

2474-4

School and Workshop on New Light in Cosmology from the CMB

22 July - 2 August, 2013

Big Science from Small Scales

A. Jaffe Imperial College

Big Science from Small Scales

"New Light in Cosmology from the CMB"

ICTP July 2013

Andrew Jaffe

Cosmological Data: Light from the Universe

Cosmological Data: Light from the Universe

Big Science from Small Scales

- Theoretical predictions: parameters $\Rightarrow C_{\ell}$ (&c.)
 - Senatore: initial conditions from inflation
 - Lesgourgues: theoretical power spectra from early evolution
 - Lewis: post-recombination evolution
- Observations:
 - Zacchei/Baccigalupi: Planck
 - Stompor: data \Rightarrow maps
- Connecting theory and observations
 - from maps $\Rightarrow \hat{C}_{\ell}$ measurement!
 - From measured $\hat{C}_{\ell} \Rightarrow$ cosmological parameters
 - likelihoods, sampling, ...
 - Beyond the temperature power spectrum
 - polarization
 - non-gaussianity

Big Science from Small Scales

- Our underlying theories are statistical. How do we learn about cosmology from CMB observations?
 - predictions of power spectra (and higher moments): (quantum) noise
 - expand to include polarization
- Inferences in cosmology
- Measuring the spectrum, C_{ℓ}
 - temperature and polarization
- Measuring cosmological parameters
- Beyond the power spectrum
 - anisotropy [not small scales...]
 - case study: topology
 - non-Gaussianity

Data analysis as Radical Data Compression

- Trillions of bits of data
- Billions of measurements at 9 frequencies
- 50 million pixel map of whole sky
- 2 million harmonic modes measured
- \square 2500 C_{ℓ} variances
 - 2000σ detection of CMB anisotropy power
- Fit with just 6 parameters
 - Baryon density, CDM density, angular scale of sound horizon, reionization optical depth, slope and amplitude of primordial P(k)
 - $\Omega_{\rm b}h^2$, $\Omega_{\rm c}h^2$, $\theta_{\rm MC}$, τ , $n_{\rm s}$, $A_{\rm s}$

With no significant evidence for a 7th

Evidence & Observations: Cosmic Microwave Background

- 400,000 years after the Big Bang, the temperature of the Universe was T~3,000 K
- Hot enough to keep hydrogen atoms ionized until this time
 - □ proton + electron → Hydrogen + photon $[p^+ + e^- \rightarrow H + \gamma]$
 - □ charged plasma → neutral gas
 - depends on entropy of the Universe
- Photons (light) can't travel far in the presence of charged particles
 - $\Box \quad Opaque \rightarrow transparent$

Transparent

Opaque

What affects the CMB temperature?

cf. Lesgourgue's lectures

- All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations
- Measurements of the CMB give a snapshot of the Universe when it was young and simple
 - the physics is encoded in the pattern of Temperatures on the sky

Measuring Curvature with the CMB

Measuring Curvature with the CMB

Measuring Curvature with the CMB

CMB Statistics

$$\frac{T(\hat{x}) - \bar{T}}{\bar{T}} \equiv \frac{\Delta T}{T}(\hat{x}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{x})$$

i.e., Fourier Transform, but on a sphere

Determined by **temperature**, **velocity** and **metric** on the last scattering surface.

Power Spectrum:

 $\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$ Multipole ℓ ~ angular scale $180^{\circ}/\ell$

Correlation function: $\langle T(\hat{x})T(\hat{y})\rangle = C(\cos^{-1}\hat{x}\cdot\hat{y}) = \sum_{\hat{x}}\frac{2\ell+1}{4\pi}C_{\ell}P_{\ell}(\hat{x}\cdot\hat{y})$

For a **Gaussian** theory, C_{ℓ} completely determines the statistics of the temperature.

CMB Power Spectrum

Model CMB as a 2d stationary Gaussian Random Field on the sphere

Motivated by physics, confirmed by observation

(linear transform of underlying 3d process)

Physics of the CMB power spectrum

Gravity + plasma physics modulates initial spectrum of fluctuations (from, e.g., inflation)

CMB Polarization: Generation

Ionized plasma + quadrupole radiation field:

■ Thomson scattering ⇒ [linearly] polarized emission

- Unlike intensity, only generated when ionization fraction, 0<x<1 (i.e., during transition)</p>
- Scalar perturbations: traces ~gradient of velocity
 - same initial conditions as temperature and density fluctuations
- Tensor perturbations: independent of density fluctuations
 - +,× patterns of quadrupoles (impossible to form via linear scalar perturbations)
 - at last-scattering, from primordial background of gravitational radiation, predicted by inflation (cf. Senatore's lectures)

CMB Polarization: **E/B** Decomposition

- 2-d (headless) vector field on a sphere
- Spin-2/tensor spherical harmonics
- grad/scalar/E + curl/pseudoscalar/B patterns

- NB. From polarization pattern ⇒ E/B decomposition requires integration (non-local) or differentiation (noisy)
 - Lewis et al; Bunn et al; Smith & Zaldarriaga; Grain et al; Bowyer & AJ; ...

(data analysis problems)

Seljak & Zaldarriaga

Polarization: math

- Scalar and tensor modes are isotropic, paritysymmetric fields on the sky.
- **T** is a scalar, **E** is the "gradient" of a scalar, **B** is the "curl" of a pseudoscalar $Q(\hat{n}) = -\frac{1}{2} \sum_{lm} (a_{lm}^{E} [_{2}Y_{lm}(\hat{n}) + _{-2}Y_{lm}(\hat{n})] + ia_{lm}^{B} [_{2}Y_{lm}(\hat{n}) - _{-2}Y_{lm}(\hat{n})])$ $U(\hat{n}) = -\frac{1}{2} \sum_{lm} (a_{lm}^{B} [_{2}Y_{lm}(\hat{n}) + _{-2}Y_{lm}(\hat{n})] + ia_{lm}^{E} [_{2}Y_{lm}(\hat{n}) - _{-2}Y_{lm}(\hat{n})]))$ $e(\hat{n}) = \sum_{lm} \sqrt{\frac{(l-2)!}{(l+2)!}} a_{lm}^{E} Y_{lm}(\hat{n}) \quad b(\hat{n}) = \sum_{lm} \sqrt{\frac{(l-2)!}{(l+2)!}} a_{lm}^{B} Y_{lm}(\hat{n})$ $\nabla^{4}e = -\frac{1}{2} [\bar{\eth}^{2}(Q + iU) + \eth^{2}(Q - iU)] \quad \nabla^{4}b = \frac{i}{2} [\bar{\eth}^{2}(Q + iU) - \eth^{2}(Q - iU)]$

CMB Signals from inflation

- Want to probe inflaton potential $V(\phi)$
- Induce scalar and tensor power spectra
 - Observables:
 - temperature and polarization CMB spectra
 - functionally linear relationships $C_{\ell}^{BB} = \int dk \ T_{\ell}^{hB}(k) P_{h}(k)$ $C_{\ell}^{TT} = \int dk \ \left[T_{\ell}^{hT}(k) P_{h}(k) + T_{\ell}^{RT}(k) P_{R}(k)\right]$
 - Transfer functions T depend on cosmological parameters
 - Amplitude (r=T/S) and shape (n_s, n_T) of the spectra probe the inflaton potential
- Non-gaussianity:
 - specific inflationary models ⇒ departures from Gaussianity
 - e.g., $f_{NL} \sim 1$ (in reach of Planck, but not [yet] detected)

The Polarization of the CMB

Gravitational Radiation & CMB

cf. Senatore's talk

- Last scattering: "direct" effect of tensor modes (primordial GWs) on the primordial plasma
 - inflationary potential
- dominated by lensing of E ⇒ B for $\ell \gtrsim 200$
 - sensitive to $m_V \lesssim 0.06 \text{eV}$
 - (i.e., hot dark matter)
- Reionization peak $\ell \leq 20$
 - need ~full-sky. Difficult for single suborbital experiments
- Limits depend on full set of parameters

Suborbital experiments target $\ell \sim 100$ peak: require order-of-magnitude increase in sensitivity over Planck

Gravitational Radiation & CMB

cf. Senatore's talk

FIG. 2: (Black, center bars): Cross-correlation of the lensing *B* modes measured by SPTpol at 150 GHz with lensing *B* modes inferred from CIB fluctuations measured by *Herschel* and *E* modes measured by SPTpol at 150 GHz; as shown in Fig. 1. (Green, left-offset bars): Same as black, but using *E* modes measured at 95 GHz, testing both foreground contamination and instrumental systematics. (Orange, right-offset bars): Same as black, but with *B* modes obtained using the χ_B procedure described in the text rather than our fiducial Wiener filter. (Gray bars): Curl-mode null test as described in the text. (Dashed black curve): Lensing *B*-mode power spectrum in the fiducial cosmological model. FIG. 3: "Lensing view" of the $EB\phi$ correlation plotted in Fig. 2, in which we cross-correlate an EB lens reconstruction from SPTpol data with CIB intensity fluctuations measured by *Herschel*. Left green, center black, and right orange bars are as described in Fig. 2. Previous analyses using temperature-based lens reconstruction from *Planck* [26] and SPT-SZ [22] are shown with boxes. The results of [26] are at a nominal wavelength of 550 μ m, which we scale to 500 μ m with a factor of 1.22 [37]. The dashed black curve gives our fiducial model for $C_l^{\text{CIB-}\phi}$ as described in the text.

Lensing

peak

1000

Polarization from Planck

Parameters & C_l

What we really want:

- P(theory | data)
 - theory = the parameters of LCDM
 - or perhaps even an indication of which overall theory is correct
 - data = our CMB data and any other information ("priors") we might consider.
- Data compression

```
Stompor
P(\text{theory} | \text{raw TOI data}) \approx P(\text{theory} | \text{noisy CMB map})
                                            \approx P(theory | estimated \hat{C}_{\ell})
```

- Also need error bars (and/or full covariance matrix)
 - Even then, this is only approximate
 - effect of foreground removal on maps
 - \hat{C}_{ℓ} dist'n depends on more than just central value & covariance

Probability

$\square P(A|B) = \text{probability of } "A" \text{ given } "B"$

- Probabilities measure "degrees of belief"
 - P=I —certainty [true]
 - P=0 impossibility [false]
- A, B are propositions
 - "Socrates is a man", "All men are mortal", "the Hubble constant is between 61 and 66 km/s/Mpc"
- All probabilities are conditional (on knowledge/ belief)

Bayes' Theorem

Product rule:

$$P(DH|I) = P(D|HI) P(H|I) = P(H|DI) P(D|I)$$

$$P(H|DI) = \frac{P(H|I)P(D|HI)}{P(D|I)}$$

- H = hypothesis
 - D = data

I = other "background" information

 Model for learning (H) from experience (D) within some context (I) [will often drop I from now on].

Bayes' Theorem

 $\square P(D|I) = \sum_{H} P(H|I) P(D|HI) \text{ [normalization]}$

Bayes' Theorem $P(\theta|DI) \ d\theta = \frac{P(\theta|I)P(D|\theta I)}{\int d\theta' \ P(\theta'|I)P(D|\theta'I)} d\theta$

- Theory parameterized by (continuous) θ :
 - Use probability densities
- - e.g., Background level, unknown noise, etc.
 - (but a nuisance in one context is signal in another!)

$$Bayes' Theorem$$

$$P(\theta|DI) \ d\theta = \frac{P(\theta|I)P(D|\theta I)}{\int d\theta' \ P(\theta'|I)P(D|\theta'I)} d\theta$$

- Posterior contains full "inference from data"
- Can sometimes be summarized by moments, peaks, integrals, etc.
 - maximum posterior
 - 68% enclosed probability levels
 - mean and variance

Bayesian methods: hierarchical models

Timestream
$$(d_t)$$

 $\Rightarrow Map (T_p \sim d_p)$
 $\Rightarrow Spectrum (C_l \sim d_l)$
 $\Rightarrow cosmology$

 $P(H \mid DI) = \frac{P(H \mid I)P(D \mid HI)}{P(D \mid I)}$

Posterior \propto Prior \times Likelihood

without loss of information? (~Sufficient Statistics)

(Bond, AJ, Knox; WMAP)

 (assume that we can calculate P(Cosmology|D_lN_{ll},x_l) even from non-Bayes estimators)

CMB Data Analysis: mapmaking

cf. Stompor's lectures

Model: data = signal + noise, as a function of time

 $d_t = A_{tp}T_p + n_t \qquad \langle n_t n_{t'} \rangle = N_{tt'} \quad \text{~stationary}$

• Step I: mapmaking (estimate T_p)

• Gaussian noise \Rightarrow Gen'l least squares

 $\bar{T}_p = (A^T N^{-1} A)^{-1} A^T N^{-1} d$

 $\langle \delta T_p \delta T_{p'} \rangle = (A^T N^{-1} A)^{-1}$

 If we stop here, uniform prior gives a Gaussian posterior for the map with this mean and variance.

• aside: Gaussian C_{ℓ} prior gives Wiener filter

- But it is also a sufficient statistic
- Algorithms:
 - Rely on simplicity/sparseness of A_{tp}
 - FFT methods to apply timestream (t) operations
 - Conjugate gradient least-squares soln (nb. doesn't give corr'n matrix)
 - Further simplifications for specific cases (1/f noise, observations in rings)

Planck

CMB Data Analysis: Spectrum estimation

Step 2: Don't need to go back to the timeline to estimate the power spectrum, C_{ℓ} .

Model the sky as a correlated, statistically isotropic Gaussian random field

$$\frac{T(\hat{x}) - T}{\bar{T}} \equiv \frac{\Delta T}{T}(\hat{x}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{x}) \qquad \langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} \underbrace{C_{\ell}}_{\ell}$$
Parametric version
of cov. mat. est'n:
diag in \ell basis
$$\begin{cases} \langle T_p T_{p'} \rangle = \underbrace{S_{pp'}}_{\ell} = \sum_{\ell} \frac{2\ell + 1}{4\pi} \underbrace{C_{\ell}}_{\ell} B_{\ell}^2 P_{\ell}(\hat{x}_p \cdot \hat{x}_{p'}) \\P(\bar{T}|C_{\ell}) = \frac{1}{|2\pi(S+N)|} \exp{-\frac{1}{2}\bar{T}^T(S+N)^{-1}\bar{T}} \end{cases}$$
spherical harmonic wavenumber ℓ

• complicated and expensive function of C_{ℓ}

- Many practical issues in calculating this explicitly.
- At low ℓ , use sampling (usu. Gibbs), Newton-Raphson, Copula
- At high ℓ , approximate by a function of estimated (ML) C_{ℓ} and errors & some other information X_ℓ

of

Expected errors

- Estimating the error (variance^{1/2}) on a variance (C_ℓ)
 (δC_ℓ δC_ℓ) = (a_{ℓm} a_{ℓm} a_{ℓm} a_{ℓm})-(a_{ℓm} a_{ℓm})(a_{ℓm} a_{ℓm})
 Wick's theorem: (a⁴)=3(a²)²
 - CMB case: Knox 95, Hobson & Magueijo 96
 - need to account for $(2\ell + 1)f_{sky}$ measurements of each ℓ

Bandpowers: bin in ℓ (weighted for specific C_{ℓ} shape) to reduce errors and decrease covariance

Kesults: power spectrum

Planck errors

Error band: cosmic variance estimate error bars: cosmic + noise variance
A toy model

• Consider all-sky observations with uniform white noise $d_p = T_p + n_p \qquad \langle T_p T_{p'} \rangle = S_{pp'} = \sum_{\ell} \frac{2\ell + 1}{4\pi} C_{\ell} B_{\ell}^2 P_{\ell}(\hat{x}_p \cdot \hat{x}_{p'})$

- □ Pixel-space likelihood $\langle n_p n_{p'} \rangle = N_{pp'} = \sigma^2 \delta_{pp'}$ $P(d_p | C_\ell) = \frac{1}{|2\pi(S+N)|^{1/2}} \exp{-\frac{1}{2}} d^T (S+N)^{-1} d$
- Work in harmonic space $d_{\ell m} \simeq \int d^2 \hat{x}_p \ d(\hat{x}_p) Y_{\ell m}(\hat{x}_p)$
- White noise equiv to const. noise spectrum, $N_{\ell} = N \propto \sigma^2$ $\langle n_{\ell m} n_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} N$

 $2\ell + 1$

Likelihood separates

$$P(d_{\ell m}|C_{\ell}) = \prod_{\ell} \frac{1}{|2\pi(C_{\ell}+N)|^{\ell+1/2}} \exp\left(-\frac{2\ell+1}{2}\frac{\hat{C}_{\ell}}{C_{\ell}+N}\right)$$

with pseudo spectrum $\hat{C}_{\ell} \equiv \frac{1}{2\ell}\sum_{\ell=1}^{\ell} |d_{\ell m}|^2$

Toy model

3.0 Cl

2.0

1.5

2.5

$$P(d_{\ell m}|C_{\ell}) = \prod_{\ell} \frac{1}{|2\pi(C_{\ell}+N)|^{\ell+1/2}} \exp\left(-\frac{2\ell+1}{2}\frac{\hat{C}_{\ell}}{C_{\ell}+N}\right) \qquad \hat{C}_{\ell} \equiv \frac{1}{2\ell+1}\sum_{m} |d_{\ell m}|^{2}$$

$$\text{Likelihood (as a function of } C_{\ell} \text{) maximized at } C_{\ell} \equiv \hat{C}_{\ell} - N$$

$$\text{with curvature } \frac{d^{2}\ln P}{dC_{\ell}^{2}}\Big|_{C_{\ell}=\hat{C}_{\ell}-N} = -\left(\frac{2\hat{C}_{\ell}}{2\ell+1}\right)^{-1}$$

$$\text{cf. Gaussian } \frac{d^{2}\ln P}{dx^{2}} = -(\sigma^{2})^{-1}$$

$$\text{and Fisher information } F \equiv -\left\langle\frac{d^{2}\ln P}{dx^{2}}\right\rangle$$

$$\text{Skew positive likelihood}$$

$$\text{more Gaussian as } \ell \rightarrow \infty$$

0.5

1.0

Bayesian methods: MADCAP/MADspec

- (quasi-)Newton-Raphson iteration to Likelihood maximum
- Algorithm driven by matrix manipulation (iterated quadratic):

$$\delta C_{\ell} = \frac{1}{2} F_{ll'}^{-1} \operatorname{Tr} \left[\left(dd^{T} - C \right) \left(C^{-1} \frac{\partial C}{\partial C_{\ell}} C^{-1} \right) \right]$$
$$F_{ll'} = \frac{1}{2} \operatorname{Tr} \left[C^{-1} \frac{\partial C}{\partial C_{\ell}} C^{-1} \frac{\partial C}{\partial C_{\ell}} \right] \text{ Fisher matrix}$$
$$C = S + N$$

- Fisher = approx. Likelihood curvature
- full polarization: signal matrix S^{××'}_{pp}
- Arbitrary (precomputed) noise spectrum
- Arbitrary linear filters
 - Stompor et al; Jaffe et al; Slosar et al

- O(N³) operations naïvely (matrix manipulations), speedup to ~O(N²) for spectrum estimates (potentially large prefactor)
 - Fully parallelized (MPI, SCALAPACK)
 - do calculations in the natural basis
 - no explicit need for full N_{pp}, matrix in pixel basis (just noise spectrum or autocorrelation)

Frequentist Monte Carlo methods

■ MASTER: quadratic pseudo-C₁ estimate (Hivon et al)

$$\begin{aligned} d_{\ell m} &= \sum_{p} d_{p} w_{p} \Omega_{p} Y_{\ell m}(\hat{x}_{p}) \\ \hat{C}_{\ell} &= \frac{1}{2\ell + 1} \sum_{m} |d_{\ell m}|^{2} \qquad \text{pseudo-}C \\ \hat{C}_{\ell} &\approx \langle \hat{C}_{\ell} \rangle = \sum_{\ell'} C_{\ell} M_{\ell \ell'} F_{\ell} B_{\ell}^{2} + N_{\ell} \qquad (M_{\text{Ba}}) \end{aligned}$$

(Will discuss Bayesian sampling for C_{ℓ} later on)

where N is noise bias M is mode coupling depending on sky coverage F is experimental filter

SPICE: transform of correlation function estimate

(Szapudi et al)

 Issues: filters, weights, noise estimation/iteration, input maps — optimal or naïve?

Hybrid Methods: FASTER

- Key insight: MASTER covariance formalism allows calculation of diagonal part of pseudo-a_{lm} covariance — use for likelihood maximization
 - (nb. this has maximum entropy and so is conservative!)
 - Diagonal likelihood:

$$P(d_{\ell m} \mid C_{\ell} I) = \frac{1}{\left[2\pi \left\langle \hat{C}_{\ell} + N_{\ell} \right\rangle\right]^{1/2}} \exp \left[-\frac{1}{2} \frac{\left|d_{\ell m}\right|^{2}}{\left\langle \hat{C}_{\ell} + N_{\ell} \right\rangle}\right]$$

- MC evaluation of means;
- Newton-Raphson iteration towards maximum
- Easy calculation of Likelihood shape parameters

B98, CBI; Contaldi et al

(related suggestions from Delabrouille et al)

WMAP: Cross-correlations

 Take advantage of uncorrelated noise between different detectors

$$\left\langle d_{p}^{1}d_{p'}^{2} \right\rangle = \left\langle \left(s_{p}^{1} + n_{p}^{1}\right)\left(s_{p'}^{2} + n_{p'}^{2}\right)\right\rangle = S_{pp'}^{12} + N_{pp'}^{12} = S_{pp'}^{12}$$

Monte Carlo method — without need for noise bias removal

(also Archeops—XSPECT; Polenta et al)

Comparisons

Timing and efficiency

time optimal/bayes: N_p³ monte carlo: N^{1.5} prefactors: N_{MC}, N_{bin}, ...

 Space
 TOI: 50 GB/yr @200Hz
 maps: 384 Mb @ N_{side}=2048
 noise matrix: N²/2 entries
 ~9 petabytes @ N_{side}=2048

resource management will become an issue even for cheapest methods

Bayesian/Frequentist Correspondence

- Why do both methods seem to work?
- frequentist mean ~ likelihood maximum
 frequentist variance ~ likelihood curvature

Correspondence is exact for

- linear gaussian models (mapmaking)
- variance estimation with no correlations and "iid" noise simple version of C_l problem
 - e.g., all sky, uniform noise
 - likelihood only function of d_{lm}^2
 - breaks down in realistic case of correlations, finite sky, varying noise
- "asymptotic limit"
 - ~ high l iff noise correlations not "too strong"

But we still want to bootstrap from point estimates to the full likelihood function

Polarization

Kosowsky, Stebbins; &c.

- □E/B leakage (= T/E/B correlation)
 - in principle, don't need extra separation step if full correlations/distributions is known
 - in practice, E/B characteristics impose specific correlation structure — easier to "separate"
 - \Box Wiener filter for map from C_{I} .

Polarization

e.g., Seljak, Zaldarriaga; Kamionkowski, Kosowsky, Stebbins; &c.

□E/B leakage (= T/E/B correlation)

- in principle, don't need extra separation step if full correlations/distributions is known
- in practice, E/B characteristics impose specific correlation structure — easier to "separate"

 \Box Wiener filter for map from C_{I} .

From C_l to cosmology

- Step 3: Calculate & characterize posterior prob over some space of cosmological models and imposed priors
- For simplest [?] theories, C_{ℓ} is a deterministic function of the cosmological parameters $\theta = \{H_0, n_s, \Omega_m, \Omega_{DE}, ...\}$
 - $P(\theta|DI) = \int dC_{\ell} P(\theta|I) P(C_{\ell}|\theta I) P(C_{\ell}|DI)$ ML est. Variance = $P(\theta|I) P(C_{\ell}[\theta] | DI)$ = $P(\theta|I) P(C_{\ell}[\theta] | \hat{C}_{\ell}, \sigma_{\ell}, \text{shape, } I)$
- So est'd C_{ℓ} is [approximately] a sufficient statistic
 - Only approximate, so not really a separate step
 - $P(\theta|d_t) = P(\theta|T_p) \approx P(\theta|C_\ell)$
 - can explore the likelihood or finally assign meaningful priors on θ and calculate the posterior
 - MCMC, etc.

The shape of the likelihood function

$$P(\bar{T}|C_{\ell}) = \frac{1}{|2\pi(S+N)|} \exp{-\frac{1}{2}\bar{T}^T(S+N)^{-1}\bar{T}}$$

- □ Complicated function of C_ℓ [through S(C_ℓ)]
- not a Gaussian in C_{ℓ}
 - big effect at low ℓ
 - Offset lognormal (BJK 00)
 - Gaussian in $\ln(C_{\ell} + x_{\ell})$
 - Other approximations better at moderate ℓ
 - e.g., Hamimeche & Lewis
 - include polarization
 - treat T, Q, U on same footing

Sampling from the posterior

- Infeasible to directly explore $P(\theta | data)$ for many parameters θ
 - e.g., even the 6-parameter base LCDM model would require ~100⁶=10¹² evaluations for 100 grid points in each direction...
- Instead, generate samples θ_i from the distribution.
 - Easy to evaluate moments (means, variances)

$$\langle \theta \rangle = \frac{1}{N} \sum_{i} \theta_{i} \text{ or, more generally } \langle f(\theta) \rangle = \frac{1}{N} \sum_{i} f(\theta_{i})$$

MCMC

- Generate samples from posterior P(x)
- Most methods require being able to generate samples from some simpler distribution
- e.g., Markov Chain Monte Carlo
 - Start with proposal distribution Q(x*|x): probability of proposing point x* if starting at point x
 - often Q(x|y) = Q(|x-y|) (Metropolis)
 - Metropolis Algorithm:
 - given point $x^{(i)}$, generate x^* from $Q(x^*|x^{(i)})$
 - accept x^* as $x^{(i+1)}$ with probability min[1,P(x^*)/P($x^{(i)}$)];
 - otherwise $x^{(i+1)} = x^{(i)}$
 - repeat...

Monte Carlo methods for the CMB

- Markov Chain Monte Carlo: A. Lewis' CosmoMC
 - coupled with fast deterministic calculation of power spectrum as fn of cosmological parameters
 - e.g. CMBFAST, CAMB, CLASS
 - Other techniques
 - e.g., Skilling's "nested sampling" which also allows fast calc'n of model likelihoods ("evidence")

Aside: Gibbs Sampling

- Combine parametric models of foregrounds with power spectrum estimation
 - Jewell et al; Wandelt et al; Eriksen et al; Larson et al;
 - draw [full-sky] map realization given C_l and foreground parameter (Wiener filter)
 - draw foreground realization given C_{ℓ} and map
 - draw C_l realization given map (Wishart, Gamma dists)
- Output is sample maps and samples of C_{ℓ}
 - not always useful for subsequent parameter estimation
 - construct approx. likelihood by averaging over samples
 - Blackwell-Rao estimator

The Planck likelihood

□ High ℓ

- Start with pseudo- C_{ℓ} of each detector, with conservative masks
 - for cosmology, consider
 100x100, 143x143, 217x217, 143x217
- Foregrounds:
 - Use 353 GHz as a dust template
 - Explicit power spectral templates for unresolved point sources, SZ, CIB
- Instrument:
 - relative calibration between 100, 143, 217
 - beam errors
- Use Gaussian approximation assuming a fiducial models gives the signal covariances (Hamimeche & Lewis)
- \square low ℓ
 - Temperature: Planck 30-353 GHz
 - polarization:WMAP
 - needed to fix optical depth τ

Measuring the geometry of the Universe

Measuring the geometry of the Universe

Fig. 25. The *Planck*+WP+highL data combination (samples; colour-coded by the value of H_0) partially breaks the geometric degeneracy between Ω_m and Ω_Λ due to the effect of lensing in the temperature power spectrum. These limits are significantly improved by the inclusion of the *Planck* lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly constrains the geometry to be nearly flat.

Planck Params

Planck Collaboration: Cosmological parameters

Fig. 3. Constraints in the Ω_m - H_0 plane. Points show samples from the *Planck*-only posterior, coloured by the corresponding value of the spectral index n_s . The contours (68% and 95%) show the improved constraint from *Planck*+lensing+WP. The degeneracy direction is significantly shortened by including WP, but the well-constrained direction of constant $\Omega_m h^3$ (set by the acoustic scale), is determined almost equally accurately from *Planck* alone.

Fig. 2. Comparison of the base Λ CDM model parameters for *Planck*+lensing only (colour-coded samples), and the 68% and 95% constraint contours adding *WMAP* low- ℓ polarization (WP; red contours), compared to *WMAP*-9 (Bennett et al. 2012; grey contours).

Hierarchical Models

So we have a hierarchical model

- ask progressively more complicated questions of the data, with (approximately) no dependence on the details of previous results
- Timelines \Rightarrow maps \Rightarrow spectra \Rightarrow parameters
- Each is a "nuisance parameter" for the next step w/ an uncontroversial prior defining that step
 e.g., (T_pT_p) = S_{pp}(C_ℓ) P(C_ℓ|θ) = δ[C_ℓ C_ℓ(θ)]
- But in the realistic case there may be other nuisance parameters for which the priors are relevant:
 - timeline systematics, foregrounds, &c.

Testing assumptions

• We have been calculating the posterior $P(\Omega_b h^2, \Omega_c h^2, \theta_{MC}, \tau, n_s, A_s \mid Planck, I)$

Low power on large scales

Anomalies?

Small (but statistically significant) difference between the power in the hemispheres

Overall low amplitude at large scales

Large-scale anisotropy

- Hemispherical differences: how can we arrange anisotropy on the scale of the horizon?
 - initial conditions: anisotropic inflation?
 - the large-scale structure of spacetime
 - change the geometry: Bianchi
 - homogeneous + anisotropic spacetimes
 - change the topology

The shape of the Universe

- General relativity determines the curvature of the Universe, but not its topology (holes and handles)
- Most theories of quantum gravity (and quantum cosmology) predict topological change on small scales and at early times.
- Does this have cosmological implications?
 - E.G., small universe ⇒ fewer large-scale modes available ⇒ low power on large scales?

Topology + geometry

Tile the 2-sphere with different fundamental domains

(Each of these has a 3-sphere analogy)

Can also tile the hyperbolic universe:

(Bond, Pogosyan, etc.)

http://www.sciencenews.org/pages/sn_arc98/2_21_98/bob1.htm

Friday, 26 July 13

Multiply-connected Spherical Topologies

Space	Fundamental group	Order	Elements	F.P.
Quaternionic	Binary Dihedral	8	order 2 rotations about 2 perpendicular axes	
Octahedral	Binary Tetrahedral	24	symmetries of r. tetrahedron	
Truncated Cube	Binary Octahedral	48	symmetries of r. octahedron	
Poincaré	Binary Icosahedral	120	symmetries of r. icosahedron	

Topology in the CMB

- Look for repeated patterns
- Generic & specific methods
- matching patches (e.g., Levin et al)
 - method of images (e.g., Bond et al)
 - assumes infinitely thin LSS
 - mostly open Universes

□ Circles in the sky (Cornish, Spergel, Starkman)

- looks for LSS structure; ignores different views of the same point
- nb. generic methods work as frequentist null tests but need comparison w/ specific topologies to get statistics
 - even Bayesians need to do exploratory statistics
- Cornish et al '04: "fewer than I in 100 random skies generate a false match" [??]: limit out to 24 Gpc

<u>*Reviews*</u>: Levin; Lachieze-Rey, Lehoucq, Luminet
Topology: methods

- When topological scale ≤ Horizon scale, induce anisotropic correlations (and suppress power) on large scales
- Direct search for matched circles
 - sensitive to topology with parallel matched surfaces
- Explicit Likelihood
 - calculate correlation matrix for specific topologies.
 - 3d Gaussian with $\langle \delta_k \delta_{k'} \rangle = (2\pi)^3 \delta_D(k+k') P(k)$ w/ k restricted to fundamental domain with boundary conditions
 - induced CMB correlations depend on topology (incl. orientation)

Simulated Maps ($\Omega_k = -0.063$)

Quaternionic/bi-dehedral

Octahedral/bi-tetrahedral

Truncated cube/bi-octahedral

Poincaré/icosahedral

Lowest multipoles

Quaternionic Octahedral Truncated cube Poincaré WMAP

Bayesian topology

$$P(a|C) = \frac{1}{|2\pi C|^{1/2}} \exp\left(-\frac{1}{2}a^T C^{-1}a\right)$$

Full correlation matrix:

$$C = \langle a_{\ell m} a_{\ell' m'} \rangle = C_{\ell \ell' m m'} = C(\text{cosmology, topology})$$
$$C_{\ell \ell'}^{m m'} \propto \int d^3 k \Delta_{\ell}(k, \Delta \eta) \Delta_{\ell'}(k, \Delta \eta) P(k) \rightarrow \sum_{\mathbf{n}} \Delta_{\ell}(k_n, \Delta \eta) \Delta_{\ell'}(k_n, \Delta \eta) P(k_n) Y_{\ell m}(\mathbf{\hat{n}}) Y_{\ell' m'}^*(\mathbf{\hat{n}}),$$

 $\square a = a_{\ell m}$

- (Noise irrelevant on scales of interest)
- Suppressed power \Rightarrow stronger correlations

Pixel correlations

Pixel correlations

Topology from Planck

"Matched circles" in a simulated Universe:

Alas, not found... we can limit the size of the "fundamental cube" to be greater than the size of the surface we observe with the CMB:

• side $L \ge 26$ Gpc

Topology: results

No strong evidence for topology on the scale of the last-scattering surface

Friday, 26 July 13

Bianchi Models

- Homogeneous, anisotropic spaces
- VII_h: global shear and rotation
 - parameter h relates vorticity ω_i to shear σ_{ij} , Ω_{tot}

 $\left(\frac{\omega}{H}\right)_0 = \frac{(1+h)^{1/2}(1+9h)^{1/2}}{6h} \frac{1-\Omega_{\text{tot}}}{\Omega_{\text{tot}}} \sqrt{\left(\frac{\sigma_{12}}{H}\right)_0^2 + \left(\frac{\sigma_{13}}{H}\right)_0^2}$

- Focusing induces specific pattern of temperature anisotropy on large scales
- Full likelihood calculation (Gaussian added to deterministic template)
 - consistent cosmology very low likelihood

Bianchi Models

Flat-decoupled						Probability density			
Bianchi Parameter	MAP	SMICA Mean	MAP	SEVEM Mean		0 0.33 Ω _m ^D 0.67 1	0 0.33 Ω ^D _Λ 0.67 1	0 0.33 0.67 1 x	
$ \begin{array}{c} \Omega^{\rm B}_{\rm m} \\ \Omega^{\rm B}_{\Lambda} \\ x \\ (\omega/H)_0 \\ \alpha \\ \beta \\ \gamma \end{array} $	$0.38 0.20 0.63 8.8 \times 10^{-10}38.8^{\circ}28.2^{\circ}309.2^{\circ}$	$\begin{array}{c} 0.32 \pm 0.12 \\ 0.31 \pm 0.20 \\ 0.67 \pm 0.16 \\ (7.1 \pm 1.9) \times 10^{-10} \\ 51.3^{\circ} \pm 47.9^{\circ} \\ 33.7^{\circ} \pm 19.7^{\circ} \\ 292.2^{\circ} \pm 51.9^{\circ} \end{array}$	$\begin{array}{c} 0.35\\ 0.22\\ 0.66\\ 9.4\times10^{-10}\\ 40.5^{\circ}\\ 28.4^{\circ}\\ 317.0^{\circ} \end{array}$	$\begin{array}{c} 0.31 \pm 0.15 \\ 0.30 \pm 0.20 \\ 0.62 \pm 0.23 \\ (5.9 \pm 2.4) \times 10^{-10} \\ 77.4^{\circ} \pm 80.3^{\circ} \\ 45.6^{\circ} \pm 32.7^{\circ} \\ 271.5^{\circ} \pm 80.7^{\circ} \end{array}$	$\operatorname{Frobability}_{0}^{\operatorname{Frobability}}$	Probability density	0 1.05 2.09 3.12	August Au	
					(a) Flat-decoupled-Bianchi model.				
Open-coupled					Probability density	Probability density		Probability density	
Bianchi Parameter	r MAP	SMICA Mean	MAP	SEVEM Mean	0 0.07 0.13 0.2	0 0.33 Ω ^D _m 0.67 1 0	0.33 Ω ^B _Δ 0.67 1	0 0.33 0.67 1 x	
$\begin{array}{c} \Omega_k \\ \Omega^{\rm B}_m \\ \Omega^{\rm B}_\Lambda \\ x \\ (\omega/H)_0 \\ \alpha \\ \beta \\ \gamma \end{array}$	$\begin{array}{c} 0.05\\ 0.41\\ 0.55\\ 0.46\\ 5.9\times10^{-10}\\ 57.4^{\circ}\\ 54.1^{\circ}\\ 202.6^{\circ}\end{array}$	$\begin{array}{c} 0.07 \pm 0.05 \\ 0.33 \pm 0.07 \\ 0.60 \pm 0.07 \\ 0.44 \pm 0.24 \\ 0 (4.0 \pm 2.4) \times 10^{-10} \\ 122.5^{\circ} \pm 96.0^{\circ} \\ 70.8^{\circ} \pm 35.5^{\circ} \\ 193.5^{\circ} \pm 77.4^{\circ} \end{array}$	$\begin{array}{c} 0.09\\ 0.41\\ 0.50\\ 0.38\\ 9.3\times10^{-10}\\ 264.1^{\circ}\\ 79.6^{\circ}\\ 90.6^{\circ}\end{array}$	$\begin{array}{c} 0.08 \pm 0.04 \\ 0.32 \pm 0.07 \\ 0.59 \pm 0.07 \\ 0.39 \pm 0.22 \\ (4.5 \pm 2.8) \times 10^{-10} \\ 188.6^{\circ} \pm 98.7^{\circ} \\ 81.1^{\circ} \pm 31.7^{\circ} \\ 160.4^{\circ} \pm 91.1^{\circ} \end{array}$	Probability density	Lopapility density Probability density Probabi	1.05 2.09 3.14	Dopapility density den	
Flat-coupled: $\omega_0/H_0 < 8.1 \times 10^{-10}$ (95%)					(b) Open-coupled-Bianchi model.				

Friday, 26 July 13

Non-gaussianity

- Another way to go beyond (and check) the simple assumptions
- In the absence of a specific model, want to determine phenomenological parameters describing departure from an isotropic multivariate gaussian distribution.
 - e.g., moments but not unique (there is no distribution that has mean, variance, skewness, but no higher moments)
 - for (suitably defined) small non-gaussianity, third-order moments should dominate
 - full determination of 3-pt function is computationally infeasible (and we lack sufficient S/N)
 - parameterize non-gaussianity

non-Gaussianity: f_{NL}

- Heuristically $\phi = \phi_G + f_{NL}(\phi_G^2 \langle \phi_G^2 \rangle)$ for a Gaussian ϕ_G (e.g., multi-field inflation)
 - This is the (spatially) local model for non-Gaussianity
 Induces specific 3-d correlations

$$\begin{split} \langle \phi \phi \phi \rangle &\sim 3 f_{\rm NL} \left(\langle \phi_G \phi_G \phi_G \phi_G \phi_G \rangle - \langle \phi_G \phi_G \rangle \langle \phi_G \phi_G \rangle \right) + O(f_{\rm NL}^2) \\ &\sim 6 f_{\rm NL} \langle \phi_G \phi_G \rangle \langle \phi_G \phi_G \rangle + O(f_{\rm NL}^2) \end{split}$$

and hence 2-d correlations in the CMB

• Corresponds to Fourier bispectrum $B(k_1, k_2, k_3)$ which peaks in squeezed case $k_1 \ll k_2 \simeq k_3$

- modulate small-scale structure by large-scale modes
 - cf. galaxy bias

 More generally, consider other shapes (e.g., equilateral) motivated by specific theories

Estimating non-Gaussianity

 $\langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_2 m_2} \rangle = \mathcal{G}_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} b_{\ell_1 \ell_2 \ell_3} = \mathcal{G}_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} h_{\ell_1 \ell_2 \ell_3}^{-2} B_{\ell_1 \ell_2 \ell_3}$

 Expect to be able to estimate the third moment by taking some weights average over cubic products of data

- (cf. quadratic estimators of power spectra)
 - "optimal" (min-var) weights computationally infeasible (Heavens 1998) — average over all triples of data
 - ignoring off-diagonal covariance gives somewhat more tractable case (Creminelli et al. 2006).
 - further simplify for "separable" shapes (Komatsu et al=KSW) and linear combinations thereof (Fergusson & Shellard)
 - generalize to S_{ℓ} = skew- C_{ℓ} , retains shape information in one ℓ direction (Heavens & Munshi)

Non-Gaussianity from Planck

Planck detects (non-Primordial) non-Gaussianity...

		Independent		ISW-lensing subtracted			
	KSW	Binned	Modal		KSW	Binned	Modal
SMICA							
Local	9.8 ± 5.8	9.2 ± 5.9	8.3 ± 5.9		$\textbf{2.7} \pm \textbf{5.8}$	2.2 ± 5.9	1.6 ± 6.0
Equilateral	-37 ± 75	-20 ± 73	-20 ± 77		-42 ± 75	-25 ± 73	-20 ± 77
Orthogonal	-46 ± 39	-39 ± 41	-36 ± 41		-25 ± 39	-17 ± 41	-14 ± 42
NILC							
Local	11.6 ± 5.8	10.5 ± 5.8	9.4 ± 5.9		4.5 ± 5.8	3.6 ± 5.8	2.7 ± 6.0
Equilateral	-41 ± 76	-31 ± 73	-20 ± 76		-48 ± 76	-38 ± 73	-20 ± 78
Orthogonal	-74 ± 40	-62 ± 41	-60 ± 40		-53 ± 40	-41 ± 41	-37 ± 43
SEVEM							
Local	10.5 ± 5.9	10.1 ± 6.2	9.4 ± 6.0		3.4 ± 5.9	3.2 ± 6.2	2.6 ± 6.0
Equilateral	-32 ± 76	-21 ± 73	-13 ± 77		-36 ± 76	-25 ± 73	-13 ± 78
Orthogonal	-34 ± 40	-30 ± 42	-24 ± 42		-14 ± 40	-9 ± 42	-2 ± 42
C-R							
Local	12.4 ± 6.0	11.3 ± 5.9	10.9 ± 5.9		6.4 ± 6.0	5.5 ± 5.9	5.1 ± 5.9
Equilateral	-60 ± 79	-52 ± 74	-33 ± 78		-62 ± 79	-55 ± 74	-32 ± 78
Orthogonal	-76 ± 42	-60 ± 42	-63 ± 42		-57 ± 42	-41 ± 42	-42 ± 42

Non-Gaussianity from Planck

Big Science from Small* Scales

Hierarchical Bayesian formalism

- raw-data \Rightarrow maps \Rightarrow spectra \Rightarrow parameters
- radical data compression
- need to keep track of likelihood function details

Checking assumptions

- "anomalies"?
 - No obvious solution by changing the large-scale structure of spacetime (topology, Bianchi)
- non-Gaussianity
 - Iensing, point sources, correlations detected in Planck
 - no evidence yet for primordial non-Gaussianity

