

LFI frequency maps: data analysis, results and future challenges

Davide Maino

Università degli Studi di Milano, Dip. di Fisica

New Light in Cosmology from the CMB 22 July - 2 August 2013, Trieste

- 1 Planck Maps
- 2 Data Processing Overview
- 3 Internal Validation
- 4 Scientific Analysis
- 5 Conclusions & Perspectives

- Planck was launched on 14 May 2009 and the current data release includes temperature maps based on the first 15.5 months of observations
- Planck is still alive and LFI is currently taking data
 - HFI was switched off on January 2012, beyond the nominal period and now is supporting LFI providing essential H/K telemetry (e.g. 4K cooler)
 - LFI is expected to continue at least till September 2013
- Data are of incredible quality!

Data Processing Overview

- DPC approaches data reduction with specific tasks aiming to estimate and correct instrumental systematic effects
- There are three main logical levels:
 - Level 1: H/K and Science telemetry from the satellite are transformed into raw timelines and stored into dedicated databases with the associated time information
 - Level 2: instrument information is gathered and ingested into the Instrument Model, removal of systematic effects, flag data of suspected quality, photometric calibration and creation of maps and ancillary products
 - Level 3: more science here with component separation, power spectra estimation and extraction of cosmological parameters
- Each step is internally validated (with dedicated sims) and most of the DPC work is spent cross-checking internally and between the two instruments

From raw data to maps

- Beams contours (-20dB/LFI) from planet transit
- Pointing reconstruction: error smaller that 0.5′

Band	FWHM [']	е	Ω [arcmin ²]
30	32.239 ± 0.013	1.320 ± 0.031	1189.51 ± 0.84
44	27.01 ± 0.55	1.034 ± 0.031	833±32
70	13.252 ± 0.033	1.223 ± 0.026	200.7 ± 1.0

 Scanning beams are used to compute effective beams which gives pixel-by-pixel the beam shape projected in the sky when scanning strategy is accounted for. Fundamental point for source extractions and beam window function

- This is the most important and critical aspect of data reduction pipeline. The LFI one works as follows
 - estimate dipole amplitude and alignment of dipole for any direction
 - create the expected level of the dipole signal accounting for the full-beam shape
 - fit real data with dipole with iterative approach (raw gains)
 - filter raw gains or use 4K to calibrate data

Photometric Calibration

- Calibrated TOI for each radiometer are input of madam map-making code, together with pointing data
- The algorithm is a maximum-likelihood destriping and estimates in this fashion the amplitude of the 1/f-noise baseline, subtract from the timelines and then simply bins the resulting TOI into a map
- Maps produced at different levels:
 - Frequency maps, HR maps and Survey maps
 - Low resolution maps used for the computation of the noise covariance matrix

- Null tests: primary tool to see systematic effect residual w.r.t.
 white noise level
- Sims: Assess their impact on TOI using in-flight H/K data.
 This approach provides a powerful tool to check for systematics

LFI Internal Validation - Null tests

- Quality of LFI maps is assessed and verified by a set of null-tests in an almost automatic way
- Several data combination (radiometer, horn-pairs, frequency) on different time-scales (1 hour, survey, full-mission): difference at horn level at even/odd surveys clearly reveals side lobe effect
- Null-test power spectra are used to check total level of system. effects to be compared w.r.t. white noise level and systematic effects analysis

LFI Internal Validation - Check Spectra

- Compute power spectra in multipole range around the first acoustic peak removing the unresolved point source contributions. Spectra are consistent within errors. 30 and 44/70 have different approaches to gain applied
- Hausman test assess consistency at 70 GHz showing no statistically significant problem
- Spectra from horn-pairs and from all 12 radiometers: χ^2 analysis shows compatibility with null-hypothesis

Maps Characteristics

Uncertainty	Applies to	Method	
Gain calib	All sky	WMAP dipole	
Zero level	All sky	Galactic Cosecant model	
Beam	All sky	GRASP models via FeBecop	
CC	non-CMB	ground/flight bandpass leakage	
Resid. Sys	All sky	Null-tests	

Property	30	44	70
Frequency [GHz]	28.4	44.1	70.4
Noise rms/pixel [$\mu K_{\rm CMB}$]	9.2	12.5	23.2
Gain Uncert	0.82%	0.55%	0.62%
Zero Level Uncert $[\mu K_{\mathrm{CMB}}]$	± 2.23	± 0.78	± 0.64

Component Separation

- Microwave emission is dominated by CMB from 70 to 143
 GHz
- At low and high frequency foregrounds emissions dominates not only along the galactic plane: synchrotron, free-free, dust
- Forerground components have distinct spectral shapes different from CMB
- Multi-frequency observations are fundamental to separate such components

Planck vs WMAP

From maps to Power Spectrum

■ Given a map of CMB sky $\Delta T(\hat{n})$ decompose in spherical harmonics

$$a_{\ell m} = \int d\hat{n} \, \Delta T(\hat{n}) \, Y_{\ell m}^{\star}(\hat{n})$$

Without instrumental noise power spectrum is given by

$$C_{\ell} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

 For real experiments, with finite beam size, noise and incomplete sky coverage

$$ilde{\mathcal{C}}_{\ell} = \sum_{\ell'} M_{\ell\ell'} F_{\ell'} B_{\ell'}^2 \mathcal{C}_{\ell'}^{\mathrm{th}} + \mathcal{N}_{\ell}$$

Planck TT Angular Power Spectrum

Planck Cosmological Parameters

- Planck 2013 results. XVI. Cosmological Parameters
- Shape, positions and heights of peaks strongly depends on cosmological parameters
- Instead of comparing theory ($\mathcal{C}_{\ell}^{\mathrm{th}}$) with data on defined grid points in parameter space, a Monte Carlo Marchov Chain approach is used: random walk with Metropolis-Hasting chain samples

Planck Cosmological Parameters

- $H_0 = (67.3 \pm 1.2) \text{km s}^{-1} \text{ Mpc}^{-1}$. Lower than previous estimation based on astrophysical observations.
- Higher age of the Universe 13.817 ± 0.048 Gyr

- SN data are almost consistent within each other
- Union 2.1 is consistent with *Planck* and SNLS combined shows some tension
- Residual systematics?

- $w = p/\rho = -1$ cosmological constant. All data-sets consistent with this but the inclusion of SNLS
- $w(a) = w_0 + w_a(1-a)$: the $(w_0, w_a) = (-1, 0)$ is within 68% CL but for the inclusion of SNLS

- WMAP reported some "anomalies" on large angular scales:
 - Quadrupole/Octupole alignment
 - Low variance
 - Hemispherical asymmetry
 - Dipolar power modulation
 - Cold Spot
- Planck revises these "anomalies" and provides new robust results

Quadropole/Octupole alignment

- Search for axis of maximum momentum dispersion independently for $\ell=2$ and $\ell=3$
- CMB map derived from different component separation methods
- Alignment varies between 9° and 13° (depending on comp. sep.) less significant (below 98%)

- Analysis of WMAP data reveal power spectrum asymmetry: power in hemisphere centred in $(\theta, \phi) = (110^{\circ}, 237^{\circ})$ (close to ecliptic plane) is larger than in the opposite for $\ell = 2 40$
- Other methods (Minkowski functionals, N-point correlation functions) show similar evidence
- Planck reviews such evidences using different CMB component separated maps and N-point correlation functions

Hemispherical asymmetry

- North: almost 99.9% of simulations has larger structure of 4-pt correlation function
- South: in line (54-57%) with (Gaussian) simulations

- Λ CDM is not a good fit for *Planck* data for $20 \lesssim \ell \lesssim 40$
- Already present in WMAP but with Planck at $2-2.5\,\sigma$ level

 Gordon et al. (2005) proposed a phenomenological model for large scale power in WMAP data described by a multiplicative dipole modulation

$$\mathbf{d} = (1 + A\mathbf{p} \cdot \mathbf{n})\mathbf{s}_{iso} + \mathbf{n}$$

■ WMAP-5yr found $A = 0.072 \pm 0.022$ and $(I, b) = (224^{\circ}, -22^{\circ})$ at 3.3σ level

Dipole Modulation

- Dipole amplitude consistent between different CMB maps with $A \in [0.065, 0.078] \pm 0.022$
- Dipole direction in agreement also with *WMAP* with significance $\sim 2.9 3.5 \, \sigma$

Interpretations of "anomalies"

- Many features observers by WMAP are seen by Planck: inter-instrument consistency rules out intrinsic systematic effects
- Microwave sky is neither Gaussian nor isotropic but component separation is robust
- Possible local origin: removing ISW originated with a volume at z < 0.3 alleviates most of the "anomalies"
- Most interesting would be their cosmological origin:
 - candidates models with compact topology although no evidence is shown
 - anisotropic Bianchi VII_h model is a good template and when subtracted from the data many of the large-scale "anomalies" are no longer present but ...
 - ... Bianchi provides parameters incompatible with ΛCDM

- Standard Λ CDM provides a good fit to data for $\ell \gtrsim 40$
- Planck provides a unique window on the early universe and shades light on content of the Universe: $\Omega_m, \Omega_{\Lambda}, \Omega_b$
- Possible new physics from "tension" on some parameters values (e.g. H_0)
- Spectrum shape $20 \lesssim \ell \lesssim 40$ is a real feature of CMB anisotropies. Not a decisive significance but is an "anomaly".

- Polarisation data will open new possibilities: direct measure of τ, new hints on tensor modes, break some parameter degeneracies with temperature only data
- Foregrounds polarisation maps will provides informations on, e.g., emission mechanisms and structure of galactic magnetic field
- Challenging due to the tiny CMB polarisation signal but ...

■ Angular power spectra of TE (left) and EE (right) from Planck data combinations. $f_{sky} = 0.4$, no foreground cleaning, uniform weight of channels

