Cosmology with SZ galaxy clusters and consistency with primary CMB constraints in Planck

Matthieu Roman

On behalf of the Planck collaboration

1

Outline

- Key ingredients of cluster counts modeling
- Planck sample
- Results with cluster counts and consistency with primary CMB
- The SZ spectrum
- The future of SZ survey

Cosmological parameters estimation with cluster number counts

- Poisson statistics (Cash likelihood)
- Sampled by 2D grid or MCMC

$$\ln \mathcal{L}(\theta') = \sum_{z} \ln \mathcal{P}(N_{\text{obs}}(z)|N_{\theta'}(z))$$

$$\ln \mathcal{P}(N_{\text{obs}}|N_{\theta'}) = -N_{\theta'} + N_{\text{obs}} \ln N_{\theta'} - \ln (N_{\text{obs}}!)$$

Key quantities to model cluster number counts

- Selection function and completeness of the sample
- Dark matter halo mass function
- Observable scaling relations

Modeling the cluster counts

Selection function and completeness

• Based on noise from match-filtered maps: assumed pressure profile of *Arnaud et al. 2010*

Selection function and completeness

- Completeness: probability to have a model cluster in the catalogue
 - zero level: simple cut in flux
 - more refined: error function (approximation)
- Good agreement with simulations (MC completeness: beam and profile effects)

$$Y > f(Y_{500}, heta_{500}, l, b)$$
 $y = rac{\sigma_T}{m_e c^2} \int P_e dl$

$$f(Y_{500}, \theta_{500}, l, b) = \frac{1}{2} \left(1 + \text{ERF}\left(\frac{Y_{500} - SNR \times \sigma_{Y_{500}}(\theta_{500}, l, b)}{\sqrt{2}\sigma_{Y_{500}}(\theta_{500}, l, b)}\right) \right)$$

Mass function

• Number distribution of clusters with mass and redshift $\frac{dn}{dlnM} = f(\sigma) \frac{\overline{\rho}_m}{M} \frac{dln\sigma^{-1}}{dlnM}$

with
$$f(\sigma) = A\left[\left(\frac{\sigma}{b}\right)^{-a} + 1\right]e^{-c/\sigma^2}$$

and
$$\sigma^2 = \frac{1}{2\pi^2} \int dk \ k^2 P(k,z) |W(kR)|^2 \label{eq:sigma_state}$$

- Planck: fit function from *Tinker et al.* 2008
- Alternatives: *Sheth&Tormen, Jenkins, Watson*

Scaling relations

- Link between cluster observables and mass/ redshift assuming a profile
- Y_X as a mass proxy $E(z)^{-2/3}Y_X = 10^A \left[M_{500}^{Y_X}\right]^{\alpha}$ with $M_{500}^{Y_X} = 10^{\pm \sigma_A/\alpha} \left[M_{500}^{\text{HE}}\right]^{1\pm \sigma_\alpha/\alpha}$
- Mass bias $M_{500}^{\text{HE}} = (1-b)M_{500}$

Cluster counts model

New Light in cosmology from the CMB -

Trieste - 31/07/13

Planck cosmological sample

Planck cosmological sample

- Cut to SNR>7
- High purity
- DX9, MMF3: 189 clusters among which 188 with redshift
- Complementarity with small scales experiments (larger and more low-redshift clusters)

Results with Planck cosmological sample

- 3 independent number counts and likelihood codes:
 - Orsay IAS: Douspis & Aghanim
 (MCMC)
 - Manchester JBCA: Bonaldi & Battye
 (MCMC)
 - Paris APC/CEA: Roman & Melin & Delabrouille (grid)

The University of Manchester

Results with Planck cosmological sample: the grid code

Robustness

- Observational sample (SNR, catalogue) lacksquare
- Cluster modeling (mass function)
- Different likelihood and cluster model codes

Fig. 9. Comparison of the outcome using the mass functions of Watson et al. (black) and Tinker et al. (red). Allowing the bias

A. Bonaldi

0.83

0.82

Fig. 8. 95% contours for different robustness tests: MMF3 with to vary in the range [0.7, 1.0] enlarges the constraints perpendic-S/N cut at 7 in red; MMF 3 with S/N cut at 8 in blue; and MMF 1 ular to the $\sigma_8-\Omega_m$ degeneracy line due to the degeneracy of the with S/N cut at 7 in black; and MMF3 with S/N cut at 7 but as. number of clusters with the mass bias (purple). When relaxing suming the MC completeness in purple.

New Light in cosmology from the CMB -

Trieste - 31/07/13

Robustness

 $\Delta z = 0.4$ $\Delta z = 0.2$ $\Delta z = 0.1$ $\Delta z = 0.067$

 $\Delta z = 0.04$ $\Delta z = 0.02$

17

- Error in redshift
- SZ vs BAO & HST

- Constraints with CMB on the base ΛCDM model:
 - Ω_m derived from cdm parameter and measurement of H₀
 - $-\sigma_8$ via A_s, the spectrum normalisation

Planck 2013 results XVI arXiv 1303.5076

Consistency with primary CMB: impact on cluster counts

New Light in cosmology from the CMB -

Trieste - 31/07/13

Solving the tension (1)

Change in the cluster physics: • mass bias (1b=0.55)? non-thermal pressure due to gas motions? • derive profiles independent from X-ray? account for missing clusters? missing baryon

New Light in cosmology from the CMB -Trieste - 31/07/13

Matthieu Roman

problem

Solving the tension (2)

Solving the tension (2): massive neutrinos

- CMB power spectrum mostly sensitive to N_{eff}
- Matter power spectrum sensitive to both N_{eff} and Σm_{ν}
- Both parameters are degenerate for matter power spectrum

0.85

0.80

0.75

0.70

0,25

0.30

Ωm

0.35

д₈

S. Riemer-Sorensen, D. Parkinson, T. Davis arXiv 1301.7102

Solving the tension (2): massive neutrinos

 Constraints on the total neutrino mass and the cluster mass bias

The fiducial value of the mass bias coming from numerical simulations would indicate a total neutrino mass between 0.25 and 0.35 eV

Trieste - 31/07/13

Fig. 12. Cosmological constraints when including neutrino masses $\sum m_v$ from: *Planck* CMB data alone (black dotted line); Planck CMB + SZ with 1 - b in [0.7, 1] (red); Planck CMB + SZ + BAO with 1 - b in [0.7, 1] (blue); and Planck CMB + SZ with 1 - b = 0.8 (green).

Planck 2013 results XX arXiv 1303.5080

0.35

Solving the tension (2): massive neutrinos

Matthieu Roman

Other cosmological probe: SZ spectrum

SMICA: independent component

analysis

$$\widehat{\mathbf{s}(p)} = \mathbf{A}^{-1} \, \mathbf{x}(p)$$

Estimation of A

SMICA: independent component analysis

- NOT independent components •
- Partial knowledge of A for some components ullet
- Minimisation likelihood with conjugate gradient •

$$\mathbf{R}_{x} = \mathbf{A}\mathbf{R}_{s}\mathbf{A}^{\mathrm{T}} + \mathbf{R}_{n}$$

$$\mathbf{R}_{s,q} = \mathbf{R}_{q}^{\mathrm{cmb}} + \mathbf{R}_{q}^{\mathrm{sz}} + \mathbf{R}_{q}^{\mathrm{gal}}$$

$$\mathbf{R}_{n}$$

$$\begin{array}{c} \text{Goal: finding} \\ \mathbf{C}_{sz}(\mathsf{I}) \text{ in a given} \\ \text{multipole bin} \end{array}$$

New Light in cosmology from the CMB -Trieste - 31/07/13

) in a given

Validation on simulation: pipeline

- Simulations from the *Planck Sky Model*, the reference software for sky emission and its observation by instruments
- Content of simulation maps: lensed non-gaussian CMB + point sources (radio and IR) + synchrotron + free-free + CO + thermal and spinning dust + tSZ + kSZ
- Point sources + galactic mask covering 70% of the sky
- Jacknife correlated noise
- 32 bins in ell, from 100 to 2500
- 5 arcmin resolution

Validation on simulation: correlated jacknife noise

- Channel-to-channel correlation of the noise at the level of the input SZ power spectrum and above after l=1000
- Non-diagonal terms in the noise correlation matrix are subtracted from the data

Validation on simulation: changing the galactic mask

Validation on simulation: changing the galactic mask

Validation on simulation: point sources contamination

- The position of the point sources are randomly drawn around their central value
- For an error comparable to the size of the mask holes, SMICA recovers correctly the input spectrum
- A non-realistic error case shows a lot of contamination and the importance of an accurate point sources masking

Validation on simulation: adding monopole/dipole contributions

- The monopole and dipole contributions are estimated on the released Planck maps and added to the simulation
- It affects the accuracy of the SZ spectrum fit at large scales
- Important to be removed on data

Validation on simulation

- The tests show that the method is stable concerning the fit settings:
 - number of iterations
 - error in the mixing vectors
 - dimension of the galactic component

— ...

- It is reliable from the point of view of point sources and galactic contamination
- It needs non-conservative galactic masks and accurate point sources pre-processing
- It shows the importance of the monopole and dipole contributions
- Results on public released data agree well with the published power spectrum level

The future: PRISM

- L-class mission to answer the 2013 ESA call for L2 and L3 missions
- Absolute emission and polarisation in the far IR to the mm range with unprecedented resolution (from a few arcsec to a few arcmin) and sensitivity

The future: PRISM

- L-class mission to answer the 2013 ESA call for L2 and L3 missions
- Absolute emission and polarisation in the far IR to the mm range with unprecedented resolution (from a few arcsec to a few arcmin) and sensitivity

ν_0	range	$\Delta \nu / \nu$	n_{det}	θ_{fwhm}	σ_I per det		$\sigma_{(Q,U)}$ per det		main molec. & atomic lines
					1 arcmin		1 arcmin		
GH	GHz				μK_{RJ}	μK_{CMB}	μK_{RJ}	μK_{CMB}	
30	26-34	.25	50	17'	61.9	63.4	87.6	89.7	
36	31-41	.25	100	14'	57.8	59.7	81.7	84.5	
43	38-48	.25	100	12'	53.9	56.5	76.2	79.9	
51	45-59	.25	150	10'	50.2	53.7	71.0	75.9	
62	54-70	.25	150	8.2'	46.1	50.8	65.2	71.9	
75	65-85	.25	150	6.8'	42.0	48.5	59.4	68.6	
90	78-100	.25	200	5.7'	38.0	46.7	53.8	66.0	HCN & HCO^+ at 89 GHz
105	95-120	.25	250	4.8'	34.5	45.6	48.8	64.4	CO at 110-115 GHz
135	120-150	.25	300	3.8'	28.6	44.9	40.4	63.4	
160	135-175	.25	350	3.2'	24.4	45.5	34.5	64.3	
185	165-210	.25	350	2.8'	20.8	47.1	29.4	66.6	HCN & HCO^+ at 177 GHz
200	180-220	.20	350	2.5'	18.9	48.5	26.7	68.6	
220	195-250	.25	350	2.3'	16.5	50.9	23.4	71.9	CO at 220-230 GHz
265	235-300	.25	350	1.9'	12.2	58.5	17.3	82.8	HCN & HCO^+ at 266 GHz
300	270-330	.20	350	1.7'	9.6	67.1	13.6	94.9	
320	280-360	.25	350	1.6'	8.4	73.2	11.8	103	$CO, HCN \& HCO^+$
395	360-435	.20	350	1.3'	4.9	107	7.0	151	
460	405-520	.25	350	1.1'	3.1	156	4.4	221	$CO, HCN \& HCO^+$
555	485-625	.25	300	55"	1.6	297	2.3	420	C-I, HCN, HCO^+ , H_2O , CO
660	580-750	.25	300	46"	0.85	700	1.2	990	$CO, HCN \& HCO^+$
					nK _{RJ}	kJy/sr	nK _{RJ}	kJy/sr	
800	700-900	.25	200	38"	483	9.5	683	13.4	
960	840-1080	.25	200	32"	390	11.0	552	15.6	
1150) 1000-1300	.25	200	27"	361	14.6	510	20.7	
1380) 1200-1550	.25	200	22"	331	19.4	468	27.4	N-II at 1461 GHz
1660) 1470-1860	.25	200	18"	290	24.5	410	34.7	
1990) 1740-2240	.25	200	15"	241	29.3	341	41.5	C-II at 1900 GHz
2400) 2100-2700	.25	200	13"	188	33.3	266	47.1	N-II at 2460 GHz
2850) 2500-3200	.25	200	11"	146	36.4	206	51.4	
3450	3000-3900	.25	200	8.8"	113	41.4	160	58.5	O-III at 3393 GHz
4100	3600-4600	.25	200	7.4"	98	50.8	139	71.8	
5000	4350-5550	.25	200	6.1"	91	70.1	129	99.1	O-I at 4765 GHz
6000	5200-6800	.25	200	5.1"	87	96.7	124	136	O-III at 5786 GHz

PRISM collaboration

arXiv 1306.2259

42

The future: PRISM

- 30 GHz 6 THz range
- Two instruments:
 - a polarimetric imager with 30
 broad and 300 narrow bands
 (3.5m telescope cooled to 4K)
 - an absolute spectrometer cooled to 2.7K with high and low resolution observing modes
- Platform orbiting around L2
- Companion satellite for telemetry and in-flight calibration

The future: PRISM

The future: PRISM

- Science case
 - Galactic ISM: role of magnetic field in star formation, composition and evolution of interstellar dust
 - CMB spectral distortions: mapping of y-distortions from hot clusters to reionized gas, early μ-distortions caused by decaying/annihilating dark matter
 - Inflation: detection of B-modes near the ideal instrument limit, CMB lensing, high measurements of bispectra and tri-spectra
 - CIB and LSS: details of star formation, cross-correlations of lensing and farinfrared emission
 - Galaxy clusters

New Light in cosmology from the CMB -Trieste - 31/07/13

45

TOTAL clusters detected: $\approx 10^{6}$ TOTAL peculiar velocities: \approx a few 10^{5} TOTAL relativistic SZ: \approx a few 10^{4}

Trieste - 31/07/13

The ultimate SZ survey

The ultimate SZ survey

Total

Dust

╇

SZ clusters

320 GHz, 1.6 arcmin resolution, 6 arcsec pixels, 12°x12° patches

Trieste - 31/07/13

The ultimate SZ survey

Matthieu Roman

The ultimate SZ survey

Input tSZ map at 1.6 arcmin

The ultimate SZ survey

Output ILC map

Matthieu Roman

We need your support!

If you have not done so yet, please support this science case by signing in on the website

http://www.prism-mission.org

