Disentangling late-time cosmology effects from early cosmology in the CMB

Benjamin Audren Advisor : Julien Lesgourgues With Karim Benabed and Simon Prunet Based on 1210.7183 and 1308.xxxx±0001.xxxx

> Institute of Theoretical Physics École Polytechnique Fédérale de Lausanne

> > 30/07/2013

Outline

Problematic: Observing the Early Universe

- 2 Agnostic constraints on early parameters
 - Designing the agnostic study
 - Results
- 3 Constraining late homogeneous parameters
 - Homogeneous and perturbed probes
 - Procedure
 - Preliminary Results

Conclusion

Observing the early universe

Multipole *l*

"Anomalies"

Warning: on the significance of anomalies...

"Anomalies"

Warning: on the significance of anomalies...

- But if we agree to go on:
 - Anomalous lensing amplitude from Planck Temperature alone (CMB is being lensed too much)
 - Tension with local Hubble rate measurement

"Anomalies"

Warning: on the significance of anomalies...

But if we agree to go on:

- Anomalous lensing amplitude from Planck Temperature alone (CMB is being lensed too much)
- Tension with local Hubble rate measurement

We heard these last two days how all the results were model dependent...what about some change ?

"Anomalies"

Warning: on the significance of anomalies...

But if we agree to go on:

- Anomalous lensing amplitude from Planck Temperature alone (CMB is being lensed too much)
- Tension with local Hubble rate measurement

We heard these last two days how all the results were model dependent... what about some change ?

Suggestion

Could this come from (possibly incorrect) assumptions about the late time universe, contaminating our knowledge ? Original idea by Vonlanthen, Rasanen, Durrer, 1003.0810

Observing the early universe

Trying to disentangle the signals

Early cosmology

- Inflation gives you an initial spectrum of perturbation $P(k) = \mathbf{A_s} \left(\frac{k}{k_0}\right)^{\mathbf{n_s}-1}$
- Initial amounts of baryons, CDM

Late cosmology

- Structures form, over-densities collapse: non-linear
- Universe present-day acceleration Ω_{Λ} : inhomogeneous universe ? cosmological constant ? Varying dark energy ? Something funnier ? unknown, Ockham's razor at best
- Reionization τ_{reio} : at one or several redshift ? With which shape ? phenomenological description only

Observing the early universe $$\mathsf{Q}_{\mathsf{uestions}}$$

Cosmic Microwave Background

• Do assumptions on the late time universe impact our knowledge of the early universe ?

Observing the early universe Questions

Cosmic Microwave Background

- Do assumptions on the late time universe impact our knowledge of the early universe ?
- If yes, can we remove this contamination?

Observing the early universe Questions

Cosmic Microwave Background

- Do assumptions on the late time universe impact our knowledge of the early universe ?
- If yes, can we remove this contamination?
- And if yes, what can we do with it ?

Observing the early universe Questions

Cosmic Microwave Background

- Do assumptions on the late time universe impact our knowledge of the early universe ?
- If yes, can we remove this contamination?
- And if yes, what can we do with it ?

Agnostic approach

I don't know which model for the late evolution is true, if any.

What is left to me ?

Contamination coming from...

- Reionization (phenomenological description)
- Dark Energy (no consensus besides Ockham's razor)
- Lensing from Large Scale Structures

Questions

How do we get rid of this contamination ? *i.e.* how do we **forget** about this information ? Is it important ?

Audren Benjamin (EPFL)

ICTP: Agnostic Constraints

Solution: Combining parameters and trimming data

Figure: 2 Λ CDM Models with different late time evolution, rescaled and shifted

Audren Benjamin (EPFL)

ICTP: Agnostic Constraints

Combining parameters

Shift and Scaling

- $C_{\ell} \rightarrow C_{\beta \ell}$ Ω_{Λ} , controlling d_A^{rec} $C_{\ell} \rightarrow \alpha C_{\ell}$ τ_{reio} , appearing in the combination $A_s e^{-2\tau}$

Combining parameters

Shift and Scaling

- $C_\ell \to C_{\beta\ell}$ Ω_Λ , controlling $d_A^{
 m rec}$
- $C_\ell o lpha C_\ell \quad au_{
 m reio}$, appearing in the combination $A_s e^{-2 au}$

Marginalizing: Lensing contaminates also ! (sorry SPT...)

Starting from lensing potential predicted from ΛCDM model, one can add

• amplitude A_{lp}

an arbitrary

- tilt (running of the amplitude) n_{lp}
- running of the tilt rn_{lp}
- . . .

and marginalize over it.

Combining parameters

Shift and Scaling

- $C_{\ell} \to C_{\beta\ell}$ Ω_{Λ} , controlling d_A^{rec}
- $C_\ell o lpha C_\ell \quad au_{
 m reio}$, appearing in the combination $A_s e^{-2 au}$

Marginalizing: Lensing contaminates also ! (sorry SPT...)

Starting from lensing potential predicted from ΛCDM model, one can add

 A_{lp}

• amplitude

an arbitrary

- tilt (running of the amplitude) n_{lp}
- running of the tilt rn_{lp}

• . . .

and marginalize over it. In practice, A_{lp} and n_{lp} are sufficient.

Running Strategy

Cosmological parameters

$$\{A_s e^{-2\tau}, \mathbf{n_s}, \omega_{\mathbf{b}}, \omega_{\mathbf{c}}, d_A^{\text{rec}}, A_{lp}, n_{lp}\}$$
, for $\ell \gg 40$

Use your favorite Monte Carlo code: CosmoMC or Monte Python

Running Strategy

Cosmological parameters

$$\{A_s e^{-2\tau}, \mathbf{n_s}, \omega_{\mathbf{b}}, \omega_{\mathbf{c}}, d_A^{\text{rec}}, A_{lp}, n_{lp}\}$$
, for $\ell \gg 40$

Use your favorite Monte Carlo code: CosmoMC or Monte Python

Running Strategy

Cosmological parameters

$$\{A_s e^{-2\tau}, \mathbf{n_s}, \omega_{\mathbf{b}}, \omega_{\mathbf{c}}, d_A^{\text{rec}}, A_{lp}, n_{lp}\}$$
, for $\ell \gg 40$

Use your favorite Monte Carlo code: CosmoMC or Monte Python

Testing starting ℓ dependancy

- From $\ell = 2$ to $\ell = 50$: big changes
- From $\ell = 50$ to $\ell = 100$: smaller

Results for WMAP-7 + SPT

	$100 \omega_b$	ω_{cdm}	n_s	$d_A^{rec}({ m Mpc})$	$10^9 e^{-2 au} A_s$	A_{lp}	n_{lp}	
				ΛCDM				
	$2.241\substack{+0.043\\-0.044}$	$0.1114\substack{+0.0048\\-0.0048}$	$0.960\substack{+0.011\\-0.011}$	$12.93\substack{+0.11 \\ -0.12}$	$2.069\substack{+0.085\\-0.092}$			
			same lensing	potential as i	n ΛCDM			
$\ell \geq 40$	$2.204\substack{+0.048\\-0.047}$	$0.1160\substack{+0.0056\\-0.0059}$	$0.946\substack{+0.014\\-0.014}$	$12.85\substack{+0.13 \\ -0.13}$	$2.20\substack{+0.12 \\ -0.13}$			
$\ell \geq 60$	$2.203\substack{+0.050\\-0.053}$	$0.1163\substack{+0.0063\\-0.0065}$	$0.945\substack{+0.016\\-0.016}$	$12.84\substack{+0.14\\-0.14}$	$2.20\substack{+0.13 \\ -0.15}$			
$\ell \geq 80$	$2.190\substack{+0.053\\-0.057}$	$0.1180\substack{+0.0067\\-0.0073}$	$0.940\substack{+0.019\\-0.018}$	$12.81\substack{+0.15 \\ -0.15}$	$2.26\substack{+0.15 \\ -0.18}$			
$\ell \geq 100$	$2.184\substack{+0.054\\-0.056}$	$0.1187\substack{+0.0067\\-0.0079}$	$0.935\substack{+0.020\\-0.019}$	$12.80\substack{+0.16 \\ -0.15}$	$2.29\substack{+0.16 \\ -0.20}$			
	marginalization over lensing potential amplitude							
$\ell \geq 100$	$2.159\substack{+0.060\\-0.064}$	$0.1227\substack{+0.0083\\-0.0088}$	$0.926\substack{+0.022\\-0.022}$	$12.73\substack{+0.18 \\ -0.17}$	$2.39\substack{+0.20 \\ -0.23}$	$0.88\substack{+0.12\\-0.13}$		
	marginalization over lensing potential amplitude and tilt							
$\ell \geq 100$	$2.160\substack{+0.064\\-0.068}$	$0.1222\substack{+0.0088\\-0.0094}$	$0.927\substack{+0.024\\-0.024}$	$12.74\substack{+0.18 \\ -0.18}$	$2.38\substack{+0.20 \\ -0.25}$	$0.78\substack{+0.20 \\ -0.15}$	$-0.16\substack{+0.55\\-0.33}$	

Results for WMAP-7 + SPT

	$100 \omega_b$	ω_{cdm}	n_s	$d_A^{rec}({ m Mpc})$	$10^9 e^{-2 au} A_s$	A_{lp}	n_{lp}	
	ACDM							
	$2.241\substack{+0.043\\-0.044}$	$0.1114\substack{+0.0048\\-0.0048}$	$0.960\substack{+0.011\\-0.011}$	$12.93\substack{+0.11 \\ -0.12}$	$2.069\substack{+0.085\\-0.092}$)		
	same lensing potential as in ΛCDM							
$\ell \geq 40$	$2.204\substack{+0.048\\-0.047}$	$0.1160\substack{+0.0056\\-0.0059}$	$0.946\substack{+0.014\\-0.014}$	$12.85\substack{+0.13 \\ -0.13}$	$2.20\substack{+0.12 \\ -0.13}$			
$\ell \geq 60$	$2.203\substack{+0.050\\-0.053}$	$0.1163\substack{+0.0063\\-0.0065}$	$0.945\substack{+0.016\\-0.016}$	$12.84\substack{+0.14\\-0.14}$	$2.20\substack{+0.13 \\ -0.15}$			
$\ell \geq 80$	$2.190\substack{+0.053\\-0.057}$	$0.1180\substack{+0.0067\\-0.0073}$	$0.940\substack{+0.019\\-0.018}$	$12.81\substack{+0.15 \\ -0.15}$	$2.26\substack{+0.15 \\ -0.18}$			
$\ell \geq 100$	$2.184\substack{+0.054\\-0.056}$	$0.1187\substack{+0.0067\\-0.0079}$	$0.935\substack{+0.020\\-0.019}$	$12.80\substack{+0.16 \\ -0.15}$	$2.29\substack{+0.16 \\ -0.20}$			
	marginalization over lensing potential amplitude							
$\ell \geq 100$	$2.159\substack{+0.060\\-0.064}$	$0.1227\substack{+0.0083\\-0.0088}$	$0.926\substack{+0.022\\-0.022}$	$12.73\substack{+0.18 \\ -0.17}$	$2.39\substack{+0.20 \\ -0.23}$	$0.88\substack{+0.12\\-0.13}$		
	marginalization over lensing potential amplitude and tilt							
$\ell \geq 100$	$2.160\substack{+0.064\\-0.068}$	$0.1222^{+0.0088}_{-0.0094}$	$0.927\substack{+0.024\\-0.024}$	$12.74\substack{+0.18 \\ -0.18}$	$2.38^{+0.20}_{-0.25}$	$0.78^{+0.20}_{-0.15}$	$-0.16\substack{+0.55\\-0.33}$	

Update with Planck Results (only high-I Planck data) Did we gain something, agnostically speaking ?

	$100\omega_b$	ω_c	n_s	A_{lp}	n_{lp}
WMAP-7 Planck Agn Planck A_l Planck std	$\begin{array}{c} 2.16 \pm 0.07 \\ 2.24 \pm 0.04 \\ 2.24 \pm 0.04 \\ 2.21 \pm 0.03 \end{array}$	$\begin{array}{c} 0.122 \pm 0.009 \\ 0.116 \pm 0.004 \\ 0.118 \pm 0.003 \\ 0.120 \pm 0.003 \end{array}$	$\begin{array}{c} 0.927 \pm 0.024 \\ 0.966 \pm 0.016 \\ 0.966 \pm 0.009 \\ 0.962 \pm 0.009 \end{array}$	$0.78 \pm 0.18 \\ 0.81 \pm 0.25 \\ 1.28 \pm 0.14 \\ /$	-0.16 ± 0.4 -0.8 ± 0.5 /

Table: update for agnostic constraints from wmap/Planck.

Update with Planck Results (only high-I Planck data) Did we gain something, agnostically speaking ?

$100\omega_b$	ω_c	n_s	A_{lp}	n_{lp}
$.16 \pm 0.07$	0.122 ± 0.009	0.927 ± 0.024	0.78 ± 0.18	-0.16 ± 0.4
$.24 \pm 0.04$	0.116 ± 0.004	0.966 ± 0.016	0.81 ± 0.25	-0.8 ± 0.5
$.24 \pm 0.04$	0.118 ± 0.003	0.966 ± 0.009	1.28 ± 0.14	/
$.21 \pm 0.03$	0.120 ± 0.003	0.962 ± 0.009	/	/
	$ \begin{array}{r} 100\omega_b \\ 16 \pm 0.07 \\ 24 \pm 0.04 \\ 24 \pm 0.04 \\ 21 \pm 0.03 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table: update for agnostic constraints from wmap/Planck.

Not so much... But: no lensing amplitude issue! Moreover, values slightly shifted for $d_A^{\rm rec}$ (angular diameter distance at decoupling), and r_s (comoving sound horizon at baryon drag, derived)

Results

Update with Planck Results (only high-I Planck data) Did we gain something, agnostically speaking ?

	$100\omega_b$	ω_c	n_s	A_{lp}	n_{lp}
WMAP-7	2.16 ± 0.07	0.122 ± 0.009	0.927 ± 0.024	0.78 ± 0.18	-0.16 ± 0.4
Planck Agn	2.24 ± 0.04	0.116 ± 0.004	0.966 ± 0.016	0.81 ± 0.25	-0.8 ± 0.5
Planck A_l	2.24 ± 0.04	0.118 ± 0.003	0.966 ± 0.009	1.28 ± 0.14	/
Planck std	2.21 ± 0.03	0.120 ± 0.003	0.962 ± 0.009	/	

Table: update for agnostic constraints from wmap/Planck.

Keep in mind that the data for polarization is missing, so this picture will change a lot next year

Conclusion on early agnostic

Ok, so what ?

- CMB alone, without contamination still gives robust prediction, free of assumptions
- Planck improved from WMAP, but not dramatically
- No evidence for anomalous lensing amplitude

Conclusion on early agnostic

Ok, so what ?

- CMB alone, without contamination still gives robust prediction, free of assumptions
- Planck improved from WMAP, but not dramatically
- No evidence for anomalous lensing amplitude

What's next ?

Now we can use these clean values to test a late-time model !

Homogeneous Quantities

- H₀ local measurements
- SN luminosity distance
- Quasar time-delay
- Baryon Acoustic Oscillations
- CMB: H_0 and Ω_{Λ}

Perturbed Probes

- galaxy redshift surveys
- weak lensing
- cluster count
- ly- α forest

Homogeneous Quantities

- H₀ local measurements
- SN luminosity distance
- Quasar time-delay
- Baryon Acoustic Oscillations
- CMB: H_0 and Ω_{Λ}

Perturbed Probes

- galaxy redshift surveys
- weak lensing
- cluster count
- ly- α forest

Question

Do we understand enough non-linear PT ?

Homogeneous Quantities

- H₀ local measurements
- SN luminosity distance
- Quasar time-delay
- Baryon Acoustic Oscillations
- CMB: H_0 and Ω_{Λ}

Perturbed Probes

- galaxy redshift surveys
- weak lensing
- cluster count
- ly- α forest

Question

Do we understand enough non-linear PT ?

Homogeneous Quantities

- *H*⁰ local measurements
- SN luminosity distance
- Quasar time-delay
- Baryon Acoustic Oscillations
- CMB: H_0 and Ω_{Λ}

H_0 local effects

Paper by Marra, Amendola, Sawicki, Valkenburg (1303.3121): this is not enough to make it agree with Planck

Question

Do we understand enough non-linear PT ?

Procedure

Going for it !

Choosing a model for the late homogeneous universe

And be simple: ΛCDM !

Procedure

Going for it !

Choosing a model for the late homogeneous universe

And be simple: ΛCDM ! All this for that ?

Going for it !

Choosing a model for the late homogeneous universe

And be simple: ΛCDM ! All this for that ? Well, now we have a model independant knowledge of the early universe, let's see at least how good old ΛCDM fares in the late one !

At least to describe the homogeneous evolution

What are the problems there ?

$$\begin{array}{ll} H_0^{\rm Planck} &= 67.40 \pm 1.4 {\rm km} ~{\rm s}^{-1} ~{\rm Mpc}^{-1} \\ H_0^{\rm HST} &= 73.8 \pm 2.4 {\rm km} ~{\rm s}^{-1} ~{\rm Mpc}^{-1} \\ {\rm Bad} ~{\rm agreement} ~{\rm with} ~{\rm HST} \\ {\rm Good} ~{\rm agreement} ~{\rm with} ~{\rm BAO} \end{array}$$

Important

To combine experiments, they must agree with each other, otherwise the new physics might be an artifact. How does the agnostic knowledge change this picture ?

Strategy

- Agnostic analysis of early cosmology with Planck (fixed n_s , ω_b)
- Assuming flat Λ CDM, homogeneous cosmology: $\{H_0, \Omega_\Lambda\}$

Strategy

- Agnostic analysis of early cosmology with Planck (fixed n_s , ω_b)
- Assuming flat Λ CDM, homogeneous cosmology: $\{H_0, \Omega_\Lambda\}$
- Use the agnostic information on d_A^{rec} , ω_{cdm} to extract information from CMB: parameters are considered measured, not varied

Strategy

- Agnostic analysis of early cosmology with Planck (fixed n_s , ω_b)
- Assuming flat Λ CDM, homogeneous cosmology: $\{H_0, \Omega_\Lambda\}$
- Use the agnostic information on d_A^{rec} , ω_{cdm} to extract information from CMB: parameters are considered measured, not varied
- Use the agnostic information on r_s , d_A^{rec} to analyze other experiments (BAO, SN, time delay): measured as well

Late homogeneous cosmology HST is back in the game !

Late homogeneous cosmology Is everything all right ?

Late homogeneous cosmology Come on, BAO...

Late homogeneous cosmology Summary

Results for ΛCDM

- Agnostic-Planck agrees with HST, SN, and time-delay
- Discrepancies between BAO and CMB instead ($\simeq 2\sigma$)
- Note how the BAO analysis was affected by the agnostic shift of paradigm: proof of the importance of the contamination !

Outlook

Summary

- It is possible to extract agnostic (*i.e.* model independant) constraints on early cosmology parameters
- They can be used to robustly constrain a late-time universe model
- For ΛCDM, it changes the picture of agreement-disagreement around (a lot...), suggesting caution when searching for new physics...
- With this formalism, we can also play the game of adding $N_{\rm eff}, \sum m_{\nu},$ varying dark energy, etc. . . with a bit more confidence
- Stay tuned in the coming month(s), depending on your remarks/comments !

Conclusion

Backup

Triangle plot for Planck Agnostic

Triangle plot for WMAP-7 SPT Agnostic

26

Python Power

Python is A Good ThingTM

- No compilation (installs everywhere, fast to develop)
- Dynamic and strong typing (flexible and avoids mistake)
- Clear syntax, one way to do it: you can read your code one year after having written it !
- Object Oriented Programming
- Can work like Matlab/Mathematica (pylab mode)
- Simple C computation of problematic parts if speed is needed.
- Incredible flexibility: test out your ideas in seconds !

Python Power

Some examples

- Hello World program ? print('Hello World !')
- Loading a file to an array ? numpy.loadtxt('file.dat', 'float')

ICTP: Agnostic Constraints

Monte Python, a Monte Carlo Markov Chain code in Python

Goal and Principles

- Likelihood formula given by an experiment
- Given a theoretical model, how likely it is that these data points are observed ?
- Integrating the likelihood via a random walk (shape being unknown), giving regions of parameters space

Monte Python

Sampling Algorithm

- Metropolis-Hastings algorithm
- Cholesky transform (Lewis astro-ph arXiv:1304.4473)

Monte Python

Sampling Algorithm

- Metropolis-Hastings algorithm
- Cholesky transform (Lewis astro-ph arXiv:1304.4473)

Metropolis-Hastings

Proposal matrix to pick a new point: all parameters are varied simultaneously. The proposal matrix should be close to the posterior covariance matrix.

Conclusion

Monte Python

Sampling Algorithm

- Metropolis-Hastings algorithm
- Cholesky transform (Lewis astro-ph arXiv:1304.4473)

Cholesky

Decomposes the covariance matrix into the product of a triangular matrix and its hermitian conjugate separates fast and slow parameters

$$\begin{pmatrix} S \\ S \\ F \\ F \\ F \\ F \\ F \end{pmatrix}_{\text{new}} = \begin{pmatrix} . & 0 & 0 & 0 & 0 \\ . & . & 0 & 0 & 0 \\ . & . & . & 0 & 0 \\ . & . & . & . & 0 \\ . & . & . & . & . \end{pmatrix} \begin{pmatrix} S \\ S \\ F \\ F \\ F \\ F \\ F \end{pmatrix}_{\text{old}}$$
(1)

Conclusion

Monte Python

Advantages

- Modularity (can accomodate Class, or any other cosmological code, properly wrapped)
- Memory Keeping and Safe Keeping
- No need to edit the code to add new parameters as long as the cosmological code understands it, you can vary it !
- Covariances matrices
- Plotting is easy since 1 folder / 1 run

Likelihood Classes

- Many likelihoods follow the same syntax: using a .newdat format
- Implementing a new likelihood newdat in MontePython is creating two files: new.py, new.data in likelihoods/new folder, with 3 lines in total !

Monte Python Power

Github and Documentation

- Whole code (all versions !) is available on Github for everyone (clone it, implement something, send a pull-request), will try a clean master branch scheme, and release branches.
- You can always download whichever version you want, go back to an old one
- Extensively documented with Sphinx (semi-auto-documentation) available online and on pdf format.