Investigating the Origin of the Lack of Correlation at Large-Angles in the CMB with Temperature and Lensing

Amanda Yoho

Case Western Reserve University

Glenn D. Starkman Craig Copi

Arthur Kosowsky Simone Aiola Bingjie Wang

A history of CMB observations

- COBE (1992)

WMAP and Planck have given us excellent measurements of the temperature power spectrum which (mostly) support LCDM cosmology...

...but they have also highlighted some interesting discrepancies

Particularly at large angles:

Detailed comparison of WMAP to Planck large angle anomalies found in arXiv: 1303.5083

...but they have also highlighted some interesting discrepancies

Particularly at large angles:

Detailed comparison of WMAP to Planck large angle anomalies found in arXiv: 1303.5083

The 2-point Angular Correlation Function

Same CMB temperature data, reorganized

$$C^{TT}(\theta) \equiv \langle \Theta(\mathbf{\hat{n}}_1)\Theta(\mathbf{\hat{n}}_2) \rangle$$

$$\Theta(\mathbf{\hat{n}}) = \Theta_{SW} + \Theta_{ISW}$$
$$\Theta_{SW}(\mathbf{\hat{n}}) = -\frac{1}{3}\Phi(\chi_*\mathbf{\hat{n}},\chi_*)$$
$$\Theta_{ISW}(\mathbf{\hat{n}}) = -2\int_0^{\chi_*} d\chi \dot{\Phi}(\chi\mathbf{\hat{n}},\chi)$$
$$\Phi(\mathbf{x},\eta) = \Phi(\mathbf{x})F(\eta)$$

The 2-point Angular Correlation Function

Same CMB temperature data, reorganized

 $\tilde{C}^{TT}(\theta) \equiv \langle \Theta(\mathbf{\hat{n}}_1)\Theta(\mathbf{\hat{n}}_2) \rangle$

$$\begin{split} \Theta(\mathbf{\hat{n}}) &= \Theta_{\rm SW} + \Theta_{\rm ISW} \\ \Theta_{\rm SW}(\mathbf{\hat{n}}) &= -\frac{1}{3} \Phi(\chi_* \mathbf{\hat{n}}, \chi_*) \\ \Theta_{\rm ISW}(\mathbf{\hat{n}}) &= -2 \int_0^{\chi_*} d\chi \dot{\Phi}(\chi \mathbf{\hat{n}}, \chi) \\ \Phi(\mathbf{x}, \eta) &= \Phi(\mathbf{x}) F(\eta) \end{split}$$

The 2-point Angular Correlation Function

Same CMB temperature data, reorganized

 $C^{TT}(\theta) \equiv \langle \Theta(\mathbf{\hat{n}}_1)\Theta(\mathbf{\hat{n}}_2) \rangle$

$$\begin{array}{l} \Theta(\hat{\mathbf{n}}) = \Theta_{\mathrm{SW}} + \Theta_{\mathrm{ISW}} \\ \Theta_{\mathrm{SW}}(\hat{\mathbf{n}}) = -\frac{1}{3} \Phi(\chi_* \hat{\mathbf{n}}, \chi_*) \\ \Theta_{\mathrm{ISW}}(\hat{\mathbf{n}}) = -2 \int_0^{\chi_*} d\chi \dot{\Phi}(\chi \hat{\mathbf{n}}, \chi) \\ \Phi(\mathbf{x}, \eta) = \Phi(\mathbf{x}) F(\eta) \end{array} \right) \xrightarrow{} \tilde{C}^{TT}(\theta) = \frac{1}{9} F^2(\eta_0 - \chi_*) \left\langle \Phi(\chi_* \hat{\mathbf{n}}_1) \Phi(\chi_* \hat{\mathbf{n}}_2) \right\rangle \\ + \frac{4}{3} F(\eta_0 - \chi_*) \int_0^{\chi_*} d\chi_2 \frac{dF}{d\eta}(\eta_0 - \chi_2) \left\langle \Phi(\chi_* \hat{\mathbf{n}}_1) \Phi(\chi_2 \hat{\mathbf{n}}_2) \right\rangle \\ + 4 \int_0^{\chi_*} d\chi_1 \frac{dF}{d\eta}(\eta_0 - \chi_1) \int_0^{\chi_*} d\chi_2 \frac{dF}{d\eta}(\eta_0 - \chi_2) \left\langle \Phi(\chi_1 \hat{\mathbf{n}}_1) \Phi(\chi_2 \hat{\mathbf{n}}_2) \right\rangle \end{array}$$

Same CMB temperature data, reorganized

 $\hat{C}^{TT}(\theta) \equiv \langle \Theta(\mathbf{\hat{n}}_1)\Theta(\mathbf{\hat{n}}_2) \rangle$

$$\begin{array}{l} \Theta(\hat{\mathbf{n}}) = \Theta_{\mathrm{SW}} + \Theta_{\mathrm{ISW}} \\ \Theta_{\mathrm{SW}}(\hat{\mathbf{n}}) = -\frac{1}{3} \Phi(\chi_* \hat{\mathbf{n}}, \chi_*) \\ \Theta_{\mathrm{ISW}}(\hat{\mathbf{n}}) = -2 \int_0^{\chi_*} d\chi \dot{\Phi}(\chi \hat{\mathbf{n}}, \chi) \\ \Phi(\mathbf{x}, \eta) = \Phi(\mathbf{x}) F(\eta) \end{array} \neq \left(\vec{\mathcal{L}}^{TT}(\theta) \right) = \frac{1}{9} F^2(\eta_0 - \chi_*) \left\langle \Phi(\chi_* \hat{\mathbf{n}}_1) \Phi(\chi_* \hat{\mathbf{n}}_2) \right\rangle \\ + \frac{4}{3} F(\eta_0 - \chi_*) \int_0^{\chi_*} d\chi_2 \frac{dF}{d\eta}(\eta_0 - \chi_2) \left\langle \Phi(\chi_* \hat{\mathbf{n}}_1) \Phi(\chi_2 \hat{\mathbf{n}}_2) \right\rangle \\ + 4 \int_0^{\chi_*} d\chi_1 \frac{dF}{d\eta}(\eta_0 - \chi_1) \int_0^{\chi_*} d\chi_2 \frac{dF}{d\eta}(\eta_0 - \chi_2) \left\langle \Phi(\chi_1 \hat{\mathbf{n}}_1) \Phi(\chi_2 \hat{\mathbf{n}}_2) \right\rangle \end{array}$$

$$C(\theta) = \sum_{\ell} \frac{\ell(\ell+1)}{4\pi} C_{\ell} P_{\ell}(\cos\theta)$$

An aside: Why a cut sky?

The reported values for S(1/2) are very different from cut sky maps versus reconstructed ILC maps

If you trust the full-sky reconstruction, ALL of the correlation for angles larger than 60 degrees comes from behind the galaxy.

 $S_{1/2}$ on a cut-sky just means $\,C(heta)\,$ is calculated with $\, ilde{C}_\ell\,$

A nice (short) review of the lack of correlation at large angles can be found here -- arXiv:1201.2459

Our goal: Find an optimal a priori measure for investigating the lack of correlation at large angles

What do we mean by "optimal measure?"

We would like a 2-point function which gives a significant difference for the <u>predicted</u> S(1/2) statistic from LCDM and some alternative model

What do we mean by "optimal measure?"

We would like a 2-point function which gives a significant difference for the predicted S(1/2) statistic from LCDM and some alternative model

 $\label{eq:proposal} \left\{ \begin{array}{l} \mbox{There is a physical mechanism which} \\ \mbox{suppresses the $\langle \Phi_1 \Phi_2 \rangle$ correlation} \\ \mbox{function at length scales} \\ \mbox{corresponding to 60 degrees} \\ \mbox{on the last scattering surface} \end{array} \right.$

What do we mean by "optimal measure?"

We would like a 2-point function which gives a significant difference for the predicted S(1/2) statistic from LCDM and some alternative model

 $\label{eq:proposal} \left\{ \begin{array}{l} \mbox{There is a physical mechanism which} \\ \mbox{suppresses the $\langle \Phi_1 \Phi_2 \rangle$ correlation} \\ \mbox{function at length scales} \\ \mbox{corresponding to 60 degrees} \\ \mbox{on the last scattering surface} \end{array} \right.$

Reminder

 $C^{TT}(\theta) = \mathsf{Stuff} \times \langle \Phi(\chi_* \hat{\mathbf{n}}_1) \, \Phi(\chi_* \hat{\mathbf{n}}_2) \rangle + \int \mathsf{Stuff}' \times \langle \Phi(\chi_* \hat{\mathbf{n}}_1) \, \Phi(\chi_2 \hat{\mathbf{n}}_2) \rangle + \int \mathsf{Stuff}'' \times \langle \Phi(\chi_1 \hat{\mathbf{n}}_1) \, \Phi(\chi_2 \hat{\mathbf{n}}_2) \rangle$

What is that length scale?

What is that length scale?

What is that length scale?

We can then investigate other probes of $\left<\Phi_1\Phi_2\right>$ on the interior of our Hubble volume

A way to sample inside our Hubble volume: correlate with the lensing potential

$$\varphi = 2 \int_{0}^{\chi_{*}} d\chi \frac{\chi_{*} - \chi}{\chi_{*}\chi} \Phi(\chi \hat{\mathbf{n}}, \chi) \qquad C^{T\varphi}(\theta) = \langle \varphi(\hat{\mathbf{n}}_{1}) \Theta_{SW}(\hat{\mathbf{n}}_{2}) \rangle + \langle \varphi(\hat{\mathbf{n}}_{1}) \Theta_{ISW}(\hat{\mathbf{n}}_{2}) \rangle$$

$$C^{T\varphi}(\theta) = -\frac{2}{3} F(\eta_{0} - \chi_{*}) \int_{0}^{\chi_{*}} d\chi_{1} F(\eta_{0} - \chi_{1}) \frac{\chi_{*} - \chi_{1}}{\chi_{*}\chi_{1}} \langle \Phi(\chi_{1} \hat{\mathbf{n}}_{1}) \Phi(\chi_{*} \hat{\mathbf{n}}_{2}) \rangle$$

$$-4 \int_{0}^{\chi_{*}} d\chi_{1} \int_{0}^{\chi_{*}} d\chi_{2} F(\eta_{0} - \chi_{1}) \frac{dF}{d\eta} (\eta_{0} - \chi_{2}) \frac{\chi_{*} - \chi_{1}}{\chi_{*}\chi_{1}} \langle \Phi(\chi_{1} \hat{\mathbf{n}}_{1}) \Phi(\chi_{2} \hat{\mathbf{n}}_{2}) \rangle$$

A way to sample inside our Hubble volume: correlate with the lensing potential

$$\varphi = 2 \int_{0}^{\chi_{*}} d\chi \frac{\chi_{*} - \chi}{\chi_{*} \chi} \Phi(\chi \hat{\mathbf{n}}, \chi) \qquad C^{T\varphi}(\theta) = \langle \varphi(\hat{\mathbf{n}}_{1}) \Theta_{SW}(\hat{\mathbf{n}}_{2}) \rangle + \langle \varphi(\hat{\mathbf{n}}_{1}) \Theta_{ISW}(\hat{\mathbf{n}}_{2}) \rangle$$

$$C^{T\varphi}(\theta) = \int_{0}^{\chi_{*}} d\chi_{1} \qquad \langle \Phi(\chi_{1} \hat{\mathbf{n}}_{1}) \Phi(\chi_{*} \hat{\mathbf{n}}_{2}) \rangle$$

$$\int_{0}^{\chi_{*}} d\chi_{1} \int_{0}^{\chi_{*}} d\chi_{2} \qquad \langle \Phi(\chi_{1} \hat{\mathbf{n}}_{1}) \Phi(\chi_{2} \hat{\mathbf{n}}_{2}) \rangle$$

ALSO: We need quantities that will provide the best opportunity to determine if our CMB is a statistical anomaly or if the feature is due to primordial physics.

Necessary details...

Realizations for LCDM are straight forward...

We want to mimic the lack of large-angle auto correlation in temperature AND

have a power spectrum that is consistent with measurements

Necessary details...

Realizations for LCDM are straight forward...

Full detail about constrained realizations can be found in Copi, Huterer, Schwarz, Starkman arXiv:1303.4786

Coupled realizations for quantities beyond temperature

Your cosmology should come from the same universe.

$$a_{\ell m}^{T} = \sqrt{C_{\ell}^{TT}} \xi_{1}$$

$$a_{\ell m}^{\varphi} = \frac{C_{\ell}^{T\varphi}}{\sqrt{C_{\ell}^{TT}}} \xi_{1} + \left(C_{\ell}^{\varphi\varphi} - \frac{(C_{\ell}^{T\varphi})^{2}}{C_{\ell}^{TT}}\right)^{1/2} \xi_{2}$$

Coupled realizations for quantities beyond temperature

Your cosmology should come from the same universe.

$$a_{\ell m}^{T} = \sqrt{C_{\ell}^{TT}} \xi_{1}$$

$$a_{\ell m}^{\varphi} = \frac{C_{\ell}^{T\varphi}}{C_{\ell}^{TT}} a_{\ell m}^{T} + \left(C_{\ell}^{\varphi\varphi} - \frac{(C_{\ell}^{T\varphi})^{2}}{C_{\ell}^{TT}}\right)^{1/2} \xi_{2}$$

Use the harmonic coefficients from our realizations To calculate an input spectrum which we use here

$$C^{T\varphi}(\theta) = \sum_{\ell} \frac{\ell(\ell+1)}{4\pi} C_{\ell}^{T\varphi} P_{\ell}(\cos\theta)$$

Broad Recipe

and then we can calculate this

$$S_{1/2}^{T\varphi} = \int_{1/2}^{-1} d(\cos\theta) C^{T\varphi}(\theta)^2$$

in order to get a distribution of the statistic for our model.

Te Correlation Functions

Statistic Distributions

Ongoing work

Maybe S(1/2) isn't the best choice.

We don't know at what angle constrained realizations (for correlations other than TT) will be suppressed.

$$S_x = \int_x^{-1} d(\cos \theta) C(\theta)^2$$

We will marginalize over angle to find (*a priori*) the most definitive statistic between LCDM and constrained realizations.

Provide a theoretical prediction for $C^{T\varphi}(\theta)$ in a universe that has a cutoff in $\langle \Phi_1 \Phi_2 \rangle$ to compare (eventually) to data

The lack of correlation at large angles may point to interesting physics

Proposal: comes from a
cutoff in $\langle \Phi_1 \Phi_2 \rangle$ at a
specific length scaleWe need to add information beyond Temperature to move forward
Correlating temperature with the lensing potential accesses same physics

Summary

The lack of correlation at large angles may point to interesting physics

Proposal: comes from a
cutoff in $\langle \Phi_1 \Phi_2 \rangle$ at a
specific length scaleWe need to add information beyond Temperature to move forward
Correlating temperature with the lensing potential accesses same physics

Numerical analysis of constrained LCDM realizations can give us a handle on likelihood of our universe

Can help characterize whether our realization is a statistical fluke We calculate values for S(1/2) for both LCDM and constrained realizations Showed that measurement of a large S(1/2) will allow us to rule out null hypothesis at the appropriate confidence level

Summary

The lack of correlation at large angles may point to interesting physics

Proposal: comes from a cutoff in $\langle \Phi_1 \Phi_2 \rangle$ at a Correlating temperature with the lensing potential accesses same physics specific length scale

Numerical analysis of constrained LCDM realizations can give us a handle on likelihood of our universe

Can help characterize whether our realization is a statistical fluke We calculate values for S(1/2) for both LCDM and constrained realizations Showed that measurement of a large S(1/2) will allow us to rule out null hypothesis at the appropriate confidence level

Ongoing work Provide theoretical prediction for shape of ACF with a length-scale cutoff Investigate S(x) statistic for numerical realizations and theory

Look for our work on the arXiv in the next few weeks