Scale [deg.]

2 0.5 0.2 0.1

100GHz |

143GHz

217GHz |
= MV

2 10 100 ' ' ~ 500 ' 1000 1500 2000

Lensing Multipole L

[Also need to subtract next order power spectrum biases, N]



Comparison with ACT/SPT

2.0

[T | | T | T |
- v7A4 MV
L 143GHz | ~ Planck
=R 217GH:
= T
© 10/ o o SPT(2012)
N % F ACT (2013)
o~ [
= 0.5¢ -
TV
s P | T
= 0.0p/ e =
% /
_UIS_I.LI.I.I.I.I] L1111l 1 1 1 ] 1 ] ] ]
2 10 100 500 1000 2000

L

(new SPT data also coming “soon”)



Is it useful for parameter estimation?

Planck TT spectrum

2, [uK?]

H“*..ui.i.h*. $4 L TTL PEPUIPTT LA ]
(RS RU  egit B UL T T ML A L

! 1 1 1 3
500 1000 1500 2000 2500

Detailed measurement of 6 power spectrum acoustic peaks in TT

j1> Accurate measurement of cosmological parameters?



YES: some particular parameters measured very accurately

0.1% accurate measurement of the acoustic scale:

0, = (1.04148 + 0.00066) x 107* = 0.596724° + 0.00038°

But need full cosmological model to relate to underlying physical parameters..



e.g. Geometry: curvature

We see:

‘Kz
E E E & B B
t ———

Planck T7 spectrum

Shosso




or is it just closer??

" /\ Plonck T spectrum
|
o
5 \a
5
We see: . K

Ng “ ' st i 4
g

) Degeneracies between parameters




Colour: Planck TT constraint
Crosses: Planck lensing
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Extra lensing information can help break parameter degeneracies
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Polarization lensing reconstruction

Reconstruction with polarization is much better if the noise Is low
enough: no cosmic variance in unlensed B — all small-scale B is lensing

Polarization reconstruction can in principle be used to de-lens the CMB
- required to probe tensor amplitudes r <~ 104

- requires very high sensitivity and high resolution

- In principle can do things almost exactly: a lot of information in lensed

B at high |

Maximum likelihood techniques much better than quadratic estimators
for polarization (astro-ph/0306354)

Quadratic Iterative maximum likelihood




Lensed CMB power spectra contain essentially two new numbers:
- one from T and E, depends on lensing potential at <300

- one from lensed BB, wider range of |
astro-ph/0607315

More information can be obtained from lensing reconstruction

Correlation between reconstruction and power spectrum lensing currently
negligible because of large reconstruction noise; in future may have to
model more carefully



Non-Gaussianity

Flat sky approximation: 0(x) = if d?lO(DHe* ! ©=T)

If no non-Gaussianity: Gaussian + statistical isotropy:

(0(1)6() =6 +15)C
- power spectrum encodes all the information

- modes with different wavenumber are independent

For more details on the following see arXiv:1101.2234, 1107.5431 and refs therein



Non-Gaussianity — general possibilities

Bispectrum

l1 ll+lz+13=0
[

: . 1
Flat sky approximation: (0(11)0(1,)0(l3)) = %6(11 + 1, + 13)by,

Lyl

If you know ©(l,), ©(l,), sign of b, ; ;. tells you which sign of ©(l3) is more likely

Trispectrum

(@(11)@(12)@(13}@(14)}{ = (QW}_Eﬁ(ll + 1o+ 15 + 14)T(11, lo. 13: 14)

1 d*L .
{@(11)@(12)@(13)9(14])@ = Ef (2?]_)25(11 + 1o + L)ﬁ(lg + 14 — L)Tg;gj%(,ﬂ) + perms.

N-spectra...
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ka

T(kq)

Equilateral k; +ky + k3 =0,|k,| =

v/

T(ks)

—T(k3)

\71

|k2| =

L&)

b<0



Millennium simulation



Near-equilateral to flattened:

b<0




Squeezed
ko| | ks
) N\ kl
i
T (k>) T(k3)

k1+k2+k3=0,

T (k1)

—T(ky)

ki < ko ks k,

Squeezed bispectrum is a correlation of small-scale power with large-scale modes

{

I
=

w

b>0

b<0



Calculating a squeezed bispectrum

‘Linear-short leg’ approximation very accurate for large scales where cosmic variance is large

l; « I, <l with any modulation field(s) X; so that T = f(T, X;) where X;, T gaussian

L i 5 .
TX
(TilminjmgT£3ﬂ13> ~ CEI i <—6X* (szﬂ‘lﬂ Tiaqns) >

i.flml

Correlation of the modulation Response of the small-scale power
with the large-scale field to changes in the modulation field
(non perturbative)

Note: uses only the linear short leg approximation, otherwise non-perturbatively exact

Example: local primordial non-Gaussianity

6
Primordial curvature perturbation is modulated as ¢ = <o (1 +§fNL€o,z)

l; < 100: modulation ¢, ; super-horizon and constant through last-scattering, ¢, = ¢

6 . - .
|:> bisials = EfI\'LCE” (Ciz + Cly) (analytic result for [; «< 100)



Primordial local non-Gaussianity

e.g.¢{ =7 (1 + ngL(o,l)

6
=>T~Ty(1+ ngL(*,l)

Temperature (fy, =109

Liguori et al 2007

~0.00016 —————— e (. 00016



Lensing bispectrum calculation

Assume Gaussian fields. Non-perturbative result: 1 <1 <13

. e R T d R
(T(L)T(12)T (1)) = Cy, <5u'(11)* (T(IQ)T(ls})>

0 - '. —~
Use T =T(x+ V) == T (1) = ——1, - VI (1 +1,)
C)’L‘(ll)* 2T
(T()T(1,)T(13)) = —%C‘T” Iy - <ﬁ(11+12)-f(13)>+(12913)

1 Y ~
= — (L + 1y + 1) [(11-12JC£W (1 13)CWT]

) N4

~ Lensed temperature power spectrum

Measuring bispectrum = measuring C; v



Note lensing bispectrum is anisotropic:

small scales modulated in a way that depends on alignment with the large-scale modulating lens

CMB temperature Lensed CMB
Deflection angles e ——
S N S A S N —_—
A A A A —_—
S Y Y A M —_—
AR — e
0 D N A B
N A
(3 D N N B
PV L by *
Modulation depends on relative orientation = anisotropic Y TT bispectrum

ISW-y correlation = ClT’l’ #+ 0 = anisotropic lensing TTT bispectrum

Local modulations (e.g. fy.) are also squeezed, but they are isotropic: no orientation dependence



Squeezed shapes but different phase, angle and scale dependence

b

Lensing fyL
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T+E: lensing
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— — —T: lensing
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Planck

T+E: lensing [
T+E: fNL: 30
— — —T: lensing
— — —T:f, =30

TY -
Note: expected C, ¥ is non-zero:
cosmic signal variance
2
e +(cf?)

2141

Var(c]¥) =

In addition to reconstruction noise
(standard Fisher result)



Planck lensing bispectrum result

Large cosmic variance and reconstruction noise, but

| .
% 0.05F 100GHz_ | ‘detected’ at ~ 2.50
3 I
s . b Table 2. Results for the amplitude of the ISW-lensing bispec-
“© 0.00 SSiiHs == n |/ a trum from the SMICA, NILC, SEVEM, and C-R foreground-cleaned
= maps, for the KSW, binned, and modal (polynomial) estimators;

error bars are 68% CL.

SMICA NILC SEVEM C-R
KSW ..... 081031 085032 068+032 075zx0.32
Binned .... 091037 1.03+037 083+£039 080=x=040
Modal .... 077+037 093+037 060+037 0.68+0.39

Lensing signal must be subtracted when looking at
local fyr.

Table 8. Results for the fy; parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL.

Independent ISW-lensing subtracted

KSW KSW
SMICA
- ! ! ! Local ......... 0.8 +5.8 27+58
0 20 40 60 80 100 Equilateral . .. .. —37+75 —42+75
L Orthogonal . . . .. 46 + 39 —25+39




Lensing Trispectrum: Connected four-point< T T T T>,

(éﬂl}é(lz}é{la}éﬂﬂ = (6(11)0(12)0(1a)0(L1)) — [CCES (M +12)6(ly + L) + perms|

2{2 }2 (11 +15 +13 +]4 [Cﬁ'ﬁlslclsch {]1 -|-]3} 15 {12 -|—]4) 1, +DEITIIS]

Bispectrum: measures C, ¥

VY

} Both anisotropic and distinct from primordial signals
Trispectrum: measures C;

Quadratic estimator TT measures
— so TTT measures CZ ¥ TTTT measures Czp v

In exactly the same way, for local primordial modulations ¢ = {o(1 + ¢)

Squeezed fy; Bispectrum: measures CLT"’ —  Only approximate (signal at L < 500)

- need to worry about finite last scattering thickness
Squeezed 1, Trispectrum: measures Cf’d’ Rather accurate (signal L<10)

- Planck 7, analysis exactly analogous to lensing



Hunters’ guide to the non-Gaussianity zoo

—
EEE— - :

Squeezed Isotropic (fy,) Local modulations y = yo(1 + ¢), Py 4% 0
—

/ CMB lensing magnification
CMB lensing

i Anisotropic
Bispectrum Non-standard anisotropic inflation

\ Bispectrum = power modulation correlated to temperature () (xx)

Dynamically generated
e.g. non-linear structure growth
inflation before horizon exit (e.g. ¢; < 1)

Bispectrum = concentrated hot spots in areas of milder cold (or vice versa)

Equilateral-flattened

Diagonal _ _
squeezed Isotropic(zy,) Local modulations y = xo(1 + ¢) (any P 4)

CMB lensing magnification

CMB lensing

Anisotropic primordial power spectrum
Non-standard anisotropic inflation
Gravitational-wave modulation (small)

Trispectrum = power spectrum of power modulation, (xx)(xx)

Anisotropic

One-leg squeezed (small: gy, either sign, or t; positive)
Trispectrum = bispectrum modulation correlated to temperature (x)(xxx)




EXTERNAL CORRELATIONS
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Cluster CMB lensing

CMB very smooth on small scales: approximately a gradient

Last scattering surface What we see

GALAXY
CLUSTER

«— 0.1degrees ———*
Need sensitive ~ arcminute resolution observations



RMS gradient ~ 13 pK / arcmin _ _
deflection from cluster ~ 1 arcmin Lensing signal ~ 10 pK

BUT: depends on CMB gradient behind a given cluster

Unlensed Lensed Difference

—
—

]

—-100

-3 -2 - 0 1 2 3

Unlensed CMB unknown, but statistics well understood (background CMB Gaussian) :

can compute likelihood of given lens (e.g. NFW parameters) essentially exactly



Add polarization observations?

Difference after cluster lensing

Unlensed T+Q+U

u

T with pol

1 with pol

[

Less sample variance — but signal ~10x smaller: need 10x lower noise

Note: E and B equally useful on these scales; gradient could be either



Complications

* Temperature

- Thermal SZ, dust, etc. (frequency subtractable)

- Kinetic SZ (big problem?)

- Moving lens effect (velocity Rees-Sciama, dipole-like)
- Background Doppler signals

- Other lenses

 Polarization
- Quadrupole scattering
(< 0.1uK)
- Re-scattered thermal SZ (freq)
- Kinetic SZ (higher order)
- Other lenses

Generally much cleaner

But usually galaxy lensing does much better, esp. for low redshift clusters



