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Planck-LFI 30 GHz
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Planck-LFI 44 GHz
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Planck-LFI 70 GHz
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Operations

Planck was launched on 14 May 2009 and the current data
release includes temperature maps based on the first 15.5
months of observations

Planck is still alive and LFI is currently taking data

HFI was switched off on January 2012, beyond the nominal
period and now is supporting LFI providing essential H/K
telemetry (e.g. 4K cooler)
LFI is expected to continue at least till September 2013

Data are of incredible quality!

Davide Maino — LFI frequency maps: data analysis, results and future challenges 6/42



Data Processing Overview

DPC approaches data reduction with specific tasks aiming to
estimate and correct instrumental systematic effects

There are three main logical levels:

Level 1: H/K and Science telemetry from the satellite are
transformed into raw timelines and stored into dedicated
databases with the associated time information
Level 2: instrument information is gathered and ingested into
the Instrument Model, removal of systematic effects, flag data
of suspected quality, photometric calibration and creation of
maps and ancillary products
Level 3: more science here with component separation, power
spectra estimation and extraction of cosmological parameters

Each step is internally validated (with dedicated sims) and
most of the DPC work is spent cross-checking internally and
between the two instruments
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From raw data to maps
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Beams reconstruction
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Pointing reconstruction: error smaller that 0.5′
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Effective Beams

Band FWHM [′] e Ω [arcmin2]

30 32.239±0.013 1.320±0.031 1189.51±0.84
44 27.01±0.55 1.034±0.031 833±32
70 13.252±0.033 1.223±0.026 200.7±1.0

Scanning beams are used to compute effective beams which
gives pixel-by-pixel the beam shape projected in the sky when
scanning strategy is accounted for. Fundamental point for
source extractions and beam window function
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Photometric Calibration

This is the most important and critical aspect of data
reduction pipeline. The LFI one works as follows

estimate dipole amplitude and alignment of dipole for any
direction
create the expected level of the dipole signal accounting for
the full-beam shape
fit real data with dipole with iterative approach (raw gains)
filter raw gains or use 4K to calibrate data
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Photometric Calibration
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Map-making

Calibrated TOI for each radiometer are input of madam
map-making code, together with pointing data

The algorithm is a maximum-likelihood destriping and
estimates in this fashion the amplitude of the 1/f -noise
baseline, subtract from the timelines and then simply bins the
resulting TOI into a map

Maps produced at different levels:

Frequency maps, HR maps and Survey maps
Low resolution maps used for the computation of the noise
covariance matrix
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Systematic effects

Null tests: primary tool to see systematic effect residual w.r.t.
white noise level

Sims: Assess their impact on TOI using in-flight H/K data.
This approach provides a powerful tool to check for
systematics
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44 GHz
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70 GHz
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LFI Internal Validation - Null tests
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Quality of LFI maps is assessed and verified by a set of
null-tests in an almost automatic way
Several data combination (radiometer, horn-pairs, frequency)
on different time-scales (1 hour, survey, full-mission):
difference at horn level at even/odd surveys clearly reveals
side lobe effect
Null-test power spectra are used to check total level of
system. effects to be compared w.r.t. white noise level and
systematic effects analysis
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LFI Internal Validation - Check Spectra
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Compute power spectra in multipole range around the first
acoustic peak removing the unresolved point source
contributions. Spectra are consistent within errors. 30 and
44/70 have different approaches to gain applied

Hausman test assess consistency at 70 GHz showing no
statistically significant problem

Spectra from horn-pairs and from all 12 radiometers: χ2

analysis shows compatibility with null-hypothesis
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Maps Characteristics

Uncertainty Applies to Method

Gain calib All sky WMAP dipole
Zero level All sky Galactic Cosecant model
Beam All sky GRASP models via FeBecop
CC non-CMB ground/flight bandpass leakage
Resid. Sys All sky Null-tests

Property 30 44 70

Frequency [GHz] 28.4 44.1 70.4
Noise rms/pixel [µKCMB] 9.2 12.5 23.2
Gain Uncert 0.82% 0.55% 0.62%
Zero Level Uncert [µKCMB] ±2.23 ±0.78 ±0.64
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Component Separation
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Component Separation

Microwave emission is dominated by CMB from 70 to 143
GHz

At low and high frequency foregrounds emissions dominates
not only along the galactic plane: synchrotron, free-free, dust

Forerground components have distinct spectral shapes
different from CMB

Multi-frequency observations are fundamental to separate
such components
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Planck CMB sky
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Planck vs WMAP
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From maps to Power Spectrum

Given a map of CMB sky ∆T (n̂) decompose in spherical
harmonics

a`m =

∫
dn̂∆T (n̂)Y ?

`m(n̂)

Without instrumental noise power spectrum is given by

C` =
1

2`+ 1

∑̀

m=−`
|a`m|2

For real experiments, with finite beam size, noise and
incomplete sky coverage

C̃` =
∑

`′

M``′F`′B
2
`′Cth`′ +N`
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Planck TT Angular Power Spectrum
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Planck Cosmological Parameters

Planck 2013 results. XVI. Cosmological Parameters

Shape, positions and heights of
peaks strongly depends on
cosmological parameters

Instead of comparing theory (Cth` )
with data on defined grid points in
parameter space, a Monte Carlo
Marchov Chain approach is used:
random walk with
Metropolis-Hasting chain samples
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Planck Cosmological Parameters
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Hubble Constant H0

H0 = (67.3± 1.2)km s−1 Mpc−1. Lower than previous
estimation based on astrophysical observations.

Higher age of the Universe 13.817± 0.048 Gyr
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Ωm
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SN data are almost consistent within each other

Union 2.1 is consistent with Planck and SNLS combined
shows some tension

Residual systematics?
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Dark Energy
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w = p/ρ = −1 cosmological constant. All data-sets
consistent with this but the inclusion of SNLS

w(a) = w0 + wa(1− a): the (w0,wa) = (−1, 0) is within 68%
CL but for the inclusion of SNLS
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Intriguing inconsistencies

WMAP reported some “anomalies” on large angular scales:

Quadrupole/Octupole alignment
Low variance
Hemispherical asymmetry
Dipolar power modulation
Cold Spot

Planck revises these “anomalies” and provides new robust
results
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Quadropole/Octupole alignment

Search for axis of maximum momentum dispersion
independently for ` = 2 and ` = 3

CMB map derived from different component separation
methods

Alignment varies between 9◦ and 13◦ (depending on comp.
sep.) less significant (below 98%)
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Hemispherical asymmetry

Analysis of WMAP data reveal power spectrum asymmetry:
power in hemisphere centred in (θ, φ) = (110◦, 237◦) (close to
ecliptic plane) is larger than in the opposite for ` = 2− 40

Other methods (Minkowski functionals, N−point correlation
functions) show similar evidence

Planck reviews such evidences using different CMB
component separated maps and N−point correlation functions
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Hemispherical asymmetry

North: almost 99.9% of simulations has larger structure of
4-pt correlation function

South: in line (54-57%) with (Gaussian) simulations
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Low-` deficit

ΛCDM is not a good fit for Planck data for 20 <∼ ` <∼ 40

Already present in WMAP but with Planck at 2− 2.5σ level
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Dipole Modulation

Gordon et al. (2005) proposed a phenomenological model for
large scale power in WMAP data described by a multiplicative
dipole modulation

d = (1 + Ap · n)siso + n

WMAP-5yr found A = 0.072± 0.022 and
(l , b) = (224◦,−22◦) at 3.3σ level
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Dipole Modulation
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Dipole amplitude consistent between different CMB maps
with A ∈ [0.065, 0.078]± 0.022

Dipole direction in agreement also with WMAP with
significance ∼ 2.9− 3.5σ
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Interpretations of “anomalies”

Many features observers by WMAP are seen by Planck:
inter-instrument consistency rules out intrinsic systematic
effects

Microwave sky is neither Gaussian nor isotropic but
component separation is robust

Possible local origin: removing ISW originated with a volume
at z < 0.3 alleviates most of the “anomalies”

Most interesting would be their cosmological origin:

candidates models with compact topology although no
evidence is shown
anisotropic Bianchi VIIh model is a good template and when
subtracted from the data many of the large-scale “anomalies”
are no longer present but ...
... Bianchi provides parameters incompatible with ΛCDM
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Conclusions

Standard ΛCDM provides a good fit to data for ` >∼ 40

Planck provides a unique window on the early universe and
shades light on content of the Universe: Ωm,ΩΛ,Ωb

Possible new physics from “tension” on some parameters
values (e.g. H0)

Spectrum shape 20 <∼ ` <∼ 40 is a real feature of CMB
anisotropies. Not a decisive significance but is an “anomaly”.
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What’s next?

Polarisation data will open new possibilities: direct measure of
τ , new hints on tensor modes, break some parameter
degeneracies with temperature only data

Foregrounds polarisation maps will provides informations on,
e.g., emission mechanisms and structure of galactic magnetic
field

Challenging due to the tiny CMB polarisation signal but ...
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What’s next?

Angular power spectra of TE (left) and EE (right) from
Planck data combinations. fsky = 0.4, no foreground cleaning,
uniform weight of channels
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