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Motivation

Inflation is the leading paradigm for early Universe and structure formations.

Basics predictions of inflation: The power spectrum are

Nearly scale-invariant

Nearly Gaussian

Nearly adiabatic

These predictions are in good agreement with the PLANCK data.

PLANCK 2013
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Inflation in the context of ever changing fundamental theory
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Borrowed from Lev Kofman
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Hoftuft et al,  2009.

Asymmetry observed by PLANCK

A Fundamental Question: Is the Universe isotropic?

PLNCAK has reported anisotropies on CMB map

Power Asymmetry: the power spectrum measured in one direction is different
than the opposite direction

A brief History:

After the release of WMAP first year data, Eriksen et al (2004) suggested the existence
of hemispherical asymmetry. They found that the Southern hemisphere has more power
than the Northern hemisphere.

Gordon et al (2005) proposed a dipolar modulation of hemispherical asymmetry

∆T (n̂) = ∆T (n̂)(1 + A n̂.p̂)

in which p̂ is the preferred dipole direction.

Eriksen et al (2007) fit this model with the WMAP 3-year data to get A = 0.114.

PLANCK : A = 0.07± 0.02 for 2! ! ! 64
with (l , b) = (227◦,−21◦)

See also this morning talk by David Maino

Friday, August 2, 2013



Anisotropic Power Spectrum
The simplest ansatz to model the hemispherical asymmetry in CMB power spectrum
is the dipole modulation

∆T (n̂) = ∆T (n̂)(1 + A n̂.p̂)

The correspond primordial curvature perturbation power spectrum is

PR = P(0)
R (1 + A n̂.p̂)

Generalization:

PR(k) = P(0)
R (1 +

X

LM

gLMYLM(k̂))

L = 1, dipole asymmetry

L = 2, quadrupole asymmetry PR(k) = P(0)
R (1 + g∗ (p̂.k̂)2)

Groeneboom & Eriksen, 2008

Seljebotn, 2010 

A=0 A=0.3

g*=0.14
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Anisotropic Inflation from Gauge Field Dynamics
The model contains a U(1) gauge field minimally coupled to gravity

S =

Z
d4x
√
−g

"
M2

P

2
R −

1

2
∂µφ∂µφ−

f 2(φ)

4
FµνFµν − V (φ)

#

Here 1/f (φ) is the time-dependent gauge kinetic coupling.

We turn on the background gauge field Aµ = (0, Ax (t), 0, 0)
The background metric is

ds2 = −dt2 + e2α(t)
“
e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)

”

= −dt2 + a(t)2dx2 + b(t)2(dy2 + dz2)

In this view H ≡ α̇ is the average Hubble expansion rate and

Ha ≡
ȧ

a
, Hb ≡

ḃ

b

The anisotropy in the system is measured by

σ̇

H
≡

Hb − Ha

H

The background equations are too complicated to be solved !
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It is instructive to compare the gauge field energy density to the total energy density

R ≡
ρA

V
=

Ȧ2f (φ)2e−2α

2V
=

p2
A

2V
f −2e−4α

In the absence of the conformal factor we see that the gauge field energy density
decays exponentially like e−4α = 1/a4.

We choose f (φ) such that R becomes small but constant

a ∝ exp

»
−
Z

dφ
V

Vφ

–
.

So if one chooses

f ∝ exp

»
−n

Z
dφ

V

Vφ

–

this yields f ∝ an

V =
1

2
m2φ2 → f (φ) = exp

 
cφ2

2M2
P

!
=

„
a

af

«−2c

with c a constant very close to unity.
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The attractor solution

With this choice of f (φ) one makes sure that the energy density of
the gauge field is sub-dominant but non-decaying

→ The Attractor Solution

One can show that during the attractor solution

R =
c − 1

2c
εH =

1

2
I εH , I ≡

c − 1

c

Back-reaction of the gauge field:

M−2
P

dφ

dα
$ −

Vφ

V
+

c − 1

c

Vφ

V
.

This means that the back-reactions of the gauge field
on the inflation field change the effective mass

of the inflaton m2
eff =

m2
eff
c .

The inflaton trajectory is given by

φ2
e − φ2 = 4M2

Pα(1− I )

Watanabe, Kanno, Soda, 09
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Perturbations in anisotropic inflation
There are two methods to study perturbations in anisotropic inflation background:

In-In formalism: more rigorous but difficult

δN formalism: simpler but can be quite tricky!

We start with the δN formalism.

δN is a very powerful method in cosmological perturbation theory. δN allows to
calculate the curvature perturbations to all order in perturbation theory.

Advantage:

we only need to solve the number of e-folds as a function of background fields,
N = N(φi ).

R = δN

= Nφi
δφi +

1

2
Nφi φj

δφiδφj (1)

Disadvantage:

It is applicable only on superhorizon scales. It can not take into effect the intearctions
which happen inside the horizon or around the time of horizon crossing. Example: DBI
model

Bartolo, Matarrese, Peloso,  Ricciardone,  2012 
See talk by Angelo Ricciardone
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Separate Universe Approach:

It is assumed that inside each small patch the universe behaves like an FRW Universe
with

a(t, x) = a(t)eψ(t,x)

ρ = ρ(t, x) , p = p(t, x)

In δN formalism R = δN.

To use this prescription the initial surface has to be the flat surface, ψ = 0. The final
surface has to be the surface of constant energy, δρ = 0.

ba

t
1

t
2

0
!

-1

cH

!

s
!

Wands et al, 2000.
Bazrafshan, 2011

Friday, August 2, 2013



We would like to extend δN formalism to anisotropic Universe

ds2 = −dt2 + a1(t)
2dx2 + a2(t)

2dy2 + a3(t)
2dz2 . (2)

The background equations are

3H2 ≡
X

i>j

H̄j H̄j =
ρ̄

M2
P

T̄ 0
i = q̄i = 0

M2
P

˙̄Hi = −3M2
PH̄H̄i +

1

2
(ρ̄− p̄) + π̄i

i

−uµ∇νTµν = ˙̄ρ + 3H̄(ρ̄ + p̄) + H̄j π̄
i
jδ

j
i = 0.

In which the Hubble parameters are defined via

H̄i (t) =
ȧi

ai
, H̄ ≡

1

3

3X

i=1

H̄i

Note that H̄ $= H.

Let us define the gradient expansion perturbation parameter ε

ε ≡
k

aH
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Let us define the gradient expansion perturbation parameter ε

ε ≡
k

aH

Locally, inside in Hubble size patch, the (0, 0) fields equations become

3M2
PH

2(x, t) = ρ(x, t) + O(ε2),

M2
P

dHi (x, t)

dτ
= −3M2

PH(x, t)Hi (x, t) +
1

2
(ρ(x, t)− p(x, t)) + πi

i (x, t) +O(ε2)

dρ(x, t)

dτ
+ 3H(x, t) ( ρ(x, t) + p(x, t) ) +

X

i

πi
i (x, t)Hi (x, t) = O(ε2) .

in which

H2(x, t) ≡
1

3

X

i>j

Hi (x, t)Hj (x, t) ,

H(x, t) ≡
1

3

X

i

Hi (x, t)

Conclusion: The separate universe recipe works and it is enough to replace any
background function f (t) by its local form f (x, t) and also using new local directional
Hubble parameters Hi (x, t).
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Application to Anisotropic Inflation
In model of anisotropic inflation with U(1) gauge field we have

V =
1

2
m2φ2 → f (φ) = exp

 
cφ2

2M2
P

!

During the attractor phase

Ȧ2f 2e−2α = I εHV

Furthermore, the back-reaction of the gauge field on the inflaton dynamics changes
the effective mass of inflaton

M−2
P

dφ

dα
" −

Vφ

V
+

c − 1

c

Vφ

V

This yields

φ2
e − φ2 = 4M2

Pα(1− I )

Playing with the above equations yields

δN " −
φ

2M2
P

δφ + 2IN
δȦx

Ȧ

This is our result for δN to linear order in terms of δφ and δȦ.
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The gauge field fluctuations are given by

δAi =
X

λ=±

Z
d3k

(2π)3/2
ei
−→
k .−→x #ελ(k)

bVi

f
,

in which

bV = aλ(
−→
k )Vλ(k) + a†λ(−

−→
k )V ∗

λ (k) .

They satisfy

Vλ(k)′′ +

„
k2 −

f ′′

f

«
Vλ(k) = 0 ,

Deep inside the horizon

Vλ(k) #
1 + ikη
√

2k3/2η
e−ikη .

As a result

δ#̇A

Ȧ
=

X

λ

#ελ

√
3H

p
2I εHk3

(k > aH)

In particular, we see that on super-horizon scale, δȦx/Ȧx is a constant.
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Now we can calculate the power spectrum

R = δN = −
φ

2M2
P

δφ + 2IN
δȦx

Ȧ
.

The isotropic and the anisotropic parts are PR ≡ P0 + ∆P in which

P0 =
H2

8π2M2
PεH

.

To calculate the anisotropic power spectrum we note that δφ and δȦ are mutually
uncorrelated so 〈δφδȦ〉|∗ = 0. As a results

∆P =
k3
1

2π2
4I 2N2

*
δȦx (k1)

Ax

δȦx (k2)

Ax

+

=
k3
1

2π2

6IH2

εHk3
1

N2 sin2 θ = 24 IN2P0 sin2 θ

in which the angle θ is defined via cos θ = n̂.k̂. Now comparing this with the
anisotropy factor g∗ defined via

PR(&k) = P0

“
1 + g∗(k̂.n̂)2

”
.

we obtained

g∗ = −24IN2

A.A. Abolhasani, R. Emami,  J. Taghizadeh, H. F.,  2013 
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The observational constraints from CMB and LSS require |g∗| < 0.3. With N = 60 we
obtain I < 10−5.

The IR Problem: From the formula g∗ = −24IN2 we see that anisotropies diverges
with N2.

This is because once the gauge field excitations leave the horizon they become
classical. However, δAi are anisotropic so as the gauge field excitations leaves the
horizon they renormalize the background value Ax (t).

This indicate a fine-tuning in the problem: N has to be large enough to solve the
flatness and the horizon problem, but not too large to destroy the isotropy.

As we shall see this is not restricted to power spectrum, this problem also shows up in
bispectrum and trispectrum.
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Bispectrum
The second oder δN is

δN = Nφδφ + NȦδȦ +
Nφφ

2
δφ2 +

NȦȦ

2
δȦ2 + NφȦδφδȦx

in which to leading order in I

Nφ ! −
φ

2M2
P

, Nφφ !
2f 2

,φ

f 2
+

2f,φφ

f
+

φ2

M4
P

+
4φ

M2
P

f,φ
f

and

N,Ȧ !
2IN

Ȧ
, N,ȦȦ !

2IN

Ȧ2
, N,φȦ !

4IN

Ȧ

fφ
f

The leading contribution in bispectrum comes from NȦȦ term and

〈ζ(k1)ζ(k2)ζ(k3)〉

! 4I 3N(k1)N(k2)N(k3)

Z
d3p

(2π)3
〈δȦx (%k1)δȦx (%k2)δȦi (%p)δȦi (%k3 − %p)〉+ 2perm.

The bispectrum is

〈ζ(k1)ζ(k2)ζ(k3)〉 ! 288INk1Nk2Nk3

„
C(%k1,%k2)P0(k1)P0(k2) + 2perm.

«
(2π)3 δ3(

X

i

%ki )

in which the momentum shape function C(%k1,%k2) is defined via

C(%k1,%k2) ≡
„

1− (bk1.bn)2 − (bk2.bn)2 + (bk1.bn) (bk2.bn) (bk1.bk2)

«

A.A. Abolhasani, R. Emami,  J. Taghizadeh, H. F.,  2013 
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In the squeezed limit we get

fNL = 240IN(k1)N(k2)
2C(!k1,!k2) (k1 ! k2 " k3)

" 10N |g∗| C(!k1,!k2)

Similarly, calculating the trispectrum 〈ζ!k1
ζ!k2

ζ!k3
ζ!k4
〉 we obtain

〈ζ!k1
ζ!k2

ζ!k3
ζ!k4
〉 " 3456INk1Nk2Nk3Nk4

„
D(!k3,!k4,!k1 + !k3)P(k3)P(k4)P(|!k1 + !k3|)

+ 11perm.

«
(2π)3 δ3

“
!k1 + !k2 + !k3 + !k4

”
,

in which

D(!k3,!k4,!k1 + !k3) = 1− (bk4.bn)2 − (bk3.bn)2 − (k̂1 + k3.bn)2 + (bk3.bn)(bk4.n̂)(bk3.bk4)

+(bk4.bn)(k̂1 + k3.bn)(k̂1 + k3.bk4) + (bk3.bn)(k̂1 + k3.bn)(k̂1 + k3.bk3)

−(bk3.bn)(bk4.bn)(k̂1 + k3.bk3)(k̂1 + k3.bk4) .

In the collapsed limit !k1 + !k3 = !k2 + !k4 = 0

τNL(k1, k2, k3, k4) " 3456IN(k3)
2N(k4)

2D(!k3,!k4,!k1 + !k3) .

Our result is in exact agreement with the results obtained from in-in formalism!

Bartolo, Matarrese, Peloso,  Ricciardone,  2012 

See talk by Angelo Ricciardone

Friday, August 2, 2013



kL

Hemispherical asymmetry and non-G: a Consistency Condition

PLANCK has reported hemispherical asymmetry.
A good way to parametrize the hemispherical asymmetry is via dipole modulation

∆T (n̂) = ∆T (n̂)(1 + A n̂.p̂)

in which p̂ is the preferred dipole direction. From Planck, we have A = 0.07± 0.02 for
! < 64.

For the primordial curvature perturbation this translates into

PR = P(0)
R (1 + 2A n̂.p̂) →

∇PRk

PRk

#
2Ap̂

xCMB

Question: How to model this dipole modulation?

Long Mode Modulation: Suppose there exists a very long super-horizon mode from
pre-inflationary epoch which can modulate the smaller CMB-scale modes ( Erickcek,
Kamionkowski, Carroll (2008) , also Grishchuk and Zeldovich (1978) )

Erickcek et al
A=0 A=0.3
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A Consistency Condition relating A to fNL:
Assumption: inflation perturbation has single source.

Consider a single, long wavelength, mode kL ! kCMB

RL = RkL
sin(kL.x) = PR

1/2
L sin(kL.x) .

D
R(kL)R(k1)R(k2)

E
"

D
R(kL)

D
R(k1)R(k2)

E

R(kL)

E

"
D
R(kL)

„
R(kL)

∂

∂R(kL)

D
R(k1)R(k2)

E˛̨
˛
R(kL)=0

« E

This leads to

1

PRk

∇PRk
=

12

5
fNL∇RL .

Definition
∇PRk
PRk

" 2A p̂
xCMB

and noting that we started with a single sin mode yields

A(k) =
6

5

“
kLxCMB P

1/2
RkL

”
fNL

This is our consistency condition, relating the amplitude of dipole asymmetry to the
amplitude of non-Gaussianity in the squeezed limit.

Namjoo, Baghram, H.F.  arXiv: 1305.0813

See also   D.  Lyth,   arXiv: 1304. 1270. 
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Erickcek et al

We have found

A(k) =
6

5

“
kLxCMB P

1/2
RkL

”
fNL

To obtain interesting bound from this formula, we nee some constraints on“
kLxCMB P

1/2
RkL

”
.

The strongest constrains on the effects of long mode modulation coms from the
octupole Q3 = 3

√
C3 ! 2.7× 10−3:

(kLxCMB)3 PRkL
! 53Q3 (Erickcek et al , (2008))

On the other hand, to trust our perturbation treatment we require

PRL
< 1

Combining these two equations yield

|A| ! 10−1|fNL| .

To explain the observed anisotropy we require |A(k)| = 0.07± 0.02.

Namjoo, Baghram, H.F.  arXiv: 1305.0813
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Examples:

Single field slow-roll inflation
One has fNL ∼ 1− ns so we obtain |A| ! 10−1(1− ns) ∼ 10−3. This is too small
to address the observed dipole asymmetry.

Curvaton Model (Erickcek et al, 2008, Lyth, 2013)
In standard curvaton model, fNL is independent of ns so fNL can be as large as
allowed by PLANCK fNL = 2.7± 5.8 (68 % CL) . As a result one can easily
obtain A = 0.07 to address the dipole asymmetry.

non-attractor model
In non-attractor model, R is not frozen on super-horizon scales and during the
non-attractor phase

fNL =
5(1 + c2

s )

4c2
s

One can easily get large enough fNL to get A = 0.07.

Advantage: The dipole asymmetry disappears on smaller CMB scales, from the
constraints on quazar studies (Hirata, 2009). Therefore, one should consider a
scale-dependence fNL. This is naturally constructed in non-attractor model.
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Consistency condition for asymmetry in gravitational waves
Consider a general operator O with the single-source perturbations. Define

PO(k)!P iso
O (k) (1 + 2AO(k)p̂.x/xCMB) ,

〈R(kL)O(k1)O(k2)〉 ≡ (2π)3δ(kL + k2 + k3)

„
12

5
fRONL

«
PR(kL)PO(k1)

Following the same steps as before, we obtain

AO !
6

5
fRONL

“
xCMBkLP

1/2
RL

”
.

Example : O = hij :

AT

AR
!

fRh
NL

f loc
NL

.

On the other hand, from Maldacena’s analysis we have

12

5
f loc
NL = −(1− ns) ,

12

5
fRh
NL = −nT .

therefore
˛̨ AT

AR

˛̨
!

nT

ns − 1
=

r

8(1− ns)
.

Observationally this is a very interesting result! With ns = 0.96, r ! 0.13, A = 0.07
this yields AT

A. Abolhasani,   S. Baghram,   H. F. ,  M. H. Namjoo,     
arXiv: 1305.0813
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Multiple Fields Models

The situation becomes much easier in multiple fields models

Example: Asymmetry from the inhomogeneous created at the end of inflation :

V =
λ

4

„
χ2 −

M2

λ

«2

+
m2

2
φ2 +

g2

2
φ2χ2 +

γ2

2
χ2σ2 .

The surface of end of inflation is given by

φ2
e +

γ2

g2
σ2 = φ2

c φc ≡
M

g
.

The curvature perturbation is

Re =
3

α

"
δφ∗
φ∗

+
F

1− F
δσ

σ
+
F(1 + F)

2(1− F)2

„
δσ

σ

«2
#

+ . . . .

in which we have defined

α ≡
m2

H2
=

12λm2M2
P

M4
F ≡

γ2σ2
∗

g2φ2
c

.
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Let us define the weight of the σ field in PR

wσ ≡
N2

σPσ

PR
=

F2φ2
∗

F2φ2
∗ + (1− F)2

The resulting non-Gaussianity is

fNL = w2
σf σ

NL , f σ
NL =

α (1 + F)

6F

Plugging this in the formula yields

|A| ! |fNL|
10
√

wσ
.

Alternatively, in terms of τNL this yields

A !
√

τNL

12
.

It is very interesting that the upper bound on A is independently controlled by τNL.

With the upper bound τNL < 2800 (95 % CL) from Planck data one obtains A ! 4.4.
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Conclusion

There are strong evidences for hemispherical asymmetry in CMB.

a good way to parametrize the hemispherical asymmetry is via dipole
modulation. PLANCK data shows A ! 0.07

The modulation from a long large amplitude mode may be behind the CMB
dipole asymmetry. Simple single field models of inflation can not generate large
enough dipole asymmetry.

There is a consistency relation between the amplitude of tensor perturbation
asymmetry and the scalar perturbation asymmetry AT /AR ∼ r/8(1− ns). It is
interesting to see if dipole asymmetry can be observed in CMB B-mode
polarizations.

Another natural way to produce primordial anisotropy is to turn on U(1) gauge
fields. With the appropriate form of the conformal factor f (φ) one can generate
attractor solutions.

The level of quadrupole anisotropy is given by g∗ = −24IN2, diverging with N.

There are large orientation-dependence bispectrum and trispectrum in these
models which can be tested by CMB and LSS.
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