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Big Science from Small Scales
□ Theoretical predictions: parameters ⇒ Cℓ (&c.)
■ Senatore: initial conditions from inflation
■ Lesgourgues: theoretical power spectra from early evolution
■ Lewis: post-recombination evolution

□ Observations: 
■ Zacchei/Baccigalupi: Planck
■ Stompor: data ⇒ maps

□ Connecting theory and observations
■ from maps ⇒ Ĉℓ
■ From measured Ĉℓ ⇒ cosmological parameters

□ likelihoods, sampling, …

■ Beyond the temperature power spectrum
□ polarization
□ non-gaussianity

measurement!
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Big Science from Small Scales
□ Our underlying theories are statistical. How do we learn 

about cosmology from CMB observations?
■ predictions of power spectra (and higher moments): 

(quantum) noise
■ expand to include polarization

□ Inferences in cosmology
□ Measuring the spectrum, Cℓ
■ temperature and polarization

□ Measuring cosmological parameters
□ Beyond the power spectrum
■ anisotropy [not small scales…]
□ case study: topology

■ non-Gaussianity
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Data analysis as 
Radical Data Compression

□ Trillions of bits of data 
□ Billions of measurements at 9 frequencies
□ 50 million pixel map of whole sky
□ 2 million harmonic modes measured
□ 2500 Cℓ  variances 
■ 2000σ detection of CMB anisotropy power

□ Fit with just 6 parameters
■ Baryon density, CDM density, angular scale of sound 

horizon, reionization optical depth, slope and amplitude 
of primordial P(k)

■ Ωbh2, Ωch2, θMC, τ, ns, As

■  With no significant evidence for a 7th
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Evidence & Observations:
Cosmic Microwave Background

□ 400,000 years after the Big Bang, the temperature 
of the Universe was T~3,000 K

□ Hot enough to keep hydrogen atoms ionized until 
this time
□ proton + electron → Hydrogen + photon [p+ + e- → H+γ]
□ charged plasma → neutral gas

■ depends on entropy of the Universe
□ Photons (light) can't travel far in 

the presence of charged particles
□ Opaque → transparent

Opaque

Transparent
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□ Initial temperature (density) of the photons

□ Doppler shift due to movement of baryon-photon plasma
□ Gravitational red/blue-shift as photons climb out of potential wells or fall off of 

underdensities

□ Photon path from LSS to today
□ All linked by initial conditions ⇒ 10-5 fluctuations

□ Measurements of the CMB give a snapshot of the Universe when it was young and simple
□ the physics is encoded in the pattern of Temperatures on the sky

Cooler Hotter

What affects the CMB 
temperature?cf. Lesgourgue’s lectures
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Flat

Us

Last Scattering 

Ω=1

Measuring Curvature
with the CMB
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Closed Ω>1

Us

Last Scattering 

Measuring Curvature
with the CMB
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Open

Us

Last Scattering 

Ω<1

Measuring Curvature
with the CMB
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i.e., Fourier 
Transform, but on a 
sphere

Power Spectrum:

Multipole ℓ ∼ angular scale 180°/ℓ

For a Gaussian theory, Cℓ completely 
determines the statistics of the temperature. 

Determined by temperature, velocity and metric 
on the last scattering surface. 

CMB Statistics

hT (x̂)T (ŷ)i = C(cos

�1
x̂ · ŷ) =

X

`

2`+ 1

4⇡

C`P`(x̂ · ŷ)
Correlation function:
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□ Model CMB as a 2d stationary Gaussian Random Field on the sphere
□ Motivated by physics, confirmed by observation 
■ (linear transform of underlying 3d process)

CMB Power 
Spectrum
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Physics of  the CMB
power spectrum

angular diameter 
distance (~curvature)

baryon
density
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Gravity + plasma physics modulates initial 
spectrum of fluctuations (from, e.g., inflation)
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CMB Polarization:
Generation

□ Ionized plasma + quadrupole radiation field: 
■ Thomson scattering ⇒ [linearly] polarized emission

□ Unlike intensity, only generated when ionization 
fraction, 0<x<1 (i.e., during transition) 

q Scalar perturbations: traces ~gradient of velocity
§ same initial conditions as temperature and density fluctuations

□ Tensor perturbations: independent of density fluctuations 
■ +,× patterns of quadrupoles (impossible to form via linear scalar 

perturbations)
■ at last-scattering, from primordial background of gravitational 

radiation, predicted by inflation (cf. Senatore’s lectures)

e

HOT

COLD
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□ 2-d (headless) vector field on a sphere
□ Spin-2/tensor spherical harmonics
□ grad/scalar/E + curl/pseudoscalar/B patterns

□ NB.  From polarization pattern ⇒ E/B 
decomposition requires integration (non-local) or 
differentiation (noisy)
■ Lewis et al; Bunn et al; Smith & Zaldarriaga; Grain et al; 

Bowyer & AJ; … 
■ (data analysis problems)

CMB Polarization:
 E/B Decomposition

Seljak & Zaldarriaga

E E B B
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Polarization: math
□ Scalar and tensor modes are isotropic, parity-

symmetric fields on the sky. 
□ T is a scalar, E is the “gradient” of a scalar, B is the 

“curl” of a pseudoscalar

■ expect 〈EB〉=〈TB〉= 0
■ try to measure 〈TT〉, 〈BB〉, 〈EE〉, 〈TE〉 
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CMB Signals 
from inflation

□ Want to probe inflaton potential V(φ)
□ Induce scalar and tensor power spectra
■ Observables:
□ temperature and polarization CMB spectra
□ functionally linear

relationships 

□ Transfer functions T depend on cosmological parameters
□ Amplitude (r=T/S) and shape (ns, nT) of the spectra probe the 

inflaton potential

□ Non-gaussianity:
■ specific inflationary models ⇒ departures from Gaussianity
■ e.g., fNL~1 (in reach of Planck, but not [yet] detected)

CBB
⌅ =

⇤
dk ThB

⌅ (k)Ph(k)

CTT
⌅ =

⇤
dk

�
ThT

⌅ (k)Ph(k) + TRT
⌅ (k)PR(k)

⇥
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The Polarization of  the CMB
§ Anisotropic radiation field at last 

scattering → polarization
§ “Grad” or E mode
§ Breaks degeneracies
§ New parameters:

§ reionization
§ “Curl” or B sensitive to 

 gravity waves
§ “Smoking gun” of inflation?
§ Very low amplitude

§ Need better handle on 
systematics, and...

§ Polarized foregrounds?

Temperature
(determined by params)

E-Mode Pol
(determined by params)

B-Mode Pol
(depends on inflation)

E E B B
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Gravitational Radiation 
& CMB

□ Last scattering: “direct” 
effect of tensor modes 
(primordial GWs) on the 
primordial plasma
■ inflationary potential

□ dominated by lensing of E 
⇒ B for ℓ≳200

■ sensitive to mν≲0.06eV
□ (i.e., hot dark matter)

□ Reionization peak ℓ≲20

■ need ~full-sky. Difficult for 
single suborbital experiments

□ Limits depend on full set of 
parameters

GRAVITATIONAL WAVES IN THE CMB

• Cosmic variance of dominant scalar fluctuations limits �r = 0.07 from T and
�r = 0.02 if include E

– Degeneracies make actual limits worse; WMAP5 alone r < 0.43 (95% CL)

3

Courtesy A. Challinor

Reionization
peak

Lensing 
peak

Suborbital experiments target ℓ~100 peak:
require order-of-magnitude increase in 
sensitivity over Planck

cf. Senatore’s talk
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FIG. 2: (Black, center bars): Cross-correlation of the lens-
ing B modes measured by SPTpol at 150GHz with lensing B
modes inferred from CIB fluctuations measured by Herschel
and E modes measured by SPTpol at 150GHz; as shown in
Fig. 1. (Green, left-o↵set bars): Same as black, but using E
modes measured at 95GHz, testing both foreground contam-
ination and instrumental systematics. (Orange, right-o↵set
bars): Same as black, but with B modes obtained using the
�B procedure described in the text rather than our fiducial
Wiener filter. (Gray bars): Curl-mode null test as described
in the text. (Dashed black curve): Lensing B-mode power
spectrum in the fiducial cosmological model.

We determine the uncertainty and normalization of the
cross-spectrum estimate using an ensemble of simulated,
lensed CMB+noise maps and simulated Herschel maps.
We obtain comparable uncertainties if we replace any of
the three fields involved in this procedure with observed
data rather than a simulation, and the normalization we
determine for each bin is within 15% of an analytical
prediction based on approximating the Wiener filtering
procedure as diagonal in Fourier space.

In addition to the cross-correlation E�⇥B, it is also
interesting to take a “lensing perspective” and rear-
range the fields to measure the correlation EB⇥�. In
this approach, we perform a quadratic “EB” lens re-
construction [13] to estimate the lensing potential �̂

EB

,
which we then cross-correlate with CIB fluctuations. The
observed cross-spectrum can be compared to previous
temperature-based lens reconstruction results [22, 26].
This cross-correlation is plotted in Fig. 3. Again, the
shape of the cross-correlation which we observe is in good
agreement with the fiducial model, with a �2

/dof of 2.2/4
and a PTE of 70%.

Both the E�⇥B and EB⇥� cross-spectra discussed
above are probing the three-point correlation function
(or bispectrum) between E, B, and � that is induced by
lensing. We assess the overall significance of the measure-
ment by constructing a minimum-variance estimator for
the amplitude Â of this bispectrum, normalized to have

FIG. 3: “Lensing view” of the EB� correlation plotted in
Fig. 2, in which we cross-correlate an EB lens reconstruc-
tion from SPTpol data with CIB intensity fluctuations mea-
sured by Herschel. Left green, center black, and right or-
ange bars are as described in Fig. 2. Previous analyses using
temperature-based lens reconstruction from Planck [26] and
SPT-SZ [22] are shown with boxes. The results of [26] are at
a nominal wavelength of 550µm, which we scale to 500µm
with a factor of 1.22 [37]. The dashed black curve gives our
fiducial model for CCIB-�

l as described in the text.

a value of unity for the fiducial cosmology+CIB model
(analogous to the analyses of [38, 39] for the TT� bis-
pectrum). This estimator can be written as a weighted
sum over either of the two cross-spectra already dis-
cussed. Use of Â removes an arbitrary choice between
the “lensing” or “B-mode” perspectives, as both are sim-
ply collapsed faces of the EB� bispectrum. Relative to
our fiducial model, we measure a bispectrum amplitude
Â = 1.092± 0.141, non-zero at approximately 7.7�.
We have tested that this result is insensitive to analy-

sis choices. Replacement of the B modes obtained using
the baseline Wiener filter with those determined using
the �

B

estimator causes a shift of 0.2�. Our standard
B-mode estimate incorporates a mask to exclude bright
point sources, while the �

B

estimate does not. The good
agreement between them indicates the insensitivity of po-
larization lensing measurements to point-source contam-
ination. If we change the scan direction cut from l

x

<400
to 200 or 600, the measured amplitude shifts are less
than 1.2�, consistent with the root-mean-squared (RMS)
shifts seen in simulations. If we repeat the analysis with-
out correcting for I ! Q,U leakage, the measured ampli-
tude shifts by less than 0.1�. A similar shift is found if
we rotate the map polarization vectors by one degree to
mimic an error in the average PSB angle.

We have produced estimates of B̂

lens using alterna-
tive estimators of E. When we replace the E modes
measured at 150GHz with those measured at 95GHz,
we measure an amplitude Â = 1.225± 0.164, indicating

Hanson et al, SPTPOL, arXiv:1307.5830
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Polarization from Planck

Data (top)
vs 
expectation (bottom)

E-mode pattern
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Parameters & Cℓ
□ What we really want:
■ P(theory | data)
□ theory = the parameters of LCDM 
■ or perhaps even an indication of which overall theory is correct

□ data = our CMB data and any other information (“priors”) we 
might consider. 

■ Data compression
□ P(theory | raw TOI data) 	
 ≈ P(theory | noisy CMB map) 
	
 	
 	
 	
 	
 	
 	
 ≈ P(theory | estimated Ĉℓ)

□ Also need error bars (and/or full covariance matrix)
■ Even then, this is only approximate

□ effect of foreground removal on maps
□ Ĉℓ dist’n depends on more than just central value & covariance

□

Stompor
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Probability

□ P(A|B) = probability of “A” given “B”
■ Probabilities measure “degrees of belief”
□ P=1  —certainty [true] 
□ P=0  —impossibility [false]

■ A, B are propositions
□ “Socrates is a man”, “All men are mortal”, “the Hubble constant 

is between 61 and 66 km/s/Mpc” 
■ All probabilities are conditional (on knowledge/ belief)
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Bayes’ Theorem

□ Product rule:
P(DH|I) = P(D|HI) P(H|I) = P(H|DI) P(D|I)

□ H = hypothesis
D = data
I = other “background” information

□ Model for learning (H) from experience (D) within some 
context (I) [will often drop I from now on].

P (H|DI) =
P (H|I)P (D|HI)

P (D|I)
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Bayes’ Theorem

□ Denominator doesn’t depend on H, so 

■ P(H|DI) ∝ P(H|I) P(D|HI)   is sufficient

□ P(D|I) = ∑HP(H|I) P(D|HI) [normalization]

P (H|DI) =
P (H|I)P (D|HI)

P (D|I)

Friday, 26 July 13



Bayes’ Theorem

□ Theory parameterized by (continuous) θ:
■ Use probability densities

□ Marginalization

■ φ: “nuisance” parameter
□ e.g., Background level, unknown noise, etc.
□ (but a nuisance in one context is signal in another!)

P (�|DI) =
�

d⇥ P (�⇥|DI)

P (�|DI) d� =
P (�|I)P (D|�I)�

d�� P (��|I)P (D|��I)
d�
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Bayes’ Theorem

□ Posterior contains full “inference from data”
□ Can sometimes be summarized by moments, peaks, 

integrals, etc.
■ maximum posterior 
■ 68% enclosed probability levels
■ mean and variance

P (�|DI) d� =
P (�|I)P (D|�I)�

d�� P (��|I)P (D|��I)
d�
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Bayesian methods: 
hierarchical models

□ Timestream (dt) 
	
 ⇒ Map (Tp ~ dp) 
	
 ⇒ Spectrum (Cl ~ dl) 
	
 ⇒ cosmology

□ without loss of information? (~Sufficient Statistics)
 
□ P(Cosmology|dtNtt’)	
 =	
 P(Cosmology | Mappix,Npp’) 
	
 	
 	
 	
 	
 	
 ≈	
 P(Cosmology | DlNll’,xl)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Bond, AJ, Knox; WMAP)

□ (assume that we can calculate P(Cosmology|DlNll’,xl) even 
from non-Bayes estimators)

€ 

P(H |DI) =
P(H | I)P(D |HI)

P(D | I)
Posterior∝Prior ×Likelihood
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CMB Data Analysis:
 mapmaking

□ Model: data = signal + noise, as a function of time

□ Step 1: mapmaking (estimate Tp)
■ Gaussian noise ⇒ Gen’l least squares

■ If we stop here, uniform prior gives a Gaussian posterior for the map 
with this mean and variance. 
□ aside: Gaussian Cℓ prior gives Wiener filter

■ But it is also a sufficient statistic 

■ Algorithms:
□ Rely on simplicity/sparseness of Atp

□ FFT methods to apply timestream (t) operations
□ Conjugate gradient least-squares soln (nb. doesn’t give corr’n matrix)
□ Further simplifications for specific cases (1/f noise, observations in rings)

dt = AtpTp + nt �ntnt�⇥ = Ntt�

T̄p = (AT N�1A)�1AT N�1d ��Tp�Tp�⇥ = (AT N�1A)�1

~stationary

cf. Stompor’s lectures
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Maps of  the Cosmos

COBE/DMR

WMAP

MAXIMA

NB. pixelization on 
sphere non-trivial. 
CMB uses “HEALPix”
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WMAP

Planck
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CMB Data Analysis:
Spectrum estimation

□ Step 2: Don’t need to go back to the timeline to estimate 
the power spectrum, Cℓ.
■ Model the sky as a correlated, statistically isotropic 

Gaussian random field

■ complicated and expensive function of Cℓ
□ Many practical issues in calculating this explicitly. 
□ At low ℓ, use sampling (usu. Gibbs), Newton-Raphson, Copula
□ At high ℓ, approximate by a function of estimated (ML) Cℓ and errors & 

some other information Xℓ

⇥TpTp�⇤ = Spp� =
�

�

2⌥ + 1
4�

C�B
2
� P�(x̂p · x̂p�)

P (T̄ |C⇥) =
1

|2�(S + N)| exp�1
2
T̄T (S + N)�1T̄

spherical harmonic 
wavenumber ℓ

T (x̂)� T̄

T̄
⇥ �T

T
(x̂) =

�

�m

a�mY�m(x̂) �a��ma��m�⇥ = �����mm� C�

Parametric version
of cov. mat. est’n:
diag in ℓ basis
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Expected errors
□ Estimating the error (variance1/2) on a variance (Cℓ)
□ 〈δCℓ δCℓ〉 = 〈aℓm aℓm aℓm aℓm〉-〈aℓm aℓm〉〈aℓm aℓm〉
■ Wick’s theorem: 〈a4〉=3〈a2〉2

■ CMB case: Knox 95, Hobson & Magueijo 96
□ need to account for (2ℓ +1)fsky measurements of each ℓ

□ Bandpowers: bin in ℓ (weighted for specific Cℓ shape) to reduce 
errors and decrease covariance

  

€ 

δC( )2 ≅ 2
(2 +1) f sky

C + N( )2 N ≈ w
−1 = θpσ p( )

−2

# of modes Sample 
(cosmic) 
Variance

Noise variance
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Planck errors
Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter�CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ⇥ = 50, and linear beyond. The vertical scale is ⇥(⇥+ 1)Cl/2�. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-⇥ region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ⇥ = 50,
and linear beyond. The vertical scale is ⇥(⇥ + 1)Cl/2�. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di⇥ers from the ERCSC in its extraction philosophy: more e⇥ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di⇥erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di⇥erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the

27

Results: power spectrum
Main result: Exquisite measurement of the temperature power 
spectrum

Error band: cosmic variance estimate
error bars: cosmic + noise variance
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A toy model
□ Consider all-sky observations with uniform white noise
	
 	
 dp = Tp+np

□ Pixel-space likelihood

□ Work in harmonic space
□ White noise equiv to const. noise spectrum, Nℓ = N∝σ2

□ Likelihood separates

□ with pseudo spectrum

⇥TpTp�⇤ = Spp� =
�

�

2⌥ + 1
4�

C�B
2
� P�(x̂p · x̂p�)

P (dp|C`) =
1

|2⇡(S +N)|1/2
exp�1

2

dT (S +N)

�1d

hnpnp0i = Npp0 = �2�pp0

d`m '
Z

d

2
x̂p d(x̂p)Y`m(x̂p)

hn`mn`0m0i = �``0�mm0N

Ĉ` ⌘
1

2`+ 1

X

m

|d`m|2

P (d`m|C`) =

Y

`

1

|2⇡(C` +N)|`+1/2
exp

 
�2`+ 1

2

ˆC`

C` +N

!
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Toy model

□ Likelihood (as a function of Cℓ) maximized at Cℓ = Ĉℓ −N
□ with curvature 

■ cf. Gaussian	

and Fisher information 

□ Skew positive likelihood
□ more Gaussian as ℓ→∞

Ĉ` ⌘
1

2`+ 1

X

m

|d`m|2P (d`m|C`) =

Y

`

1

|2⇡(C` +N)|`+1/2
exp

 
�2`+ 1

2

ˆC`

C` +N

!

Ĉℓ=1, N=0.1 

d2 lnP

dC2
`

����
C`=Ĉ`�N

= �
 

2Ĉ`

2`+ 1

!�1

d

2 lnP

dx

2
= �

�
�

2
��1

F ⌘ �
⌧
d

2 lnP

dx

2

�
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Bayesian methods:
MADCAP/MADspec

q (quasi-)Newton-Raphson iteration to 
Likelihood maximum

q Algorithm driven by matrix manipulation 
(iterated quadratic):

q Fisher = approx. Likelihood curvature 

q full polarization: signal matrix Sxx’
pp’ 

q Arbitrary (precomputed) noise spectrum 
q Arbitrary linear filters

q Stompor et al; Jaffe et al; Slosar et al

q O(N3) operations naïvely (matrix 
manipulations), speedup to ~O(N2) for 
spectrum estimates (potentially large 
prefactor)
q Fully parallelized (MPI, SCALAPACK)
q do calculations in the natural basis

q no explicit need for full Npp’ matrix in 
pixel basis (just noise spectrum or 
autocorrelation)

q e.g., MAXIMA, 
BOOMERANG  

€ 

δC = 1
2 Fll '

−1 Tr ddT −C( ) C−1 ∂C
∂C

C−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Fll ' = 1
2 Tr C−1 ∂C

∂C
C−1 ∂C

∂C

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Fisher matrix

C = S +N

BJK 98
Borrill, Cantalupo, Stompor et al
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Frequentist Monte Carlo methods
□ MASTER: quadratic pseudo-Cl estimate (Hivon et al)

 
	
 	
 	
 	
 	
 	
 	


	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 	
 	
 	
 	


where 
N is noise bias
M is mode coupling depending on sky coverage
F is experimental filter

□ SPICE: transform of correlation function estimate
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Szapudi et al)

□ Issues: filters, weights, noise estimation/iteration, input maps 
— optimal or naïve?

d`m =
X

p

dpwp⌦pY`m(x̂p)

Ĉ` =
1

2`+ 1

X

m

|d`m|2 pseudo-Cl 

Ĉ` ⇡ hĈ`i =
X

`0

C`M``0F`B
2
` +N` (Will discuss 

Bayesian sampling 
for Cℓ later on)
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Hybrid Methods:
FASTER

□ Key insight: MASTER covariance formalism allows 
calculation of diagonal part of pseudo-alm covariance — use 
for likelihood maximization
■ (nb. this has maximum entropy and so is conservative!)
■ Diagonal likelihood:

■

■ MC evaluation of means;
■ Newton-Raphson iteration towards maximum
■ Easy calculation of Likelihood shape parameters

  

€ 

P(dm | CI) =
1

2π ˆ C  + N[ ]
1/ 2 exp − 1

2
dm

2

ˆ C  + N

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

B98, CBI; Contaldi et al
(related suggestions from Delabrouille et al)
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WMAP:
 Cross-correlations

□ Take advantage of uncorrelated noise between 
different detectors

□

Monte Carlo method — without need for noise 
bias removal

□ (also Archeops—XSPECT; Polenta et al)
€ 

dp
1d ʹ′ p 

2 = sp
1 + np

1( ) s ʹ′ p 
2 + n ʹ′ p 

2( ) = Sp ʹ′ p 
12 + N p ʹ′ p 

12 = Sp ʹ′ p 
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Comparisons

B98:| Ruhl et al 2003 FASTER:| Contaldi et al 2004 

FASTER
MASTER
(MC avg)
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Timing and efficiency

qtime
qoptimal/bayes: Np

3

qmonte carlo: N1.5

qprefactors: NMC, Nbin, …

qSpace
qTOI: 50 GB/yr @200Hz
qmaps: 384 Mb @ Nside=2048

qnoise matrix: N2/2 entries
~9 petabytes @ 

Nside=2048

SPICE: Szapudi et al

resource management will become 
an issue even for cheapest 
methods
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Bayesian/Frequentist 
Correspondence

□ Why do both methods seem to work?
□ frequentist mean 	
 	
 ~ likelihood maximum

frequentist variance	
 ~ likelihood curvature
□ Correspondence is exact for
■ linear gaussian models (mapmaking)
■ variance estimation with no correlations and “iid” noise — simple 

version of Cl problem
□ e.g., all sky, uniform noise
□ likelihood only function of dlm

2

□ breaks down in realistic case of correlations, finite sky, varying noise

■ “asymptotic limit”
□ ~ high l iff noise correlations not “too strong”

□ But we still want to bootstrap from point estimates to the 
full likelihood function
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Polarization

qFormally the same problem: 
qdp⇒(i,q,u)p = di,p = dq

q 〈dqdq’〉=Nqq’+Sqq’ 
qlow S/N, large systematics
qcomplicated correlations:

qNqq’:  pixel differences
qSqq’=Sij

qq’ : linearly dependent 
on all of Cl

XX’ (X=T,E,B)
qe.g., Seljak, Zaldarriaga; Kamionkowski, 

Kosowsky, Stebbins; &c.

qE/B leakage (= T/E/B correlation)
qin principle, don’t need extra separation 

step if full correlations/distributions is 
known

qin practice, E/B characteristics impose 
specific correlation structure — easier to 
“separate”

qWiener filter for map from Cl.
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From Cℓ to cosmology
□ Step 3: Calculate & characterize posterior prob over some 

space of cosmological models and imposed priors
□ For simplest [?] theories, Cℓ is a deterministic function of the 

cosmological parameters θ={H0, ns, Ωm,  ΩDE, …}
■ P(θ|DI) = ∫ dCℓ P(θ|I) P(Cℓ|θI) P(Cℓ |DI)

             = P(θ|I) P(Cℓ[θ] | DI) 
             = P(θ|I) P(Cℓ[θ] | Ĉℓ, σℓ, shape, I)

□ So est’d Cℓ is [approximately] a sufficient statistic

□ Only approximate, so not really a separate step
■ P(θ|dt) = P(θ|Tp) ≈ P(θ|Cℓ)
■ can explore the likelihood — or finally assign meaningful priors on θ 

and calculate the posterior
□ MCMC, etc.

ML est. Variance
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The shape of  the likelihood 
function

□ Complicated function of Cℓ 
[through S(Cℓ)]

□ not a Gaussian in Cℓ 
□ big effect at low ℓ

■ ~Offset lognormal (BJK 00)
□ Gaussian in ln(Cℓ +xℓ)
□ Other approximations better at

moderate ℓ
■ e.g., Hamimeche & Lewis
□ include polarization
□ treat T, Q, U on same footing

P (T̄ |C⇥) =
1

|2�(S + N)| exp�1
2
T̄T (S + N)�1T̄

FASTER: Contaldi et al 04
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Sampling from the posterior
□ Infeasible to directly explore P(θ|data) for many 

parameters θ 
■ e.g., even the 6-parameter base LCDM model would 

require ~1006=1012 evaluations for 100 grid points in 
each direction…

□ Instead, generate samples θi from the distribution. 
■ Easy to evaluate moments (means, variances)

□                           or, more generally hf(✓)i = 1

N

X

i

f(✓i)h✓i = 1

N

X

i

✓i
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MCMC
□ Generate samples from posterior P(x)
□ Most methods require being able to generate 

samples from some simpler distribution
□ e.g., Markov Chain Monte Carlo
■ Start with proposal distribution Q(x*|x): probability of 

proposing point x* if starting at point x
■ often Q(x|y) = Q(|x-y|) (Metropolis)
□ Metropolis Algorithm: 
■ given point x(i), generate x* from Q(x*|x(i))
■ accept x* as x(i+1) with probability min[1,P(x*)/P(x(i))];

■ otherwise x(i+1) =x(i)

■ repeat… 
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Monte Carlo methods for the CMB
□ Markov Chain Monte Carlo: A. Lewis’ CosmoMC
■ coupled with fast deterministic calculation of power 

spectrum as fn of cosmological parameters
■ e.g. CMBFAST, CAMB,

CLASS

■ Other techniques
□ e.g., Skilling’s “nested 

sampling” which also allows
fast calc’n of model 
likelihoods (“evidence”)
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Aside: Gibbs Sampling
□ Combine parametric models of foregrounds with power 

spectrum estimation
■ Jewell et al; Wandelt et al; Eriksen et al; Larson et al; 

■ draw [full-sky] map realization given Cℓ and foreground parameter 
(Wiener filter)

■ draw foreground realization given Cℓ and map
■ draw Cℓ realization given map (Wishart, Gamma dists)

□ Output is sample maps and 
samples of Cℓ 
■ not always useful for subsequent 

parameter estimation
■ construct approx. likelihood by

averaging over samples
□ Blackwell-Rao estimator

a larger number of steps to obtain two independent samples. The
easiest way of improving on this is simply to bin many multi-
poles together and thereby increase the signal-to-noise ratio of the
power-spectrum coefficient. In practice we choose bins such that
the signal-to-noise ratio is always larger than some limit, say 3.

Since the CMB power spectrum is roughly proportional to
1/‘(‘þ 1), it is convenient to define uniform bins in C‘‘(‘þ 1).
We therefore redefine !‘ for bin b ¼ ½‘min; ‘max$ as

!‘ ¼
X

‘2b

X‘

m¼%‘
‘(‘þ 1)s‘ms

y
‘m: ð9Þ

Note that there are now

M ¼
X

‘2b
(2‘þ 1) ¼ (‘max þ 1)2 % ‘2min ð10Þ

independent spherical harmonicmodes contributing to this power-
spectrum coefficient. Thus, the inverse Wishart distribution has
n ¼ M % p% 1þ 2q degrees of freedom rather than n ¼ 2‘ %

pþ 2q. With this modification, the basic sampling algorithm
remains unchanged, but sincewe have sampledCb ¼ ‘(‘þ 1)C‘

and not C‘, the actual power spectrum coefficients are given by
C‘ ¼ Cb /‘(‘þ 1) for each ‘ in bin b.

2.4. Separation of E- and B-Modes

We now make a brief comment on the so-called E-B cou-
pling problem that plagues most approximate methods, such as
the pseudo-C‘ methods (see, e.g., Smith 2006). Briefly put, the
problem lies in the fact that the spherical harmonics are not or-
thogonal on a cut sky, and this may result in leakage from the
(much larger) E-mode power into the B-mode power spectrum.
Exact methods such as exact likelihood analyses or Gibbs

sampling do not have this problem. This can be understood in-
tuitively in terms of the signal-sampling process illustrated in
Figures 1 and 2. Obtaining a complete sky sample for the Gibbs
sampler is a two-step process. First, one filters out as much in-
formation as possible from the observed data using a Wiener
filter. Second, one replaces the lost power due to noise and partial-
sky coverage by a random fluctuation term. The sum of the two is

Fig. 2.—Close-up of the Galactic center shown in Fig. 1, emphasizing how the algorithm separates E- and B-modes. Each of the sampled maps (the sum of the
fluctuation and mean field map) are full-sky maps, so decomposing the polarization into E- and B-modes is straightforward. The images show temperature as color and
polarization overlaid as a fingerprint pattern of stripes. The stripes are aligned with the direction of polarization. They are darkest where the polarization is strongest, and
they disappear where the polarization goes to zero (Cabral & Leedom 1993). The maximum amplitude of the polarization is given in "K and centered under each image.
The maps have been smoothed to 1(. This is an orthogonal projection of the sky, about 60( wide, centered on the Galactic center. TheWMAPKp0 galactic mask is visible
in the fluctuation and mean terms.

LARSON ET AL.656 Vol. 656
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The Planck likelihood
□ High ℓ
■ Start with pseudo-Cℓ of each detector, with conservative masks
□ for cosmology, consider 

100x100, 143x143, 217x217, 143x217
■ Foregrounds:

□ Use 353 GHz as a dust template
□ Explicit power spectral templates for unresolved point sources, SZ, CIB

■ Instrument:
□ relative calibration between 100, 143, 217
□ beam errors

■ Use Gaussian approximation assuming a fiducial models gives the signal 
covariances (Hamimeche & Lewis)

□ low ℓ
■ Temperature: Planck 30-353 GHz 
■ polarization: WMAP 
□ needed to fix optical depth τ
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Measuring the geometry of  the 
Universe
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Measuring the geometry of  the 
Universe

Planck Collaboration: Cosmological parameters
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between ⌦m and ⌦⇤ due to the e↵ect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.

6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

P
m⌫ (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

P
m⌫ must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e↵ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >⇠ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e↵ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

P
m⌫ = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of

X
m⌫ < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e↵ect leading to the
constraint is gravitational lensing, we remove the lensing infor-
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constraint contours adding WMAP low-` polarization (WP; red contours), compared to WMAP-9 (Bennett et al. 2012; grey con-
tours).

matter density parameters, and DA depends on the late-time evo-
lution and geometry. Parameter combinations that fit the Planck
data must be constrained to be close to a surface of constant ✓⇤.
This surface depends on the model that is assumed. For the base
⇤CDM model, the main parameter dependence is approximately
described by a 0.3% constraint in the three-dimensional ⌦m–h–
⌦bh2 subspace:

⌦mh3.2(⌦bh2)�0.54 = 0.695 ± 0.002 (68%; Planck). (11)

Reducing further to a two-dimensional subspace gives a 0.6%
constraint on the combination

⌦mh3 = 0.0959 ± 0.0006 (68%; Planck). (12)

The principle component analysis direction is actually ⌦mh2.93

but this is conveniently close to ⌦mh3 and gives a similar con-
straint. The simple form is a coincidence of the ⇤CDM cos-
mology, error model, and particular parameter values of the

model (Percival et al. 2002; Howlett et al. 2012). The degener-
acy between H0 and ⌦m is illustrated in Fig. 3: parameters are
constrained to lie in a narrow strip where ⌦mh3 is nearly con-
stant, but the orthogonal direction is much more poorly con-
strained. The degeneracy direction involves consistent changes
in the H0,⌦m, and⌦bh2 parameters, so that the ratio of the sound
horizon and angular diameter distance remains nearly constant.
Changes in the density parameters, however, also have other
e↵ects on the power spectrum and the spectral index ns also
changes to compensate. The degeneracy is not exact; its extent
is much more sensitive to other details of the power spectrum
shape. Additional data can help further to restrict the degeneracy.
Figure 3 shows that adding WMAP polarization has almost no ef-
fect on the⌦mh3 measurement, but shrinks the orthogonal direc-
tion slightly from ⌦mh�3 = 1.03 ± 0.13 to ⌦mh�3 = 1.04 ± 0.11.
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Fig. 3. Constraints in the ⌦m–H0 plane. Points show samples
from the Planck-only posterior, coloured by the corresponding
value of the spectral index ns. The contours (68% and 95%)
show the improved constraint from Planck+lensing+WP. The
degeneracy direction is significantly shortened by including WP,
but the well-constrained direction of constant ⌦mh3 (set by the
acoustic scale), is determined almost equally accurately from
Planck alone.

Adding WMAP polarization information shrinks the errors by
only 10%.

The dark matter density is slightly less accurately measured
at around 3%:

⌦ch2 = 0.1196 ± 0.0031 (68%; Planck). (18)

3.4. Optical depth

Small-scale fluctuations in the CMB are damped by Thomson
scattering from free electrons produced at reionization. This
scattering suppresses the amplitude of the acoustic peaks by e�2⌧

on scales that correspond to perturbation modes with wavelength
smaller than the Hubble radius at reionization. Planck measures
the small-scale power spectrum with high precision, and hence
accurately constrains the damped amplitude e�2⌧As. With only
unlensed temperature power spectrum data, there is a large de-
generacy between ⌧ and As, which is weakly broken only by the
power in large-scale modes that were still super-Hubble scale
at reionization. However, lensing depends on the actual ampli-
tude of the matter fluctuations along the line of sight. Planck
accurately measures many acoustic peaks in the lensed tempera-
ture power spectrum, where the amount of lensing smoothing de-
pends on the fluctuation amplitude. Furthermore Planck’s lens-
ing potential reconstruction provides a more direct measurement
of the amplitude, independently of the optical depth. The combi-
nation of the temperature data and Planck’s lensing reconstruc-
tion can therefore determine the optical depth ⌧ relatively well.
The combination gives

⌧ = 0.089 ± 0.032 (68%; Planck+lensing). (19)

As shown in Fig. 4 this provides marginal confirmation (just un-
der 2�) that the total optical depth is significantly higher than
would be obtained from sudden reionization at z ⇠ 6, and is con-
sistent with the WMAP-9 constraint, ⌧ = 0.089 ± 0.014, from

large-scale polarization (Bennett et al. 2012). The large-scale E-
mode polarization measurement is very challenging because it
is a small signal relative to polarized Galactic emission on large
scales, so this Planck polarization-free result is a valuable cross-
check. The posterior for the Planck temperature power spectrum
measurement alone also consistently peaks at ⌧ ⇠ 0.1, where the
constraint on the optical depth is coming from the amplitude of
the lensing smoothing e↵ect and (to a lesser extent) the relative
power between small and large scales.

Since lensing constrains the underlying fluctuation ampli-
tude, the matter density perturbation power is also well deter-
mined:

�8 = 0.823 ± 0.018 (68%; Planck+lensing). (20)

Much of the residual uncertainty is caused by the degeneracy
with the optical depth. Since the small-scale temperature power
spectrum more directly fixes �8e�⌧, this combination is tightly
constrained:

�8e�⌧ = 0.753 ± 0.011 (68%; Planck+lensing). (21)

The estimate of �8 is significantly improved to �8 = 0.829 ±
0.012 by using the WMAP polarization data to constrain the op-
tical depth, and is not strongly degenerate with ⌦m. (We shall
see in Sect. 5.5 that the Planck results are discrepant with re-
cent estimates of combinations of �8 and ⌦m from cosmic shear
measurements and counts of rich clusters of galaxies.)

3.5. Spectral index

The scalar spectral index defined in Eq. (2) is measured by
Planck data alone to 1% accuracy:

ns = 0.9616 ± 0.0094 (68%; Planck). (22)

Since the optical depth ⌧ a↵ects the relative power between large
scales (that are una↵ected by scattering at reionization) and in-
termediate and small scales (that have their power suppressed
by e�2⌧), there is a partial degeneracy with ns. Breaking the de-
generacy between ⌧ and ns using WMAP polarization leads to a
small improvement in the constraint:

ns = 0.9603 ± 0.0073 (68%; Planck+WP). (23)

Comparing Eqs. (22) and (23), it is evident that the Planck tem-
perature spectrum spans a wide enough range of multipoles to
give a highly significant detection of a deviation of the scalar
spectral index from exact scale invariance (at least in the base
⇤CDM cosmology) independent of WMAP polarization infor-
mation.

One might worry that the spectral index parameter is degen-
erate with foreground parameters, since these act to increase
smoothly the amplitudes of the temperature power spectra at
high multipoles. The spectral index is therefore liable to po-
tential systematic errors if the foreground model is poorly con-
strained. Figure 4 shows the marginalized constraints on the
⇤CDM parameters for various combinations of data, includ-
ing adding high-resolution CMB measurements. As will be dis-
cussed in Sect. 4, the use of high-resolution CMB provides
tighter constraints on the foreground parameters (particularly
“minor” foreground components) than from Planck data alone.
However, the small shifts in the means and widths of the distri-
butions shown in Fig. 4 indicate that, for the base ⇤CDM cos-
mology, the errors on the cosmological parameters are not lim-
ited by foreground uncertainties when considering Planck alone.
The e↵ects of foreground modelling assumptions and likelihood
choices on constraints on ns are discussed in Appendix B.
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Hierarchical Models
□ So we have a hierarchical model
■ ask progressively more complicated questions of the data, with 

(approximately) no dependence on the details of previous results
■ Timelines ⇒ maps ⇒ spectra ⇒ parameters

□ Each is a “nuisance parameter” for the next step w/
an uncontroversial prior defining that step
■ e.g., 〈TpTp’〉 = Spp’(Cℓ)      P(Cℓ|θ) = δ[Cℓ - Cℓ(θ)]     

□ But in the realistic case there may be other 
nuisance parameters for which the priors are 
relevant:
■ timeline systematics, foregrounds, &c.
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Testing assumptions
□ We have been calculating the posterior
	
 P(Ωbh2, Ωch2, θMC, τ, ns, As | Planck, I)

□ Background information “I”
■ (testable) assumptions:
□ LCDM in general
□ gaussianity, isotropy
□ by some measures, it obeys 

these assumptions very well

Planck Collaboration: Isotropy and statistics
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Fig. 1. Variance, skewness and kurtosis for the combined map of
the four di↵erent component separation methods. From top row
to bottom row C-R, NILC, SEVEM, SMICA.

Table 6. Lower tail probablity for the N-pdf, using di↵erent
masks.

Mask C-R NILC SEVEM SMICA

U73, fsky =78% . . . . . . . . . . . . . . 0.027 0.028 0.019 0.030
CL58, fsky =58% . . . . . . . . . . . . . 0.137 0.137 0.147 0.146
CL37, fsky =37% . . . . . . . . . . . . . 0.409 0.415 0.420 0.436
Ecliptic North, fsky =39% . . . . . . 0.024 0.022 0.021 0.021
Ecliptic South, fsky =39% . . . . . . 0.170 0.196 0.183 0.193

We begin by analysing the �2 quantity for low resolution
maps at Nside = 32 and filtering with a 5� FWHM Gaussian.
1 µK uncorrelated regularization noise is added to the covariance
matrix before inverting it. Regularization noise realizations are
added to the data and simulations for consistency (see Eriksen
et al. 2007b, for more details).

We analyse the four cleaned data maps, applying the com-
mon, CL58 and CL37 masks. The admitted fraction of the sky
is respectively 78%, 58% and 37%. The northern and southern
ecliptic hemispheres outside the U73 mask are also considered.
The results are shown in Fig. 2 and Table 6. In the U73 mask
case, the lower tail probabilities are low. Applying the two CL58
and CL37 masks that permit less sky coverage, the data are con-
sistent with simulations. The low �2 value appears to be localised
in the northern ecliptic hemisphere. These results are directly
comparable to the anomalous variance mentioned in Sect. 4.1.
Note that the four maps show similar values, but the di↵erences
are larger when using the U73 mask. This could indicate the
presence of some residual foreground contamination near the
Galactic plane. Therefore, the frequency dependence of our es-
timator is analysed in order to identify any possible foreground
contamination. The results are shown in Fig. 3 and Table 7. A
moderate frequency dependence is found when using the U73
mask, which could indicate the presence of some foreground
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Fig. 2. N-pdf �2 for the U73 mask, CL58, CL37, ecliptic North
and ecliptic South. The di↵erent colours represent the four com-
ponent separation methods, namely C-R (green), NILC (blue),
SEVEM (red), and SMICA (orange).

Table 7. Frequency dependence of the lower tail probablity for
the N-pdf, using di↵erent masks.

Mask 70 GHz 100 GHz 143 GHz 217 GHz
U73, fsky =78% . . . . . . . . . 0.037 0.058 0.013 0.124
CL58, fsky =58% . . . . . . . . 0.169 0.123 0.111 0.169
CL37, fsky =37% . . . . . . . . 0.422 0.366 0.376 0.386
Ecliptic North, fsky =39% . 0.028 0.050 0.015 0.083
Ecliptic South, fsky =39% . 0.225 0.233 0.166 0.330

residuals near the Galactic plane. The frequency dependence of
the results vanishes when using the CL58 and CL37 masks that
exclude more of the sky from analysis.

4.3. N-point correlation functions

In this section we present tests of the non-Gaussianity of the
Planck CMB maps using real-space N-point correlation func-
tions. While harmonic-space methods are often preferred over
real-space methods for studying primordial fluctuations, real-
space methods may have an advantage with respect to system-
atics and foregrounds, since such e↵ects are usually localized in
real space. It is therefore important to analyse the data in both
spaces in order to highlight di↵erent features.

An N-point correlation function is by definition the average
product of N temperatures, measured in a fixed relative orienta-
tion on the sky,

CN(✓1, . . . , ✓2N�3) =
*
�T ( ˆ

n1) · · ·�T ( ˆ

nN)
+
, (8)

where the unit vectors ˆ

n1, . . . , ˆnN span an N-point polygon on
the sky. By assuming statistical isotropy, the N-point functions
are only functions of the shape and size of the N-point poly-
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Fig. 6. The 2-point (upper left), pseudo-collapsed (upper right), equilateral (lower left) 3-point and reduced rhombic 4-point (lower
right) functions for the Nside = 64 CMB estimates. The black solid line indicates the mean for 1000 MC simulations and the shaded
dark and light grey regions indicate the 68% and 95% confidence regions, respectively.

Table 10. Probabilities of obtaining values of the �2 statistic of
the N-point functions shown in Figs. 7 and 8 for the Planck fidu-
cial ⇤CDM model at least as large as the observed values of
the statistic for Planck CMB maps with resolution parameter
Nside = 512 estimated using the C-R, NILC, SEVEM and SMICA
methods.

C-R NILC SEVEM SMICA

Two-point function

A set . . . . . . . . . . . . . 0.858 0.902 0.886 0.904
B set . . . . . . . . . . . . . 0.351 0.370 0.404 0.376
Pseudo-collapsed three-point function

A set . . . . . . . . . . . . . 0.568 0.565 0.651 0.603
B set . . . . . . . . . . . . . 0.483 0.526 0.550 0.540
Equilateral three-point function

A set . . . . . . . . . . . . . 0.004 0.032 0.045 0.043
B set . . . . . . . . . . . . . 0.452 0.485 0.443 0.479
Rhombic four-point function

A set . . . . . . . . . . . . . 0.104 0.102 0.102 0.107
B set . . . . . . . . . . . . . 0.521 0.569 0.537 0.579

Table 11. Probabilities of obtaining values of the �2 statistic
of the N-point functions shown in Fig. 9 for the Planck fidu-
cial ⇤CDM model at least as large as the observed values of
the statistic for Planck CMB maps with resolution parameter
Nside = 2048 estimated using the C-R, NILC, SEVEM, and SMICA
methods.

C-R NILC SEVEM SMICA

2-pt. . . . . . . . . . . . . . . 0.335 0.474 0.573 0.497
pseudo-coll. 3-pt. . . . . 0.522 0.463 0.469 0.448
equil. 3-pt. . . . . . . . . . 0.853 0.789 0.819 0.796
4-pt. . . . . . . . . . . . . . . 0.532 0.534 0.579 0.526

from Gaussianity for any of the analysed scales. However, it is
clear that the CMB maps smoothed and downgraded to Nside =
64 show the largest deviation, especially for the 4-point correla-
tion function, in comparison to the intermediate and small angu-
lar scale analyses.

4.4. Minkowski functionals

Minkowski functionals (Minkowski 1903, hereafter MFs) de-
scribe the morphology of fields in any dimension and have long

9

2pt 3pt collapsed

3pt equilateral 4pt rhombic

Friday, 26 July 13



Low power on large scales
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Anomalies?
Less structure

More structure

“cold spot”
Small (but statistically 
significant) difference between 
the power in the hemispheres

Overall low amplitude at large scales
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Large-scale anisotropy
□ Hemispherical differences: how can we arrange 

anisotropy on the scale of the horizon?
■ initial conditions: anisotropic inflation?
■ the large-scale structure of spacetime
□ change the geometry: Bianchi
■ homogeneous + anisotropic spacetimes

□ change the topology
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The shape of  the Universe
□ General relativity determines the curvature of the 

Universe, but not its topology (holes and handles)
□ Most theories of quantum gravity (and quantum 

cosmology) predict topological change on small 
scales and at early times. 

□ Does this have cosmological implications?
■ E.G., small universe ⇒ fewer large-scale modes 

available ⇒ low power on large scales?
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Topology in a flat “universe”

Don’t need to “embed” the square 
to have a connected topology.

“tiling the plane”
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Topology in a flat “universe”

Don’t need to “embed” the square 
to have a connected topology.

“tiling the plane”
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Topology + geometry

□ Tile the 2-sphere with different 
fundamental domains
■ (Each of these has a 3-sphere analogy)

□ Can also tile the hyperbolic universe:
■ (Bond, Pogosyan, etc.)

http://www.sciencenews.org/pages/sn_arc98/2_21_98/bob1.htm
Friday, 26 July 13
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Us!

Last Scattering Surface

Perfect correlation [of SW]
“circles in the sky”
finite-lag correlation

Measuring Topology
with the CMB 
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Topology in the CMB
□ Look for repeated patterns
□ Generic & specific methods 
□ matching patches (e.g., Levin et al )
■ method of images (e.g., Bond et al)
■ assumes infinitely thin LSS
■ mostly open Universes

□ Circles in the sky (Cornish, Spergel, Starkman)
■ looks for LSS structure; ignores 

different views of the same point
■ nb. generic methods work as frequentist null

tests but need comparison w/ specific topologies to get statistics
□ even Bayesians need to do exploratory statistics

■ Cornish et al ’04: “fewer than 1 in 100 random skies generate a 
false match” [??]: limit out to 24 Gpc

Reviews:
Levin; Lachieze-Rey, Lehoucq, 
Luminet

9

angular resolution is finite, the circles we compare do not have exactly the right
centrings or angular radii. Moreover, the temperature at each point around a circle is
found by linear interpolation from the sky pixel temperatures. These effects combine
to produce pixel noise. The pixel noise is reduced if we go to higher angular resolution.
In addition, experimental data sets are usually oversampled, i.e. the data is recorded
at an angular resolution substantially higher than the detector resolution. For COBE
the data was collected at a resolution of 2.4o while the true instrument resolution was
10o. Because of this oversampling, there is no information in the temperature gradient
between adjacent pixels. Consequently, there will be no pixel noise coming from our
temperature interpolation when we apply our search to real data sets.

The pair of matched circles have exactly the angular size and relative position we
expect from the intersection of the sphere of last scatter with its nearest clone. In a flat
universe the angular radius of a matched circle pair follows from simple trigonometry:

α = arccos

(

X

2Rsls

)

. (8)

Here X is the distance between us and the clone responsible for the matched circle.
For a cubic T 3 with sidelength L = Rsls there will be matched circle pairs with
α = {60o, 45o, 300, 0o} and multiplicities {3, 6, 4, 3}.

Figure 5. (a) The intersection that leads to the matched circle pair (b) The sphere
of last scatter centred on the origin and the six nearest neighbours to the central
fundamental cell.

(a) (b)

The matched circles seen in Fig. 3 are due to the intersection shown in Fig. 5a.
A partial tiling of the covering space by our six nearest neighbour fundamental cells
is shown in Fig. 5b. The matched circles arising from these clones lie on faces of the
fundamental cell. However, this is not true for all matched circle pairs. For example,
the circles coming from the clones situated in the next-to-nearest neighbour cells (with
α = 45o) do not lie on faces of the fundamental cube.

We can evaluate the circle statistic S(φ∗) for the matched pair under consideration.
This is shown in Fig. 6 as a function of pixel offset i = φ∗/2∆θ. There is a clear
peak at φ∗ = 0 where the the statistic reaches the value S(0) = 0.975. This should be

4

Figure 1. The sphere of last scatter viewed in the universal cover. The dark sphere
marks the primary copy and the four lighter spheres are intersecting clones.

Previous attempts to detect topology in a finite universe have used statistics that
are only sensitive to T 3 topologies[14, 15]. In contrast, our method is generic to all
topologies that are locally homogeneous and isotropic (this includes all small FRW
models). Importantly, the mapping from the surface of last scatter to the night sky
is a conformal map. Since conformal maps preserve angles, the identified circles at
the surface of last scatter would appear as equally rescaled, identified circles on the
night sky. The angular radius and angular separation of each identified circle pair will
depend on the geometry and topology of the universe, as will the number of pairs. If
we are able to detect these circles, then their position, number and size can be used
to determine the geometry and topology of the universe.

A second generic feature of topology is that it makes space globally anisotropic.
This can be understood quite simply in the case of a three-torus in which looking along
one of the axes brings you back around in a closed loop, but looking off-axis makes you
wind round and round the space like the red strip around a barber pole. Thus, in a
non-trivial topology, there are preferred directions. What is more surprising is that all
but T 3 also make space globally inhomogeneous. In most topologies, the identifications
of faces are made with twists (much like how a Mobius strip is constructed from a
length of ribbon). Thus typical isometries involve a corkscrew type motion. Since the
topologies violate global isotropy, this mixing of translations and rotations causes a
violation of global homogeneity.

Unlike other inhomogeneous cosmologies, such as Tolman-Bondi universes which
are locally inhomogeneous, these global violations of homogeneity and isotropy are
not excluded. After all, we already know that the universe is weakly inhomogeneous
and anisotropic on large scales – there is observable structure. Similarly, in the
topologically interesting cosmologies, homogeneity and isotropy are violated only by
the correlations between the structure that we observe – such as the fluctuations in
the CMBR.
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Topology: methods
□ When topological scale ≲ Horizon scale, induce 

anisotropic correlations (and suppress power) on large 
scales

□ Direct search for matched circles
■ sensitive to topology with parallel matched surfaces 

□ Explicit Likelihood
■ calculate correlation matrix for specific topologies.
■ 3d Gaussian with 〈δkδkʹ〉 = (2π)3δD(k+kʹ)P(k) w/ k restricted 

to fundamental domain with boundary conditions
■ induced CMB correlations depend on topology (incl. 

orientation)
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Quaternionic/bi-dehedral         Octahedral/bi-tetrahedral

Truncated cube/bi-octahedral        Poincaré/icosahedral

Simulated Maps (Ωk = - 0.063)
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Bayesian topology

□ Full correlation matrix:
□  C = 〈aℓm aℓ’m’ 〉 = Cℓℓ’mm’ = C(cosmology, topology)
□   

□ a = aℓm
■ (Noise irrelevant on scales of interest)
■ Suppressed power ⇒ stronger correlations

P (a|C) =
1

|2�C|1/2
exp

�
�1

2
aT C�1a

⇥

Planck Collaboration: Planck 2013 results. XXVI. Background geometry and topology of the Universe

Table 1: Parameters of analysed curved spaces.

Spherical Hyperbolic
Dodecahedral Truncated Cube Octahedral m004(�5,1) v3543(2,3)

V/R3
0 0.16 0.41 0.82 0.98 6.45

Ri/R0 0.31 (⇡/10) 0.39 (⇡/8) 0.45 0.54 0.89
Rm/R0 0.37 0.56 0.56 0.64 1.22
Ru/R0 0.40 0.58 0.79 (⇡/4) 0.75 1.33

ratio Ru/Ri is a good indicator of the shape of the fundamental
domain. Note that when �rec is less than Ri, multiple images on
large scales are not present, although the Cpp0 correlation matrix
is still modified versus the singly-connected limit. The e↵ects of
topology usually become strong when �rec exceeds the interme-
diate Rm.

A much wider class of topologies is constrained using the
matched circles method. As discussed in Sect. 5.1, because of
computational limitations we restrict our analysis to pairs of
circles centered around antipodal points, so called back-to-
back circles. Thus, we can constrain all topologies predicting
pairs of such circles. The strongest constraints are imposed on
topologies predicting back-to-back circles in all directions i.e.,
all the single action manifolds, among them tori of any shape
and the three spherical cases considered explicitly in the like-
lihood analysis. Weaker constraints are imposed on topologies
with all back-to-back circles centred on a great circle of the ce-
lestial sphere such as half-turn, quarter-turn, third-turn and sixth-
turn spaces, as well as Klein and chimney spaces. The statistic
can also constrain the multi-connected spaces predicting one pair
of antipodal matching circles such as Klein or chimney spaces
with horizontal flip, vertical flip or half-turn and slab space trans-
lated without screw motion. Other topologies catalogued in ? are
not constrained by this analysis: the Hantzsche-Wendt space; the
chimney space with half-turn and flip; the generic slab space; the
slab space with flip; spherical manifolds with double and linked
action; and all the hyperbolic topologies including those two
cases considered using the likelihood method.

3.1.1. Computing correlation matrices

The CMB temperature pixel-pixel correlation matrix is a dou-
ble radial integral of the ensemble average of the product of the
source functions that describe the transport of photons through
the universe from the last scattering surface to the observer:

Cpp0 =

Z �rec

0
d�
Z �rec

0
d�0hS (�q̂p)S (�0 q̂p0 )i , (1)

where q̂p and q̂p0 are unit vectors that point at pixels p and p0
on the sky, and � and �0 are proper distances along radial rays
pointing towards the last scattering surface.

Two techniques have been developed to compute the CMB
correlation function for multiply-connected universes. In one ap-
proach, one constructs the orthonormal set of basis functions
that satisfy the boundary conditions imposed by compactifica-
tion (eigenfunctions of the Laplacian operator furnish such a ba-
sis), and assembles the spatial correlation function of the source
hS (�q̂p)S (�0 q̂p0 )i from such a basis (??). In the other approach,
one applies the method of images to create the compactified ver-
sion of

D
S (�q̂p)S (�0 q̂p0 )

Ec
from the one computed on the univer-

sal covering space by resumming the latter over the images of
the 3D spatial positions �q̂p (???):
D
S (�q̂p)S (�0 q̂p0 )

Ec
=
fX

�2�
hS(�q̂p)�[S(�[�0 q̂p0 ])]iu, (2)

where the superscripts c and u refer to the quantity in the
multiply-connected space and its universal cover, respectively.
Tilde refers to the need for sum regularization in the models with
an infinite set of images, e.g., hyperbolic and flat toroidal ones. �
is the discrete subgroup of motions which defines the multiply-
connected space and �[x] is the spatial point on the universal
cover obtained by the action of the motion � 2 � on the point x.
The important issue to note is that one needs to implement the
action of the motion � on the source function unless all the terms
in the source function are scalar quantities (which is the case if
one limits consideration to Sachs-Wolfe terms) when the action
is trivial.

Both methods are general, but have practical considerations
to take into account when one increases the pixel resolution. For
computing Cpp0 up to the resolution corresponding to harmonic
mode ` ⇡ 40 both methods have been tested and were found to
work equally well. In this paper we employ both approaches.

The main e↵ect of the compactification is that Cpp0 is no
longer a function of the angular separation between the pixels
p and p0 only, due to the lack of global isotropy. In harmonic
space the two-point correlation function of the CMB is given by

Cmm0
``0 = ha`ma⇤`0m0 i , C`�``0�mm0 , (3)

where �``0 is the Kronecker delta symbol and a`m are the spher-
ical harmonic coe�cients of the temperature on the sky when
decomposed into the spherical harmonics Y`m(q̂) by

T (q̂) =
X

`m

a`mY`m(q̂) . (4)

Note that the two-point correlation function Cmm0
``0 is no longer

diagonal, nor is it m-independent, as in an isotropic universe.
A flat universe provides an example when the eigenfunctions

of the Laplacian are readily available in a set of plane waves.
The topological compactification in the flat space discretizes the
spectrum of the wavevector magnitudes k

2 and selects the subset
of allowed directions. For example, for a toroidal universe the
length of the fundamental cell needs to be an integer multiple
of the wavelength of the modes. We therefore recover a discrete
sum over modes kn = (2⇡/L)n for n = (nx, ny, nz) a triplet of
integers, instead of an integral over k,

Cmm0
``0 /

Z
d3k�`(k,�⌘)�`0 (k,�⌘)P(k) !

X

n
�`(kn,�⌘)�`0 (kn,�⌘)P(kn)Y`m(n̂)Y⇤`0m0 (n̂) ,

(5)
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Pixel correlations
□ Octahedral:
■ h=0.64, Ωk = - 0.017
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Rows of the correlation matrix:
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□ Poincaré:
■ h=0.52, Ωk = - 0.063

Pixel correlations
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Topology from Planck
□ “Matched circles” in a simulated Universe:

□ Alas, not found… we can limit the size of the 
“fundamental cube” to be greater than the size of 
the surface we observe with the CMB:
■ side L≳26 Gpc
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□ No strong evidence for topology on the scale of 
the last-scattering surface

 

20 40 60 80
α [deg]

S
_

m
a

x(
α

) 

0
.2

0
.4

0
.6

0
.8

1
.0

C-R
NILC
SEVEM
SMICA
false det. thres.

C-R
NILC
SEVEM
SMICA
false det. thres.

     

2χrec/L

 

 

 

 

∆
ln

 L
ik

e
li
h

o
o

d

1.00 1.50 2.00 2.50 3.00

-1
5

0
-1

0
0

-5
0

0

SMICA

fiducial

SEVEM

Cm-Rl

NILC

T3 Cubic Torus

       

2χrec/L

 

 

 

 

 

 

 

∆
ln

 L
ik

e
li
h

o
o

d

0.90 1.00 1.10 1.20 1.30 1.40 1.50

-5
0

-4
0

-3
0

-2
0

-1
0

0
1
0

SMICA max

fiducial max

SMICA marg

T3 Cubic Torus

     

χrec/Ri

 

 

 

 

∆
ln

 L
ik

e
li
h

o
o

d

0.80 1.00 1.20 1.40 1.60

-1
5

0
-1

0
0

-5
0

0

SMICA

fiducial

SEVEM

Cm-Rl

NILC

Dodecahedral

Likelihoods Circles-in-the-sky

Planck Collaboration: Planck 2013 results. XXVI. Background geometry and topology of the Universe

Fig. 1: The top row shows the correlation structure (i.e., a sin-
gle row of the correlation matrix) of a simply-connected uni-
verse with isotropic correlations. For subsequent rows, the left
and middle column show positively curved multiply-connected
spaces (left: dedocahedral, middle: octahedral) and the right col-
umn shows equal sided tori. The upper row of three maps cor-
responds to the case when the size of the fundamental domain
is of the size of the diameter to the last scattering surface and
hence the first evidence for large angle excess correlation ap-
pears. Subsequent rows correspond to decreasing fundamental
domain size with respect to the last scattering diameter, with pa-
rameters roughly chosen to maintain the same ratio between the
models.

X

n
�`(kn,�⌘)�`0 (kn,�⌘)P(kn)Y`m(n̂)Y⇤`0m0 (n̂) ,

(5)

where �`(k,�⌘) is the radiation transfer function (e.g., Bond &
Efstathiou 1987; Seljak 1996). We refer to the cubic torus with
three equal sides as the T3 topology; it is also possible for the
fundamental domain to be compact in only two spatial dimen-
sions (e.g., the so-called T2 “chimney” space) or one (the T1
“slab”, similar to the “lens” spaces available in manifolds with
constant positive curvature) in which case the sum is replaced by
an integral in those directions. These models serve as approxi-
mations to modifications to the local topology of the global man-
ifold (albeit on cosmological scales): for example, the chimney
space can mimic a “handle” connecting di↵erent regions of an
approximately flat manifold.

In Fig. 1 we show rows of the pixel-space correlation matrix
for a number of multiply-connected topologies as a map, show-
ing the magnitude of the correlation within a particular pixel.
For the simply-connected case, the map simply shows the same
information as the correlation function C(✓); for the topologi-
cally non-trivial cases, we see the correlations depend on dis-
tance and direction and di↵er from pixel to pixel (i.e., from row
to row of the matrix). In Fig. 2 we show example maps of CMB
anisotropies in universes with these topologies, created by direct
realisations of Gaussian fields with the correlation matrices of
Fig. 1.

3.2. Bianchi

Bianchi cosmologies include the class of homogeneous but
anisotropic cosmologies, where the assumption of isotropy about
each point in the Universe is relaxed. For small anisotropy, as

Fig. 2: Random realisations of temperature maps for the models
in Fig. 1. The maps are smoothed with a Gaussian filter with
full-width-half-maximum FWHM = 640 0.

demanded by current observations, linear perturbation about the
standard FRW model may be applied, leading to a subdominant,
deterministic contribution to the CMB fluctuations. In this set-
ting CMB fluctuations may be viewed as the sum of a determin-
istic Bianchi contribution and the usual stochastic contribution
that arises in the ⇤CDM model. The deterministic CMB temper-
ature fluctuations that result in the Bianchi models were derived
by Barrow et al. (1985), although no dark energy component was
included. More recently, Ja↵e et al. (2006c), and independently
Bridges et al. (2007), extended these solutions for the open and
flat Bianchi VIIh models to include cosmologies with dark en-
ergy. We defer the details of the CMB temperature fluctuations
induced in Bianchi models to these works and give only a brief
description here.

Bianchi VIIh models describe a universe with overall ro-
tation, parameterized by an angular velocity, !, and a three-
dimensional rate of shear, parameterized by the antisymmetric
tensor �i j; we take these to be relative to the z axis. The model
has a free parameter, first identified by Collins & Hawking
(1973), describing the comoving length-scale over which the
principal axes of shear and rotation change orientation. The ra-
tio of this length scale to the present Hubble radius is typically
denoted x, which defines the h parameter of type VIIh models
through (Barrow et al. 1985)

x =
r

h
1 �⌦tot

, (6)

where the total energy density ⌦tot = ⌦m + ⌦⇤. The parameter
x acts to change the “tightness” of the spiral-type CMB tem-
perature contributions that arise due to the geodesic focusing of
Bianchi VIIh cosmologies. The shear modes �i j of combinations
of orthogonal coordinate axes are also required to describe a
Bianchi cosmology. The present dimensionless vorticity (!/H)0
may be related to the dimensionless shear modes (�i j/H)0 by
(Barrow et al. 1985)

✓!
H

◆

0
=

(1 + h)1/2(1 + 9h)1/2

6x2⌦tot

r✓�12

H

◆2

0
+
✓�13

H

◆2

0
, (7)

where H is the Hubble parameter. Throughout we assume equal-
ity of shear modes � = �12 = �13 (cf. Ja↵e et al. 2005). The
amplitude of the deterministic CMB temperature fluctuations in-
duced in Bianchi VIIh cosmologies may be characterised by ei-

5
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Bianchi Models
□ Homogeneous, anisotropic spaces
□ VIIh: global shear and rotation
■ parameter h relates vorticity ωi to shear σij, Ωtot

□ Focusing induces specific pattern 
of temperature anisotropy on large 
scales

□ Full likelihood calculation 
(Gaussian added to deterministic 
template)
■ consistent cosmology very low 
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Fig. 3: Simulated deterministic CMB temperature contribu-
tions in Bianchi VIIh cosmologies for varying x and ⌦tot
(left-to-right ⌦tot 2 {0.10, 0.30, 0.95}; top-to-bottom x 2
{0.1, 0.3, 0.7, 1.5, 6.0}). In these maps the swirl pattern typical
of Bianchi-induced temperature fluctuations is rotated from the
South pole to the Galactic centre for illustrational purposes.

ther (�/H)0 or (!/H)0 since these parameters influence the am-
plitude of the induced temperature contribution only and not its
morphology. The handedness of the coordinate system is also
free in Bianchi VIIh models, hence both left- and right-handed
models arise. Since the Bianchi-induced temperature fluctua-
tions are anisotropic on the sky the orientation of the result-
ing map may vary also, introducing three additional degrees-of-
freedom. The orientation of the map is described by the Euler
angles4 (↵, �, �), where for (↵, �, �) = (0�, 0�, 0�) the swirl pat-
tern typical of Bianchi templates is centred on the South pole.

Examples of simulated Bianchi VIIh CMB temperature maps
are illustrated in Fig. 3 for a range of parameters. In the anal-
ysis performed herein the BIANCHI25 (McEwen et al. 2013)
code is used to simulate the temperature fluctuations induced
in Bianchi VIIh models. Bianchi VIIh models induce only large
scale temperature fluctuations in the CMB and consequently
Bianchi maps have a particularly low band-limit, both globally
and azimuthally (i.e., in both ` and m in spherical harmonic
space; indeed, only those harmonic coe�cients with m = ±1
are non-zero).

4. Data description

We use Planck maps that have been processed by the
various component-separation pipelines described in Planck
Collaboration XII (2013). The methods produce largely consis-
tent maps of the sky, with detailed di↵erences in pixel intensity,
noise properties, and masks. Here, we consider maps produced
by the Commander-Ruler, NILC, SMICA and SEVEM methods.
Each provides its own mask and we also consider the conserva-
tive common mask.

We note that because our methods rely on rather intensive
pixel- or harmonic-space calculations, in particular considering

4 The active zyz Euler convention is adopted, corresponding to the
rotation of a physical body in a fixed coordinate system about the z, y
and z axes by �, � and ↵ respectively.

5 http://www.jasonmcewen.org/

Fig. 4: The mask ( fsky = 0.76) used in the matched circles anal-
ysis.

a full set of three-dimensional orientations and, for the likeli-
hood methods, manipulation of an anisotropic correlation ma-
trix, computational e�ciency requires the use of data degraded
from the native HEALPix (Górski et al. 2005) Nside = 2048
resolution of the Planck maps. Because the signatures of ei-
ther a multiply-connected topology or a Bianchi model are most
prominent on large angular scales, this does not result in a sig-
nificant loss of ability to detect and discriminate amongst the
models (see Sect. 5.3).

The topology analyses both rely on degraded maps and
masks. The matched-circles method smooths with a 300
Gaussian filter and degrades the maps to Nside = 512, and uses
a mask derived from the SEVEM component separation method
(Fig. 4). Because the performance of the matched-circles statistic
can be significantly degraded by the point source cut, we mask
only those point sources from the full-resolution fsky = 0.73
SEVEM mask with amplitude, after smoothing and extrapolation
to the 143 or 217 GHz channels, greater than the faintest source
originally detected at those frequencies. The mask derived in this
way retains fsky = 0.76 of the sky.

The likelihood method smooths the maps and masks with an
11� Gaussian filter and then degrades them to Nside = 16 and
conservatively masks out any pixel with more than 10 % of its
original subpixels masked. At full resolution, the common mask
retains a fraction fsky = 0.73 of the sky, and fsky = 0.78 when
degraded to Nside = 16 (the high-resolution point-source masks
are largely filled in the degraded masks). The Bianchi analysis
is performed in harmonic space, and so does not require explicit
degradation in pixel space. Rather, the data are transformed at
full resolution into harmonic space and considered only up to a
specified maximum harmonic `, where correlations due to the
mask are taken into account.

Di↵erent combinations of these maps and masks are used
to discriminate between the topological and anisotropic models
described in Sect. 3.

5. Methods

5.1. Topology: circles in the sky

The first set of methods, exemplified by the circles-in-the-sky
of Cornish et al. (1998), involves a frequentist analysis using a
statistic which is expected to di↵er between the models exam-
ined. For the circles, this uses the fact that the intersection of the
topological fundamental domain with the surface of last scat-
tering is a circle, which one potentially views from two di↵er-
ent directions in a multiply-connected universe. Of course, the
matches are not exact due to noise, foregrounds, the integrated

6
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Bianchi Models

Planck Collaboration: Planck 2013 results. XXVI. Background geometry and topology of the Universe

(a) Flat-decoupled-Bianchi model.

(b) Open-coupled-Bianchi model.

Fig. 20: Posterior distributions of Bianchi parameters recovered from Planck SMICA (solid curves) and SEVEM (dashed curves)
component-separated data for left-handed models. Planck data provide evidence in support of a Bianchi component in the phe-
nomenological flat-decoupled-Bianchi model (panel a) but not in the physical open-coupled-Bianchi model (panel b).
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Villanueva de la Cañada, Madrid, Spain

41 European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ
Noordwijk, The Netherlands

42 Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University
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Table 4: Parameters recovered for left-handed flat-decoupled-Bianchi model. Planck data favour the inclusion of a Bianchi compo-
nent in this phenomenological model.

Bianchi Parameter SMICA SEVEM
MAP Mean MAP Mean

⌦B
m 0.38 0.32 ± 0.12 0.35 0.31 ± 0.15
⌦B
⇤ 0.20 0.31 ± 0.20 0.22 0.30 ± 0.20

x 0.63 0.67 ± 0.16 0.66 0.62 ± 0.23
(!/H)0 8.8 ⇥ 10�10 (7.1 ± 1.9) ⇥ 10�10 9.4 ⇥ 10�10 (5.9 ± 2.4) ⇥ 10�10

↵ 38.8� 51.3� ± 47.9� 40.5� 77.4� ± 80.3�
� 28.2� 33.7� ± 19.7� 28.4� 45.6� ± 32.7�
� 309.2� 292.2� ± 51.9� 317.0� 271.5� ± 80.7�

of ⇤CDM cosmologies. The constraints (!/H)0 < 7.6 ⇥ 10�10

(95% confidence level) on the vorticity of the physical cou-
pled Bianchi VIIh left-handed models and (!/H)0 < 8.1 ⇥ 10�10

(95% confidence level) for right-handed models are recovered
from SMICA component-separated data. It will be informative to
analyse polarised Planck observations for evidence of Bianchi
models, which may provide a more definitive conclusion.

7. Discussion

We have used the Planck temperature anisotropy maps to probe
the large-scale structure of spacetime. We have calculated the
Bayesian likelihood for specific topological models in universes
with locally flat, hyperbolic and spherical geometries, all of
which find no evidence for a multiply-connected topology with
a fundamental domain within the last scattering surface. After
calibration on simulations, direct searches for matching circles
resulting from the intersection of the fundamental topological
domain with the surface of last scattering also give a null result
at high confidence. These results use conservative masks of the
sky, unlike previous WMAP results, which used full-sky inter-
nal linear combination maps (not originally intended for cosmo-
logical studies) or less conservative foreground masks. Hence,
the results presented here, while corroborating the previous non-
detections, use a single, self-consistent, and conservative dataset.
The masked sky also increases the possibility of chance patterns
in the actual sky mimicking the correlations expected for topolo-
gies with a characteristic scale near that of the last scattering
surface.

Depending on the shape of the fundamental domain, we find
Ri >⇠ �rec (Table 2) with detailed 99 % confidence limits (con-
sidering the likelihood marginalized over the orientation of the
fundamental domain) varying from 0.9�rec for the cubic torus in
a flat universe to 1.03�rec for the dodecahedron in a positively
curved universe, with somewhat weaker constraints for poorly-
proportioned spaces that are considerably larger along some di-
rections.

Note that these results make use of the expected pixel-space
correlations as a unique signal of non-trivial topology. Hence,
although a small fundamental domain will suppress power on
the largest scales of the CMB, observation of such low power on
large scales as observed by COBE (Bond et al. 2000), and con-
firmed by WMAP (Luminet et al. 2003), is not su�cient for the
detection of topology. Conversely, because our methods search
directly for these correlations (and indeed marginalize over the
amplitude of fluctuations), a slight modification of the back-
ground FRW cosmology by lowering power in some or all multi-

poles (Planck Collaboration XV 2013) will not a↵ect the ability
to detect the correlations induced by such topologies.

Similarly, using a Bayesian analysis we find no evidence
for a physical, anisotropic Bianchi VIIh universe. However,
Planck data do provide evidence supporting a phenomenological
Bianchi VIIh component, where the parameters of the Bianchi
component are decoupled from standard cosmology. The result-
ing best-fit Bianchi VIIh template found in Planck data is sim-
ilar to that found in WMAP data previously (Ja↵e et al. 2005;
McEwen et al. 2013). However, although this Bianchi compo-
nent can produce some of the (possibly anisotropic) tempera-
ture patterns seen on the largest angular scales (see also Planck
Collaboration XXIII 2013), there is no set of cosmological pa-
rameters which can simultaneously produce these patterns and
the observed anisotropies on other scales. Moreover, the param-
eters of the best-fit Bianchi VIIh template in the decoupled set-
ting are in strong disagreement with other measurements of the
cosmological parameters.

These results are expected from previous measurements
from COBE and WMAP, but Planck’s higher sensitivity and
lower level of foreground contamination provides further con-
firmation. We have shown that the results are insensitive to the
details of the preparation of the temperature maps (in particu-
lar, the method by which the cosmological signal is separated
from astrophysical foreground contamination). Future Planck
measurement of CMB polarization will allow us to further test
models of anisotropic geometries and non-trivial topologies and
may provide more definitive conclusions, for example allowing
us to moderately extend the sensitivity to large-scale topology
(Bielewicz et al. 2012).
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Table 5: Parameters recovered for left-handed open-coupled-Bianchi model. Planck data do not favour the inclusion of a Bianchi
component in this model and some parameters are not well constrained.

Bianchi Parameter SMICA SEVEM
MAP Mean MAP Mean

⌦k 0.05 0.07 ± 0.05 0.09 0.08 ± 0.04
⌦B

m 0.41 0.33 ± 0.07 0.41 0.32 ± 0.07
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□ The Bianchi VIIh uncoupled “model” accounts for 
much of the hemispherical asymmetry
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Non-gaussianity
□ Another way to go beyond (and check) the simple 

assumptions
□ In the absence of a specific model, want to determine 

phenomenological parameters describing departure 
from an isotropic multivariate gaussian distribution.
■ e.g., moments — but not unique (there is no distribution 

that has mean, variance, skewness, but no higher 
moments)
□ for (suitably defined) small non-gaussianity, third-order moments 

should dominate
□ full determination of 3-pt function is computationally infeasible (and 

we lack sufficient S/N)
□ parameterize non-gaussianity
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non-Gaussianity: fNL

□ Heuristically
for a Gaussian ϕG (e.g., multi-field inflation)
■ This is the (spatially) local model for non-Gaussianity
■ Induces specific 3-d correlations

and hence 2-d correlations in the CMB
■ Corresponds to Fourier bispectrum B(k1, k2, k3) which 

peaks in squeezed case k1≪k2≃k3

□ modulate small-scale structure by large-scale modes
■ cf. galaxy bias

■ More generally, consider other shapes (e.g., equilateral) 
motivated by specific theories

� = �G + fNL(�
2
G � h�2

Gi)

h���i ⇠ 3fNL (h�G�G�G�Gi � h�G�Gih�G�Gi) +O(f2
NL)

⇠ 6fNLh�G�Gih�G�Gi+O(f2
NL)
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Estimating non-Gaussianity

□ Expect to be able to estimate the third moment by 
taking some weights average over cubic products 
of data
■ (cf. quadratic estimators of power spectra)
□ “optimal” (min-var) weights computationally infeasible 

(Heavens 1998) — average over all triples of data
□ ignoring off-diagonal covariance gives somewhat more tractable 

case (Creminelli et al. 2006).
□ further simplify for “separable” shapes (Komatsu et al=KSW) 

and linear combinations thereof (Fergusson & Shellard)
□ generalize to Sℓ =skew-Cℓ, retains shape information in one ℓ 

direction (Heavens & Munshi)

ha`1m1a`2m2a`2m2i = G`1`2`3
m1m2m3

b`1`2`3 = G`1`2`3
m1m2m3

h�2
`1`2`3

B`1`2`3
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Non-Gaussianity from Planck
□ Planck detects (non-Primordial) non-Gaussianity…

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Table 9. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned
and modal estimators from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps. Both independent single-shape results and
results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68%
CL .

Independent ISW-lensing subtracted

KSW Binned Modal KSW Binned Modal

SMICA

Local . . . . . . . . . . . . . . . . 9.8 ± 5.8 9.2 ± 5.9 8.3 ± 5.9 . . . . . 2.7 ± 5.8 2.2 ± 5.9 1.6 ± 6.0
Equilateral . . . . . . . . . . . . �37 ± 75 �20 ± 73 �20 ± 77 . . . . . �42 ± 75 �25 ± 73 �20 ± 77
Orthogonal . . . . . . . . . . . . �46 ± 39 �39 ± 41 �36 ± 41 . . . . . �25 ± 39 �17 ± 41 �14 ± 42

NILC

Local . . . . . . . . . . . . . . . . 11.6 ± 5.8 10.5 ± 5.8 9.4 ± 5.9 . . . . . 4.5 ± 5.8 3.6 ± 5.8 2.7 ± 6.0
Equilateral . . . . . . . . . . . . �41 ± 76 �31 ± 73 �20 ± 76 . . . . . �48 ± 76 �38 ± 73 �20 ± 78
Orthogonal . . . . . . . . . . . . �74 ± 40 �62 ± 41 �60 ± 40 . . . . . �53 ± 40 �41 ± 41 �37 ± 43

SEVEM

Local . . . . . . . . . . . . . . . . 10.5 ± 5.9 10.1 ± 6.2 9.4 ± 6.0 . . . . . 3.4 ± 5.9 3.2 ± 6.2 2.6 ± 6.0
Equilateral . . . . . . . . . . . . �32 ± 76 �21 ± 73 �13 ± 77 . . . . . �36 ± 76 �25 ± 73 �13 ± 78
Orthogonal . . . . . . . . . . . . �34 ± 40 �30 ± 42 �24 ± 42 . . . . . �14 ± 40 �9 ± 42 �2 ± 42

C-R

Local . . . . . . . . . . . . . . . . 12.4 ± 6.0 11.3 ± 5.9 10.9 ± 5.9 . . . . . 6.4 ± 6.0 5.5 ± 5.9 5.1 ± 5.9
Equilateral . . . . . . . . . . . . �60 ± 79 �52 ± 74 �33 ± 78 . . . . . �62 ± 79 �55 ± 74 �32 ± 78
Orthogonal . . . . . . . . . . . . �76 ± 42 �60 ± 42 �63 ± 42 . . . . . �57 ± 42 �41 ± 42 �42 ± 42

squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coe�cient r ⇠
�0.5 between the local and orthogonal CMB templates), while
it is very small in the equilateral limit. The values of the ISW-
lensing bias we subtract, summarized in Table 1, are calculated
assuming the Planck best-fit cosmological model as our fidu-
cial model. The same fiducial parameters were of course consis-
tently used to compute the theoretical bispectrum templates and
the estimator normalization. Regarding the point source contam-
ination, we detect a Poissonian bispectrum at high significance
in the SMICA map, see Sect. 5.3. However, marginalizing over
point sources still carries a nearly negligible impact on the final
primordial fNL results, because the Poisson bispectrum template
has very small correlations with all the other shapes.

In light of the discussion at the beginning of this section, we
take the numbers from the KSW SMICA analysis in Table 8 as the

Table 10. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the subopti-
mal wavelet estimator from the SMICA foreground-cleaned map.
Both independent single-shape results and results marginalized
over the point source bispectrum and with the ISW-lensing bias
subtracted are reported; error bars are 68% CL. As explained in
the text, our current wavelets pipeline performs slightly worse in
terms of error bars and correlation to primordial templates than
the other bispectrum estimators, but it still provides a useful in-
dependent cross-check of other techniques.

Independent ISW-lensing subtracted

Wavelets Wavelets

SMICA

Local . . . . . . . . . 10 ± 8.5 0.9 ± 8.5
Equilateral . . . . . 89 ± 84 90 ± 84
Orthogonal . . . . . �73 ± 52 �45 ± 52

final local, equilateral and orthogonal fNL constraints for the cur-
rent Planck data release. These results clearly show that no evi-
dence of NG of the local, equilateral or orthogonal type is found
in the data. After ISW-lensing subtraction, all fNL for the three
primordial shapes are consistent with 0 at 68% CL. Note that
these numbers have been cross-checked using two completely
independent KSW pipelines, one of which is an extension to
Planck resolution of the pipeline used for the WMAP analysis
(Bennett et al. 2012).

Unlike other methods, the KSW technique is not designed
to provide a reconstruction of the full bispectrum of the data.
However, the related skew-C` statistic described in Sect. 3.2.2
allows, for each given shape, visualization and study of the con-
tribution to the measured fNL from separate `-bins. This is a
useful tool to study potential spurious NG contamination in the
data. We show for the SMICA map in Fig. 5 the measured skew-
C` spectrum for optimal detection of primordial local, equilat-
eral and orthogonal NG, along with the best-fitting estimates of
fNL from the KSW method for di↵erent values of `. Contrary to
the case of the point source and ISW-lensing foregrounds (see
Sect. 5), the skew-C` statistics do not show convincing evidence
for detection of the primordial shapes. In particular the skew-
spectrum related to primordial local NG does not have the right
shape, suggesting that whatever is causing this NG signal is not
predominantly local. Again, point sources contribute very little
to this statistic; ISW-lensing contributes, but only a small frac-
tion of the amplitude, so there are indications of additional NG
not captured by these foregrounds. In any event the estimators
are consistent with no primordial signal of the types considered.

As mentioned before, our analysis went beyond the simple
application of the KSW estimator to the SMICA map. All fNL
pipelines developed for Planck analysis were actually applied
to all component-separated maps by SMICA, NILC, SEVEM, and
C-R. We found from simulations in the previous Sections that
the KSW, binned, and modal pipelines saturate the Cramér-Rao
bound, while the wavelet estimator in its current implementation
provides slightly suboptimal results. Wavelets remain however a
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Non-Gaussianity from Planck
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We see ISW lensing...

... and point sources

... but nothing primordial
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Big Science from Small* Scales
□ Hierarchical Bayesian formalism 
■ raw-data ⇒ maps ⇒ spectra ⇒ parameters
■ radical data compression
■ need to keep track of likelihood function details

□ Checking assumptions 
■ “anomalies”?
□ No obvious solution by changing the large-scale structure of 

spacetime (topology, Bianchi)
■ non-Gaussianity
□ lensing, point sources, correlations detected in Planck
□ no evidence yet for primordial non-Gaussianity

*and large
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